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FIXED POINTS OF SUZUKI TYPE QUASI-CONTRACTIONS

B. Mohammadi1, Simona Dinu2, Sh. Rezapour3

To generalize the celebrated Banach contraction theorem, many authors
have introduced various type contraction inequalities. In 2008, Suzuki introduced a
new method and then this method was extended by some authors. In 2012, Samet,
Vetro and Vetro introduced α-ψ-contractive mappings and gave some results on
fixed point of mappings. Their results generalized some previous fixed point results.
In this paper, by using the idea of Samet, Vetro and Vetro, we introduce fixed point
results of Suzuki type quasi-contractive selfmaps and multifunctions.
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1. Introduction

In 1969, Subrahmanyam proved that a metric space X is complete if and
only if every Kannan mapping on X has a fixed point, [38]. In 2008, Suzuki in-
troduced a new type of mappings and a generalization of the Banach contraction
principle in which the completeness can be also characterized by the existence of
fixed points of these mappings, [39]; for some generalizations, see [1]. The notion

of quasi-contraction was provided by Ćirić in 1974, [11]. Later, several researchers
published some papers about quasi-contractions (see for example, [3], [17], [19], [22],
[31]). In 2012, Samet, Vetro and Vetro introduced the notion of α-ψ-contractive
mapping and gave some results on fixed point of mappings, [32]. In this paper, by
combining different ideas of the above listed papers and providing a simple method,
we give some fixed point results about Suzuki type quasi-contractive selfmaps and
multifunctions, [12], [26], [27], [28]. These results complement several fixed point
results for different kinds of contractions on some spaces such as: ordered metric
spaces [5, 6, 9, 21, 30, 34, 40], G-metric spaces [7, 10, 35, 36], convex metric spaces
[29], metric spaces endowed with a graph [8, 20], fuzzy metric spaces [25], partial
metric spaces [33], quasi-partial metric spaces [37].

Denote by Ψ the family of nondecreasing functions ψ : [0,+∞) → [0,+∞)
such that

∑+∞
n=1 ψ

n(t) < +∞, for each t > 0. We know that ψ(t) < t, for all t > 0.
Let (X, d) be a metric space, α : X ×X → [0,∞) a mapping, F a selfmap on

X and T : X → 2X a multifunction. We say that T is α-admissible whenever for
each x ∈ X and y ∈ Tx with α(x, y) ≥ 1 we have α(y, z) ≥ 1 for all z ∈ Ty. Also,
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we say that F is α-quasi-admissible whenever α(x, Fx) ≥ 1 implies α(Fx, F 2x) ≥ 1
for all x ∈ X. Finally, we say that X satisfies the condition (Cα) whenever for
each sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n and xn → x, there exists a
subsequence {xnk

} of {xn} such that α(xnk
, x) ≥ 1 for all k (see [2] for the idea of

this notion).
Recall that T is continuous whenever H(Txn, Tx) → 0 for all sequence {xn}

in X with xn → x, where H is the Hausdorff metric.
Throughout this paper, we use the nondecreasing function θ : [0, 1) → (1/2, 1]

which is given by

θ(r) =


1 if 0 ≤ r ≤

√
5−1
2 ,

(1− r)r−2 if
√
5−1
2 ≤ r ≤ 2−1/2,

(1 + r)−1 if 2−1/2 ≤ r < 1.

2. Some results on selfmaps

Now, we are ready to state and prove our main results. First, we give the
following theorem by following techniques of similar results in literature.

Theorem 2.1. Let (X, d) be a complete metric space, r ∈ [0, 1) and T a selfmap on
X such that θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rK(x, y) for all x, y ∈ X,

where K(x, y) = max{d(x, y), d(x, Tx), d(x,Ty)+d(y,Tx)2 }. Then T has a unique fixed
point.

Proof. Since θ(r)d(x, Tx) ≤ d(x, Tx) for all x ∈ X, we have

d(Tx, T 2x) ≤ rmax{d(x, Tx), d(x, Tx), d(x, T
2x) + d(Tx, Tx)

2
}

= rmax{d(x, Tx), d(x, T
2x)

2
}.

Hence, d(Tx, T 2x) ≤ rd(x, Tx) or d(Tx, T 2x) ≤ r d(x,T
2x)

2 .

If d(Tx, T 2x) ≤ r d(x,T
2x)

2 , then 2d(Tx, T 2x) ≤ rd(x, Tx)+ rd(Tx, T 2x) and so

d(Tx, T 2x) ≤ (2− r)d(Tx, T 2x) ≤ rd(x, Tx).

Hence, in each case we have d(Tx, T 2x) ≤ rd(x, Tx) for all x ∈ X.
Now, fix u ∈ X and define a sequence {un} by un = Tnu for all n ≥ 1.

By using the above inequality, we have d(un, un+1) ≤ rnd(u, Tu) for all n. Thus,∑
d(un, un+1) < ∞ and so {un} is a Cauchy sequence. Since X is complete, there

exists z ∈ X such that un → z.
Now, we show that d(z, Tx) ≤ rd(z, x), for all x ∈ X with x ̸= z.
Let z ̸= x ∈ X be given. Choose a natural number n0 such that d(z, un) ≤

1
3d(z, x) for all n ≥ n0. Then, we obtain

θ(r)d(un, Tun) ≤ d(un, un+1) ≤ d(z, un) + d(z, un+1) ≤
2

3
d(z, x)

= d(z, x)− 1

3
d(z, x) ≤ d(z, x)− d(z, un) ≤ d(un, x).

Thus, d(un+1, Tx) ≤ rmax{d(un, x), d(un, un+1),
1
2(d(un, Tx) + d(un+1, x))}, for all

n ≥ n0. Hence, d(z, Tx) ≤ rmax{d(z, x), 12(d(z, Tx) + d(z, x))}. This implies that
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d(z, Tx) ≤ rd(z, x) or d(z, Tx) ≤ r
2(d(z, Tx)+d(z, x)). If the second case holds, that

is, d(z, Tx) ≤ r
2(d(z, Tx) + d(z, x)), then 2d(z, Tx) ≤ rd(z, Tx) + rd(z, x)) and so

d(z, Tx) ≤ (2−r)d(z, Tx) ≤ rd(z, x). Thus, in each case we have d(z, Tx) ≤ rd(z, x).
Hence, we proved the claim.

Now, we claim that there exists a natural number j such that T jz = z. If

T jz ̸= z for all j, then d(T j+1z, z) ≤ rjd(Tz, z) for all j. Let 0 ≤ r ≤
√
5−1
2 . Then,

2r2 < 1. If d(T 2z, z) < d(T 2z, T 3z), then

d(z, Tz) ≤ d(z, T 2z) + d(T 2z, Tz) < d(T 2z, T 3z) + d(T 2z, Tz)

≤ r2d(Tz, z) + rd(Tz, z) ≤ d(z, Tz)

which is a contradiction. Thus, d(T 2z, z) ≥ d(T 2z, T 3z) = θ(r)d(T 2z, T 3z) and so

d(T 3z, Tz) ≤ rmax{d(T 2z, z), d(T 2z, T 3z),
1

2
(d(T 2z, Tz) + d(z, T 3z))}

≤ max{r2d(Tz, z), r3d(z, Tz), r
2 + r3

2
d(z, Tz)} = r2d(Tz, z).

Hence,

d(z, Tz) ≤ d(z, T 3z)+d(T 3z, Tz) ≤ r2d(Tz, z)+r2d(Tz, z) = 2r2d(z, Tz) < d(z, Tz)

which is a contradiction again.

Now, assume
√
5−1
2 < r < 2−1/2. Then, 2r2 < 1.

If d(T 2z, z) < θ(r)d(T 2z, T 3z), then

d(z, Tz) ≤ d(z, T 2z) + d(T 2z, Tz) < θ(r)d(T 2z, T 3z) + d(T 2z, Tz)

≤ θ(r)r2d(Tz, z) + rd(Tz, z) = d(z, Tz)

which is a contradiction. Thus, θ(r)d(T 2z, T 3z) ≤ d(T 2z, z).
Similar to the previous case, we can prove d(z, Tz) ≤ 2r2d(z, Tz) < d(z, Tz),

which is a contradiction again.
Now, let 2−1/2 ≤ r < 1. Then, it is easy to see that for each x, y ∈ X we have

θ(r)d(x, Tx) ≤ d(x, y) or θ(r)d(Tx, T 2x) ≤ d(Tx, y). Thus, for each natural number
n we have θ(r)d(u2n, u2n+1) ≤ d(u2n, z) or θ(r)d(u2n+1, u2n+2) ≤ d(u2n+1, z). Hence,
d(u2n+1, T z) ≤ rK(u2n, z) or d(u2n+2, T z) ≤ rK(u2n+1, z) for all n. Therefore, we
have at least one of the following cases:

(1) There exists a subsequence {nk} such that d(u2nk+1, T z) ≤ rK(u2nk
, z),

(2) There exists a subsequence {nk} such that d(u2nk+2, T z) ≤ rK(u2nk+1, z).
If (1) holds, then we get

d(u2nk+1, T z) ≤ rmax{d(u2nk
, z), d(u2nk

, u2nk+1),
1

2
(d(u2nk

, T z) + d(z, u2nk+1))}

for all k and so d(z, Tz) ≤ r
2d(z, Tz) and so z = Tz. This is a contradiction.

If (2) holds, then we get

d(u2nk+2, T z) ≤ rmax{d(u2nk+1, z), d(u2nk+1, u2nk+2),

1

2
(d(u2nk+1, T z) + d(z, u2nk+2))}

for all k. Hence, d(z, Tz) ≤ r
2d(z, Tz). Thus, z = Tz. This is a contradiction.

Therefore, we proved the second claim, that is, there exists a natural number j such
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that T jz = z. But, we showed that {Tnu} is a Cauchy sequence for all u ∈ X.
Thus, {Tnz} is a Cauchy sequence.

Now, consider the subsequences {Tnjz}n≥1 and {Tnj+1z}n≥1 of {Tnz}. Note
that, Tnjz → z and Tnj+1z → Tz. Thus, Tz = z and so T a fixed point. It is easy
to show that T has a unique fixed point. �

The following example shows us the difference between Theorem 2.1 and The-
orem 2 in [39], that is, there are some mappings in which we can use Theorem 2.1
while we can not apply Theorem 2 of [39] for the maps.

Example 2.1. Let X = {(0, 0), (5, 0), (0, 5), (6, 0), (0, 6), (5, 6), (6, 5)} and

d((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|.
Now, we define the selfmap T on X by T (x1, x2) = (x1, 0) whenever x1 ≤ x2
and T (x1, x2) = (0, x2) whenever x1 > x2. Suppose there exists r ∈ [0, 1) such
that θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X. Put
x = (6, 0) and y = (5, 6). Then θ(r)d(x, Tx) = 6θ(r) ≤ 7 = d(x, y). Hence

d(Tx, Ty) ≤ rd(x, y) and so 5 = d((0, 0), (5, 0)) ≤ 7r. Therefore, 1 > r ≥ 5
7 > 2−

1
2

and so

θ(r) =
1

1 + r
≤ 1

1 + 5
7

=
7

12
.

Put x = (6, 0) and y = (6, 5). Then θ(r)d(x, Tx) = 6θ(r) ≤ ( 7
12)6 ≤ 5 = d(x, y).

But, d(Tx, Ty) = 5 = d(x, y) and so d(Tx, Ty) > rd(x, y). Therefore, T does not
satisfy the condition of Theorem 2 of [39].

Now, we show that one can use Theorem 2.1 for the selfmap T .
In this respect, let x, y ∈ {(0, 0), (6, 0), (0, 6), (5, 0), (0, 5)}. Then, we have

d(Tx, Ty) = 0 ≤ rK(x, y). If x = (5, 6) and y ∈ {(0, 0), (6, 0), (0, 6), (5, 0), (0, 5)},
then d(Tx, Ty) = d((5, 0), (0, 0)) = 5 and d(x, Tx) = 6. So, K(x, y) ≥ 6. Now, put

r = 10
11 . Then, 2−

1
2 ≤ r < 1 and θ(r) = 1

1+r = 1
1+10/11 = 11/21. Thus, in this case

we obtain d(Tx, Ty) = 5 ≤ 10
11K(x, y) = rK(x, y). Now, suppose that x = (6, 5)

and y ∈ {(0, 0), (6, 0), (0, 6), (5, 0), (0, 5)}. Then, d(Tx, Ty) = d((0, 5), (0, 0)) = 5
and d(x, Tx) = 6. Thus, K(x, y) ≥ 6 and so d(Tx, Ty) = 5 ≤ rK(x, y). Finally,
suppose that y ∈ {(5, 6), (6, 5)} and x ∈ {(0, 0), (6, 0), (0, 6), (5, 0), (0, 5)}. Then, we
have d(Tx, Ty) = 5, K(x, y) ≥ d(x,Ty)+d(y,Tx)

2 ≥ d(y,Tx)
2 = 11

2 . This implies that
d(Tx, Ty) = 5 ≤ rK(x, y). Therefore, we can use Theorem 2.1 for the selfmap T
while we cannot apply Theorem 2 of [39] for the map.

By providing an easy proof, one can obtain the next result.
We say that a selfmap T is a Suzuki type quasi-contraction whenever T satisfy

the main condition of Theorem 2.1 or Theorem 2.2.

Theorem 2.2. Let (X, d) be a complete metric space, ψ ∈ Ψ, α : X ×X → [0,∞)
a mapping and T an α-quasi-admissible selfmap on X such that

α(x, y)d(Tx, Ty) ≤ ψ(M(x, y))

for all x, y ∈ X, where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)2 }.
Assume that there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. If T is continuous or X
has the property (Cα) and ψ is upper semi-continuous, then T has a fixed point.
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Corollary 2.3. Let (X, d,≤) be an ordered complete metric space, ψ ∈ Ψ and T
a selfmap on X such that d(Tx, Ty) ≤ ψ(M(x, y)) for all comparable x, y ∈ X.
Assume that there exists x0 ∈ X such that x0 and Tx0 are comparable, X has
the property (Cα) and ψ is upper semi-continuous. Suppose that Tx and T 2x are
comparable whenever x and Tx so are. Then T has a fixed point.

Proof. Define the mapping α : X × X → [0,+∞) by α(x, y) = 1, whenever x and
y are comparable and α(x, y) = 0, otherwise. Then by using Theorem 2.2, T has a
fixed point. �
Corollary 2.4. Let (X, d) be a complete metric space, A ⊆ X, ψ ∈ Ψ and T a self-
map on X such that d(Tx, Ty) ≤ ψ(M(x, y)) for all x, y ∈ X which are comparable
with at least one element of A. Assume that there exists x0 ∈ X such that x0 and
Tx0 are comparable with at least one element of A, X has the property (Cα) and
ψ is upper semi-continuous. Suppose that Tx and T 2x are comparable with at least
one element of A whenever x and Tx so are. Then T has a fixed point.

Proof. Define the mapping α : X ×X → [0,+∞) by α(x, y) = 1, whenever x and y
are comparable with at least one element of A and α(x, y) = 0 otherwise. Then by
using Theorem 2.2, T has a fixed point. �

Let (X, d) be a metric space and T a selfmap on X. We say that X has
the property (E) whenever for each sequence {xn} in X with θ(r)d(xn, Txn) ≤
d(xn, xn+1) and xn → x, there exists a subsequence {xnk

} of {xn} such that

θ(r)d(xnk
, Txnk

) ≤ d(xnk
, x)

for all k.

Corollary 2.5. Let (X, d) be a complete metric space, r ∈ [0, 1), T a selfmap on X
such that θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rM(x, y) for all x, y ∈ X. If
T is continuous or X has the property (E), then T has a unique fixed point.

Proof. Define α : X ×X → [0,+∞) by α(x, y) = 1 whenever θ(r)d(x, Tx) ≤ d(x, y)
and α(x, y) = 0 otherwise. Since θ(r)d(x, Tx) ≤ d(x, Tx) for all x ∈ X, α(x, Tx) ≥ 1
for all x ∈ X and so T is α-admissible. Also, it implies that d(Tx, Ty) ≤ rM(x, y)
for all x, y ∈ X. Define ψ(t) = rt for all t ≥ 0. Then by using Theorem 2.2, T has
a fixed point. If x and y are two fixed points of T , then θ(r)d(x, Tx) = 0 ≤ d(x, y)
and so d(x, y) = d(Tx, Ty) ≤ rM(x, y) = rd(x, y). Thus, x = y. �

Now by using a similar proof, one can obtain next corollary.

Corollary 2.6. Let (X, d) be a complete metric space, r ∈ [0, 1), T a selfmap on X
such that θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rK(x, y) for all x, y ∈ X. If T
is continuous or X has the property (E), then T has a unique fixed point.

3. Some results on multifunctions

In this section, we suppose that (X, d) is a metric space, 2X the family of
non-empty subsets of X, CB(X) is the set of all closed and bounded subsets of X,
T : X → 2X a multifunction and D(x, Ty) = infz∈Ty d(x, z) for all x, y ∈ X. Also,
we use the notations

K(x, y) = max
{
d(x, y), D(x, Tx),

D(x, Ty) +D(y, Tx)

2

}
,
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and

M(x, y) = max
{
d(x, y), D(x, Tx), D(y, Ty),

D(x, Ty) +D(y, Tx)

2

}
,

in this section.
The proof of next result is similar to proof of Theorem 2.1 in [4], but this

result is a different one. In fact, this result is a multifunction version of Theorem
2.2.

Theorem 3.1. Let (X, d) be a complete metric space, α : X×X → [0,∞) a function,
ψ ∈ Ψ a strictly increasing map and T : X → CB(X) an α-admissible multifunction
such that α(x, y)H(Tx, Ty) ≤ ψ(M(x, y)) for all x, y ∈ X and there exist x0 ∈ X
and x1 ∈ Tx0 with α(x0, x1) ≥ 1. If T is continuous or X has the property (Cα)
and ψ is upper semi-continuous, then T has a fixed point.

Proof. If x1 = x0, then we have nothing to prove.
Let x1 ̸= x0. Then, we have

D(x1, Tx1) ≤ α(x0, x1)H(Tx0, Tx1)

≤ ψ(max{d(x0, , x1), D(x0, Tx0), D(x1, Tx1),
D(x0, Tx1) +D(x1, Tx0)

2
})

= ψ(max{d(x0, x1), D(x1, Tx1),
D(x0, Tx1)

2
})

≤ ψ(max{d(x0, x1), D(x1, Tx1),
d(x0, x1) +D(x1, Tx1)

2
})

= ψ(max{d(x0, x1), D(x1, Tx1)}).
If max{d(x0, x1), D(x1, Tx1)} = D(x1, Tx1), then it is easy to see that it

follows D(x1, Tx1) ≤ ψ(D(x1, Tx1)), and we get D(x1, Tx1) = 0. Thus, d(x0, x1) =
0, which is a contradiction. Hence, we obtain max{d(x0, x1), D(x1, Tx1)} = d(x0, x1)
and so D(x1, Tx1) ≤ ψ(d(x0, x1)).

If x1 ∈ Tx1, then x1 is a fixed point of T . Let x1 /∈ Tx1 and q > 1. Then,

0 < D(x1, Tx1) ≤ qψ(d(x0, x1)).

Put t0 = d(x0, x1). Then, t0 > 0 and D(x1, Tx1) < qψ(t0). Hence, there exists
x2 ∈ Tx1 such that d(x1, x2) < qψ(t0) and so ψ(d(x1, x2)) < ψ(qψ(t0)). It is clear
that x2 ̸= x1.

Put q1 =
ψ(qψ(t0))
ψ(d(x1,x2))

. Then q1 > 1 and we have

D(x2, Tx2) ≤ α(x1, x2)H(Tx1, Tx2)

≤ ψ(max{d(x1, x2), D(x1, Tx1), D(x2, Tx2),
D(x1, Tx2) +D(x2, Tx1)

2
})

= ψ(max{d(x1, x2), D(x2, Tx2),
D(x1, Tx2)

2
}) ≤ ψ(max{d(x1, x2), D(x2, Tx2)}).

Similarly, we have max{d(x1, x2), D(x2, Tx2)} = d(x1, x2) and so we obtain
D(x2, Tx2) ≤ ψ(d(x1, x2)).

If x2 ∈ Tx2, then x2 is a fixed point of T .
Let x2 /∈ Tx2. Then, 0 < D(x2, Tx2) ≤ qψ(d(x1, x2)) < q1ψ(d(x1, x2)).

Hence, there exists x3 ∈ Tx2 such that d(x2, x3) < q1ψ(d(x1, x2)) = ψ(qψ(t0)). It is
clear that x3 ̸= x2 and ψ(d(x2, x3)) < ψ2(qψ(t0)).
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Put q2 =
ψ2(qψ(t0))
ψ(d(x2,x3))

. Then, q2 > 1. Also, we have

D(x3, Tx3) ≤ α(x2, x3)H(Tx2, Tx3)

≤ ψ(max{d(x2, x3), D(x2, Tx2), D(x3, Tx3),
D(x2, Tx3) +D(x3, Tx2)

2
})

= ψ(max{d(x2, x3), D(x3, Tx3),
D(x2, Tx3)

2
}) ≤ ψ(max{d(x2, x3), D(x3, Tx3)}).

By continuing this process, we finally obtain a sequence {xn} in X such that
xn ∈ Txn−1, xn ̸= xn−1 and d(xn, xn+1) ≤ ψn−1(qψ(t0)), for all n.

Let m > n. Then,

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1) ≤
m−1∑
i=n

ψi−1(qψ(t0))

and so {xn} is a Cauchy sequence in X. Hence, there exists x⋆ ∈ X such that
xn → x⋆.

If T is continuous, then

D(x⋆, Tx⋆) = lim
n→∞

D(xn+1, Tx
⋆) ≤ lim

n→∞
H(Txn, Tx

⋆) = 0

and so x⋆ ∈ Tx⋆.
If X has the property (Cα) and ψ is upper semi-continuous, then there exists

a subsequence {xnk
} of {xn} such that α(xnk

, x⋆) ≥ 1 for all k. Thus,

D(x⋆, Tx⋆) = lim
n→∞

D(xnk+1, Tx
⋆) ≤ lim

n→∞
α(xnk

, x⋆)H(Txnk
, Tx⋆)

≤ lim
n→∞

ψ(max{d(xnk
, x⋆), D(xnk

, Txnk
), D(x⋆, Tx⋆),

D(xnk
, Tx⋆) +D(x⋆, Txnk

)

2
})

≤ ψ(D(x⋆, Tx⋆)).

Hence, D(x⋆, Tx⋆) = 0 and so x⋆ ∈ Tx⋆. �
Let (X, d) be a metric space, ψ ∈ Ψ and T a multifunction on X. We say that

X has the property (F) whenever for each sequence {xn} in X with

D(xn, Txn) ≤ d(xn, xn+1) + ψ(d(xn, xn+1))

and xn → x, there exists a subsequence {xnk
} of {xn} such that

D(xnk
, Txnk

) ≤ d(xnk
, x) + ψ(d(xnk

, x))

for all k.

Corollary 3.2. Let (X, d) be a complete metric space, ψ ∈ Ψ a strictly increasing
map and T : X → CB(X) a multifunction such that D(x, Tx) ≤ d(x, y)+ψ(d(x, y))
implies H(Tx, Ty) ≤ ψ(M(x, y)) for all x, y ∈ X. If T is continuous or X has the
property (F) and ψ is upper semi-continuous, then T has a fixed point.

Proof. It is sufficient we define the map α : X×X → [0,∞) by α(x, y) = 1 whenever
D(x, Tx) ≤ d(x, y)+ψ(d(x, y)) and α(x, y) = 0 otherwise and use Theorem 3.1. �
Corollary 3.3. Let (X, d) be a complete metric space, r a real number in [0, 1)
and T : X → CB(X) a multifunction such that 1

1+rd(x, Tx) ≤ d(x, y) implies

H(Tx, Ty) ≤ rM(x, y) for all x, y ∈ X. If T is continuous or X has the prop-
erty (F), then T has a fixed point.
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Note that, K(x, y) ≤M(x, y) for all x, y ∈ X. We use this fact in next result.

Theorem 3.4. Let (X, d) be a complete metric space, ψ ∈ Ψ a strictly increasing

and upper semi-continuous map such that ψ(a+b2 ) ≤ ψ(a)
2 + ψ(b)

2 for all a, b ≥ 0,
T : X → CB(X) a multifunction such that D(x, Tx) ≤ d(x, y) + ψ(d(x, y)) implies
H(Tx, Ty) ≤ ψ(K(x, y)) for all x, y ∈ X. Then T has a fixed point.

Proof. Define the map α : X ×X → [0,∞) by

α(x, y) = 1 if D(x, Tx) ≤ d(x, y) + ψ(d(x, y)) or x = y, and α(x, y) = 0, otherwise.

Then, it is easy to check that T is α-admissible.
Fix x0 ∈ X and x1 ∈ Tx0. Then,

D(x0, Tx0) ≤ d(x0, x1) ≤ d(x0, x1) + ψ(d(x0, x1)),

and so α(x0, x1) = 1. Also, note that α(x, y)H(Tx, Ty) ≤ ψ(M(x, y)) for all x, y in
X. By using Theorem 3.1, it is sufficient we show that X has the property (Cα).

Let {xn} be a sequence in X such that xn → z and α(xn, xn+1) ≥ 1 for all
n. If there exists a natural number N such that xn+1 = xn for all n ≥ N , then we
have nothing to prove. Thus, we can suppose that there exists a subsequence {xnk

}
of {xn} such that xnk+1 ̸= xnk

and

D(xnk
, Txnk

) ≤ d(xnk
, xnk+1) + ψ(d(xnk

, xnk+1)).

First, we show that D(z, Tx) ≤ ψ(d(z, x)) for all x ∈ X\{z}. Since xnk
→ z,

there exists a natural number K such that d(z, xnk
) ≤ 1

3d(z, x) for all k ≥ K. Then,

d(xnk
, xnk+1) ≤ d(z, xnk

) + d(z, xnk+1) ≤
2

3
d(z, x)

= d(z, x)− 1

3
d(z, x) ≤ d(z, x)− d(z, xnk

) ≤ d(xnk
, x)

for all k ≥ K. Also, we have

D(xnk
, Txnk

) ≤ d(xnk
, xnk+1) + ψ(d(xnk

, xnk+1)) ≤ d(xnk
, x) + ψ(d(xnk

, x)) → 0.

On the other hand, we have

d(xnk
, Tx)− d(xnk

, Txnk
) ≤ H(Txnk

, Tx)

≤ ψ(max{d(xnk
, x), D(xnk

, Txnk
),
1

2
(D(xnk

, Tx) +D(x, Txnk
))})

≤ ψ(max{d(xnk
, x), D(xnk

, Txnk
), 1/2(D(xnk

, Tx) + d(xnk
, x) +D(xnk

, Txnk
))}).

and so D(z, Tx) ≤ ψ(max{d(z, x), 12(D(z, Tx) + d(z, x))}). Hence,

D(z, Tx) ≤ ψ(d(z, x))

or D(z, Tx) ≤ ψ(1/2(D(z, Tx)+d(z, x))). If D(z, Tx) ≤ ψ(1/2(D(z, Tx)+d(z, x))),
then D(z, Tx) ≤ 1/2ψ(D(z, Tx)) + 1/2ψ(d(z, x)) and so

2D(z, Tx) ≤ ψ(D(z, Tx)) + ψ(d(z, x)).

Thus, D(z, Tx) ≤ 2D(z, Tx)−ψ(D(z, Tx)) ≤ ψ(d(z, x)), and this proves the claim.
Therefore, we obtain D(x, Tx) ≤ d(x, z) + D(z, Tx) ≤ d(x, z) + ψ(d(x, z)) for all
x ∈ X\{z}.

Now, we can assume that xnk
̸= z for all k, because α(xnk

, z) = 1 whenever
xnk

= z. Hence, D(xnk
, Txnk

) ≤ d(xnk
, z) + ψ(d(xnk

, z)) for all k. Thus, we get
α(xnk

, z) ≥ 1, for all k, and so X has the property (Cα). �
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Corollary 3.5. Let (X, d) be a complete metric space, r ∈ [0, 1) and a multifunction
T : X → CB(X) such that 1

1+rD(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ rK(x, y) for
all x, y ∈ X. Then T has a fixed point.

4. Conclusion

In this article, we introduce fixed point results of Suzuki type quasi-contractive
selfmaps and multifunctions. Our results are extensions of several results as in
relevant items from the reference section of this paper, as well as in the literature in
general. For stability results related to our fixed point research, please see [18], [29].

REFERENCES

1. S. M. A. Aleomraninejad, Sh. Rezapour, N. Shahzad, On generalizations of the Suzuki’s method,
Appl. Math. Lett. 24 (2011) 1037–1040.

2. S. M. A. Aleomraninejad, Sh. Rezapour, N. Shahzad, Some fixed point results on a metric space
with a graph, Topology Appl. 159 (2012) 659–663.

3. A. Amini-Harandi, Fixed point theory for set-valued quasi-contraction maps in metric spaces,
Appl. Math. Lett. 24 (2011) 1791–1794.

4. J. H. Asl, Sh. Rezapour, N. Shahzad, On fixed points of α-ψ-contractive multifunctions, Fixed
Point Theory Appl. Vol. 2012, ID 2012:212.

5. H. Aydi, E. Karapınar, M. Postolache, Tripled coincidence point theorems for weak φ-
contractions in partially ordered metric spaces, Fixed Point Theory Appl. Vol. 2012, ID: 2012:44.

6. H. Aydi, W. Shatanawi, M. Postolache, Z. Mustafa, N. Tahat, Theorems for Boyd-Wong type
contractions in ordered metric spaces, Abstr. Appl. Anal. Vol. 2012, ID: 359054.

7. H. Aydi, M. Postolache, W. Shatanawi, Coupled fixed point results for (ψ, ϕ)-weakly contractive
mappings in ordered G-metric spaces, Comput. Math. Appl. 63 (2012), No. 1, 298–309.

8. I. Beg, A. R. Butt, S. Radojevic, The contraction principle for set valued mappings on a metric
space with a graph, Comput. Math. Appl. 60 (2010) 1214–1219.

9. S. Chandok, M. Postolache, Fixed point theorem for weakly Chatterjea-type cyclic contractions,
Fixed Point Theory Appl. Vol. 2013, ID: 2013:28, 9 pp.

10. S. Chandok, Z. Mustafa and M. Postolache, Coupled common fixed point theorems for mixed g-
monotone mappings in partially ordered G-metric spaces, U. Politeh. Buch. Ser. A (in printing).
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