U.P.B. Sci. Bull., Series C, Vol. 74, Iss. 2, 2012 ISSN 1454-234x

DISTRIBUTED DATABASES IN THE DISTRIBUTED
COMMITTEE-MACHINES ARHITECTURE

Valentin PUPEZESCU'

Prezenta lucrare analizeaza pentru prima data influenta pe care bazele de
date distribuite o au asupra aplicatiilor de descoperire a cunostintelor in baze de
date. Se studiaza implementarea efectiva a bazelor de date distribuite in sistemul de
gestiune a bazelor de date SOL Server si modul in care arhitecturile Data Mining de
tip Committee-Machines sunt afectate de acestea. Studiul este benefic pentru
domenii ca cel medical, astronomie, financiar, industria jocurilor, controlul
traficului aerian etc.

This paper analyzes for the first time the influences of distributed databases
on applications of knowledge discovery in databases. It studies the effective
implementations of distributed databases in the SQL Server database management
system and how they affect Data Mining architectures like Committee-Machines.
The study is beneficial for areas such as medicine, astronomy, finance, gaming
industry, air traffic control, and others.

Keywords: KDD, Knowledge Discovery in Databases, Data Mining, Replication,
Knowledge Management, Distributed Committee-Machines

1. Introduction

Knowledge Discovery in Databases (KDD) is the overall process of
finding and extracting useful patterns from data [1].

Data Mining (DM) represents a set of specific methods and algorithms
aimed solely at extracting patterns from raw data [1].

In the last years the KDD process was approached from two perspectives:
parallel and distributed computing. These directions led to the apparition of
Parallel KDD and Distributed KDD [2]. In Parallel KDD, data sets are assigned to
high performance multi-computer machines for analysis. The availability of this
kind of machines is increasing and all algorithms that were used on single-
processor units must be scaled in order to run on parallel-computers [2]. The
Parallel KDD technology is suitable for scientific simulation, transaction data or
telecom data [2]. Distributed KDD must provide solutions for local analysis of

'PhD student, Faculty of Electronics, Telecommunications and Information Technology,
University POLITEHNICA of Bucharest, Romania, e-mail: vpupezescu@yahoo.com



120 Valentin Pupezescu

data and global solutions for recombining local results from each computing unit
without causing massive data transfer to a central server [2].

Although important studies were made in the field of distributed Data
Mining (DDM), none of them was about the real implementations of distributed
databases and how these implementations affect the overall performance of D-DM
architectures.

In common studies that were made, data were kept on different locations
(heterogeneous databases). That was the “distributed” meaning of distributed
databases. As we will see, this view has little to do with real implementations of
distributed databases.

In this paper I will focus on studying the influence that data replication has
on a D-DM architecture. The analysis will treat the case of Distributed
Committee-Machines architecture because for this type of structure, input data
must be the same on all computers.

2. Distributed Databases

A distributed database (D-DB) is defined as a collection of multiple
logically interrelated databases that are dispersed over a network of
interconnected computers [3].

In a distributed database system, data is physically stored across several
sites, and each site is typically managed by a database management system that is
capable of running independently of the other sites [4]. The locations of data items
and the degree of autonomy of individual sites have a significant impact on all
aspects of the system, including query optimization and processing, concurrency
control, and recovery [4]. So the DBMS carries out the replication of data and
assures that data distribution is transparent to the user [3][4].

Microsoft SQL Server provides the following types of replication for use
in distributed applications: merge replication, snapshot replication and
transactional replication. There is also another type of replication called
transactional replication with queued updating which is a variant of the
transactional one. This type lets subscribers do updates to their databases.

In order to function in SQL Server, replication has five specialized agents:

e A distribution agent that moves the information from the distributor on the
subscriber's databases [5];

e A log reader agent that monitors all the transaction logs from published
databases that use it for replication. When the reader finds transactions that
belong to a publication, it copies them to the distributor, from where the
distribution agent can apply them to subscribers [5];

e A merge agent that combines the changes made in different locations [5];



Distributed Databases in the distributed committee-machines arhitecture

121

subscribers [5];

for every subscriber and applies the transactions at publisher's level [5].

Custom Application Custom Application

Merge replication typically begins with
the generation and application of the
snapshot.

Publisher Subscriber
o
&

Tracking
Tables

Tracking
Tables

-
Merge Agent

Distributor
.
3
& History Data
Distribution
Database

Fig. 1. Merge replication [6].

" Publisher
=
=

Custom Application

5

A snapshot agent that copies al the records from the publisher to

A copy agent from queue that reads messages from the SQL Server queue

Distributor -
P
— i )’3 snapshot Agent
-
History Data

Ej ? Snapshot Folder
K "*js .
Distribution ;}‘».,wﬁs Distribution Agent
Database %
Subscriber
&=

Subscription

Fig. 2. Snapshot replication [6].

Merge replication (Fig. 1) offers the highest level of autonomy and accepts
the highest levels of latencies.
In this type of replication we have the following latencies (these are also
the steps of merge replication) [5]:
tsnapshot — the time period in which the snapshot agent(from the distributor)
makes the initial copy of the database to each subscriber;
tereate — the time in which a distribution folder is created on the distributor
server. This is the folder were all the data will be combined. After this
folder is created, the replication process starts;
tmerge1 — the time period in which the merge agent takes the changes from
the publisher systems and applies them to subscribers;
tmerge2 — the time period in which the merge agent takes the changes from
the subscribers and applies them to the publisher;



122 Valentin Pupezescu

® tmerge3 — the time in which the merge agent receives the update conflicts
and takes the proper actions.
The actual value of replication process (measured in experiments) is:
TR =1 +1 + tmerge] + tmergeZ + Zmerge3 (1)

Snapshot replication (Fig. 2) makes the copy of the entire database to all
the subscribers [5]. This replication guarantees transactional consistency because
all changes are made on the publisher system.

In this type of replication we have the following latencies (these are also
the steps of snapshot replication) [5]:

® toapshot — the time in which the snapshot agent reads the publisher article
and creates the schema and table data in the distribution folder;

® tgisribl — the time in which the distribution agent reads this schema and
reconstructs the table on the subscriber's system;

® tgiswib2 — the time in which the distribution agent transfers table data to the
subscriber;

® tiygex — the time for reconstructing indexes (if they are used) on the
subscriber's system.

The actual value of replication process (measured in experiments) is:

T, RSnapshot =1 F Laiswrivt F Laistriny + Lindex (2)

In the transactional replication (Fig. 3) the transactions are sent from
publisher to subscribers. Changes are made only at the publisher.
The time periods and steps for the transactional replication are shown
below:

® tyapshot — the time period in which the snapshot agent creates the schema
and table data in the distribution folder;

® t4isriby — the time in which the distribution agent reads this schema and
creates the table on the subscriber's system,;

® tgiswibzy — the time in which the distribution agent transfers the data on the
subscriber. In this moment, the replication starts;

® tigex — the time for reconstructing indexes (if they are used) on the
subscriber's system. In this moment, the replication of the transactions
begins.

® taq — the time in which the log reader agent checks transactional logs from
the publisher. When it finds a transaction, it transfers it in the distribution
database where it will be kept until the next synchronization starts;

e tync - when the synchronization it beeing made, the transaction it's read by
the distribution agent and then it's executed on the subscriber's system.
The actual value of replication process (measured in experiments) is:

TR t +1 +t Flinder Hread T Line (3)

Merge snapshot create

snapshot

transact] ~ “snapshot distribl distrib2 index



Distributed Databases in the distributed committee-machines arhitecture 123

Custom Application Custom Application

Transactional replication typically
begins with the generation and
application of the snapshat.

Transactional replication typically
begins with the generation and
application of the snapshot.

——(7)

Publisher ¥ Publisher

Publication Publication

Dlstnbutor Dwstr-butor‘
v v
i Ay s % Lo Read
1 F Log Reader Ei ?} og Reader
S “—.\,_r\,)} Agent ‘% L, g Agent

2 Queue
Ei ;)f. Reader
e X S Agent
a \)::c Eistriéjulion @ ); Distribution 4
_ gen _4f* Agent
s TP & aad i
Distribution o Distribution o
Database Database
Subscriber Subscriber
Articles Articles Qﬁe
Subscription Subscription
Fig. 3. Transactional replication [6]. Fig. 4. Transactional replication with queued

updating subscriptions [6].

Transactional replication with queued updating subscriptions (Fig. 4) is a

variation of the classic transactional replication that allows subscribers to replicate
changes to the publisher. The time periods and steps for the transactional
replication with queued updating subscriptions are shown below [6]:

trige — the time in which updates made at the subscriber are taken by
triggers on the subscribing tables. These updates are stored by trigger in
the MSreplication_queue;

twewe — the time in which the queue reader agent reads the
Msreplication_queue, and then applies transactions that are stored in it to
the publication using replication stored procedures;

tresolve — the time period in which conflict are resolved;

tsena — the time period in which changes made at the publisher are
propagated to all other subscribers according to the distribution agent
schedule.

The actual value of replication process (measured in experiments) is:



124 Valentin Pupezescu

TR t. +t +t

trigg queue resolve

+ tsend (4)

transact?

3. Distributed Databases and D-CM architectures

A committee machine is a type of neural network system composed by
many neural network structures that work in the same time and provide the best
solution (choosen from all obtained results) to a given problem (Fig. 5).

X1

MLP-1 |=ly]

MLP-2 —>Y2 =YX

MLP-N [—=(YN

Fig. 5. Example of a multilayer committee-machine [2]

In the above figure it's presented an example of a D-CM architecture
composed of multilayer perceptrons. All perceptrons work in a distributed manner
and obtain the classification results. These results are then taken by the combiner.
The combiner choose the best result from all the distributed perceptrons. Each
neural structure from the above architecture works with a database that contains
the input data so therefore it's very important to have the same imput data on all
distributed systems. The best solution for doing this is using a type of replication
presented in the previous chapter. If data is not replicated, each system can have
different data for the perceptrons so the results would not be correct. Another
unreliable solution would be to let the human factor to take care for copying data
on all distributed system. This would be unprofitable. On the other hand, it would
very good that all distributed structures to be aware of the results of the others
because if a certain classifcation result would be obtained, all of them would stop
working. The problem that appear in this situation are those of insert operations
that are beeing made by all neural structures in the results tables.

Another problem that appears when working in a concurent environment is
that of the transactional isolation level that was chosen. In all DBMS there are
four transactional isolation levels: read uncommitted, read committed, repeatable
reads and serializable. The first level is very permissive and the last one is the
most restrictive (there, all the transactions will be treated in a serialized manner).

In the experiments, each distributed structure made 1000 insert operations.



Distributed Databases in the distributed committee-machines arhitecture

125

The results took in the account the transactional isolation level.

SQL Server
1PC
1600
U e
1200
time [ms] 1900
800 Ev v! q——ﬂ_
600
400
200
0
1 2 3 4

Isolation Level

e | PC -
Merge

g | PC —
Snapshot
1PC-
Transactl

g | PC -
Transact2

Fig. 6. 1000 inserts operations made by one PC linked to the publisher.

time [ms] 1000

SQL Server
2 PC's

1600
1400
1200

- Lﬂ‘

600
400
200

Isolation Level

e PC's —
Merge

——— ) PC's —
Snapshot
2PC's -
Transactl

gy 2 PC's —
Transact2

Fig. 7. 1000 inserts operations made by each of the two PCs linked to the publisher.

time [ms]

SQL Server Replication
4 PC's

6000
5000
4000
3000
2000
1000

Isolation Levels

i 4 PC's —
Merge

g 4 PC's —
Snapshot
4PC's —
Transactl

4 PC's —
Transact2

Fig. 8. 1000 inserts operations made by each of the four PCs linked to the publisher.

As we can see in the experimental results, the best results were obtained
for the classic transactional replication. On all cases this replication didn't exceed
1 second. This is the most indicated replication type for distributed committee
machines or for distributed concurrent neural networks. This good result are
explained by the fact that when one machine from the system does an insert



126 Valentin Pupezescu

operation into the distributed database, the SQL Server runs the same insert
instruction on each distributed client linked to the server without copying the
entire database to each client.

The worst case was that of the transactional replication with updating
queued. That happened because the listening process that it's taking place between
all the systems in the network. The differences in terms of obtained times between
these extreme cases are getting bigger as we grow the number of concurent
systems in the D-CM structure.

The snapshot replication had also very good results in terms of insert
operations but we must underline the fact that after the results are beeing
transfered to the publisher, the network load is high because all the data are
copied to each subscriber.

The transactional levels affected only the merge replication and the
transactional replication with updating subscriptions. The more distributed
systems are used in D-DM the lower isolation levels should be set in order to
support more concurrent systems.

4. Conclusions

This paper is the first one that analyses the performances of insert
operations of distributed committee-machines that are operating within a
replication topology. The study have a very big importance for study fields like
medical diagnosis, medical research, astronomy, finance and so forth.

With the results obtained we can say that in a distributed committee-
machine architecture it is best to work with the classical transactional type of
replication because of low execution times that were experimentally obtained.

REFERENCES

[11 Usama Fayadd, Gregory Piatesky-Shapiro, and Padhraic Smyth. From Data Mining To
Knowledge Discovery in Databases, AAAI Press / The MIT Press, Massachusetts Institute
Of Technology, 0-262-56097-6 FAYAP, 1996.

[2] Pupezescu Valentin, Ionescu Felicia. Advances in Knowledge Discovery in Databases, 6, 978-
973-671-162-6, 2008.

[3] Robert Dollinger. Baze de date si gestiunea tranzactiilor (Databases and transaction
management) Editura Albastra, 973-650-020-9, 2001.

[4] O'Brien, J. & Marakas, G.M. Management Information Systems (pp. 185-189). New York,
NY: McGraw-Hill Irwin, 2008.

[5] Richard Waymire, Rick Sawtell. Microsoft SQL Server 2000. Editura Teora, 973-20-0468-1,
2002.

[6] Help Microsoft on-line, http://msdn.microsoft.com/en-us/library/bb500348.aspx.

[7] Mukarram A.Tahir, Java Implementation of Neural Networks, Booksurge Publishing Inc.,
1997.



