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NONSPREADING MAPPINGS ON MODULAR VECTOR SPACES

Cristian Ciobanescu!, Mihai Postolache?

We introduce the notion of a nonspreading mapping in the setting of modular
vector spaces, having as starting source the elegant article by Kohsaka and Takahashi
[Arch. Math., 2008, 91, 166-177]. We establish some properties of this class of mappings
and suggest a way to reckon their fixed points. More accurately, to estimate the solutions
of fixed point equations involving this kind of operators, we use a suitable iterative process
introduced by Sintunavarat and Pitea [J. Nonlinear Sci. Appl., 2016, 2553-2562].
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1. Introduction

The beginning of modular analysis was given by some practical examples of general-
ized function and sequence spaces provided by Orlicz and Birnbaum in the early 1930’s. A
deep analysis regarding modular function spaces and their suitability for fixed point theory
was realized by Kozlowski (1988) in [10] and by Khamsi and Kozlowski in [8]. Still, the
formal definition of modular vector spaces (not necessarily function-type spaces), as it is
known and used today, was settled by Orlicz and Musielack in [12] and [13]. From that mo-
ment on, the modular setting became an interesting and nontrivial alternative to classical
Banach spaces. Recent papers, using this particular framework as underlying setting are
related with various modular nonexpansivenes conditions, please see: Abdou and Khamsi
[1], Bejenaru and Postolache [2], Kassab and Turcanu [7].

Iteration based procedures provide important instruments in nonlinear analysis. They
can produce approximate solutions for certain classes of problems, which can be thought of
in terms of fixed point theory, whenever analytical methods fail. For instance, they can be
useful for approximating the zeros of complex polynomials, for studying general variational
inequalities, solving classes of split problems, finding solutions to optimization problems or
designing algorithms for processing signals and images: please, see Usurelu et al. [19, 20],
Yao et al. [21, 22].

The necessity of elaborated iteration procedures came with the study of generalized
contractive conditions and the major limitation of the Picard sequence under the aspect of
reaching the fixed point. Important results in this direction were obtained by Mann (1953)
[11], Ishikawa (1974) [5], Noor (2000) [14], Sahu et al. (2020) [15] and many others, in
the context of fixed point theory or variational inequalities. For instance, Suzuki (2008)
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[17] proved a convergence result for a mapping satisfying condition C' using a Krasnoselskij
iterative process; Karahan and Ozdemir (2013) [6] introduced the S* iteration for numerical
reckoning fixed points of contractive or nonexpansive mappings; Thakur et al. (2016) [18]
used a newly defined iteration process for approximating a fixed point of nonexpansive
mappings; Sahu et al. (2020) [15] utilise their new iteration technique for nonlinear operators
as concerns convex programming and feasibility problems. And the list above may continue.
Lately, classical methods of numerical analysis have been combined with some of these new
iterative procedures, resulting interesting and valuable new approximation methods.

However, there is an odd thing about iterative schemes. Despite the significant interest
a certain iterative process could produce, no one could say for sure that its study is being
completed. Each newly defined iterative scheme is almost immediately absorbed and reused
in different setting. For instance, the iteration process S, defined by Sintunavarat and
Pitea (2016) [16] was initially used for approximating the fixed points of mappings satisfying
Berinde (2004) contractive condition; in [4] convergence, stability and data dependence were
analyzed in connection with operators with condition (D), while in [3], the same procedure
was used to solve split feasibility problems.

In 2008, Kohsaka and Takahashi ([9]) introduced a new class of operators on Banach
spaces, namely the nonspreading mappings. This way, they generalized the class of firmly
nonexpansive type mappings. An interesting fact about the newly introduced operators
concerns their appearance on Hilbert spaces. Starting from this particular expression, we
adapt the definition to convex modular vector spaces. Further on, we evaluate the solutions
of fixed point equations involving this kind of operators based on the S,, iterative process.

2. Preliminaries

We initiate our approach by revealing the main features of the analytical setting, as
well as some instrumental definitions and lemmas.

Definition 2.1 ([12],[13]). Let X be a real vector space. A function p: X — [0, o] is called
a modular if it satisfies:

(i) p(x) =0 if and only if z = 0;

(i) p(ax) = p(x), for |a| =1, Vz € X;

(iii) plazx + (1 — a)y) < p(z) + p(y), Yo € [0,1], for all z,y € X.

By replacing condition (iii) with

plar + (1 —a)y) < ap(x) + (1 —a)p(y),

for all a € [0,1] and for all =,y € X, we find the so-called convex modular.

Definition 2.2 ([12]). Let p be a convex modular function defined on a vector space X.
The vector subspace X, is called a modular space, where

X, = {x € X : limp(azx) = O}.
a—0

Definition 2.3 ([1]). Let p be a convex modular on a vector space X.

(1) A sequence {z,} C X, is called p-convergent to some = € X, if and only if
lim p(z, —z) =0.
n—oo

(2) A sequence {z,} C X, is called p-Cauchy if lim p(xm, —x,) =0.

m,n— 00

(3) We say that X, is p-complete if any p-Cauchy sequence in X, is p-convergent.
(4) A set C C X, is called p-closed if for any sequence {x,,} C C' which p - converges
to some point x, one has x € C.
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5) A set C C X, is called p-bounded if §,(C) = sup p(x — y) < oco.
P P
z,yeC

(6) A set K C X, is called p-compact if any sequence {z,,} C K has a subsequence
which p-converges to a point in K.
(7) The modular p is said to satisfy the Fatou property if p(z — y) < liminf p(z — y,)
n— oo

whenever {y,} p-converges to y, for any z,y, y, € X,.

Definition 2.4 ([8]). The uniform convexity type properties of the modular p are defined
for every r > 0 and every € > 0 as follows:
(1) Define

Di(r,e) ={(z,y) : z,y € Xy, p(z) <7, p(y) <7,p(x —y) 2 er}.
If Dy(r,e) # 0, let

5(r,e) = inf{l - %p (m;y) (2,y) € Dl(r,s)}.

If Di(r,e) =0, set §1(r,e) = 1.
We say that p satisfies (UUC1) if for every s > 0 and & > 0, there exists 7;(s,e) > 0,
depending on s and ¢, such that

d1(r,e) > m(s,e) > 0.

for r > s.
(2) Define

Dy(r,e) = {(%y) cx,y € Xp,p(z) <1yply) <myp (m;y) > Er}-

If Dy(r,e) # 0, let

5a(r,) = inf{l - %p (“””?”)  (2,y) € Dg(r,e)}.

If Do(r,e) =0, set da(r,e) = 1.
We say that p satisfies (UUC2) if for every s > 0 and € > 0, there exists n2(s,e) > 0,
depending on s and ¢, such that

da(r,e) > ma(s,e) >0,
for r > s. It is important to point out that (UUC1) property also implies (UUC2).

Lemma 2.1 ([7]). Let p be a convexr modular which is (UUC1) and let {t,} € (0,1) be a
sequence bounded away from 0 to 1. If there exists r > 0 such that

limsup p(z,,) <,

n— oo

limsup p(y,) <7,

n—oo
lm p(tnzn + (1 —tn)yn) =1,
n— oo
where {x,} and {y,} are sequences in X,, then

lim P(l‘n - yn) = 0.

n— oo
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Definition 2.5 ([1]). Let {z,,} be a sequence in X, and C a nonempty subset of X,. The
function
7: C — [0,00],7(x) = limsup p(z — z,,)

n—oo
is called a p-type function.
Furthermore, a sequence {c,} C C is called a minimizing sequence of 7 if

A Ten) = ()

Lemma 2.2 ([1]). Assume that the modular space X, is p-complete and p satisfies Fatou

property. Let C be a nonempty convex and p-closed subset of X,. Consider the p-type

function 7: C' — [0, 00] given by a sequence {x,} in X,. Assume that 7o = ingT(x) < 0.
fAS

If p is (UUCL1), then all minimizing sequences of T are p-convergent to the same p-limit.
Definition 2.6. Let X, be a modular space. It is said that the modular p satisfies the
As-condition if there exists a constant K > 0 such that

p(2z) < Kp(x),

for any = € X,,.
The smallest such constant K will be denoted by w(2). In addition, one can also

w(2)

consider pu = = known as the modular factor (see [2]).

Remark 2.1 ([2]). The modular factor yu satisfies the properties:
(P1) p = 1;
(P2) p(z+y) < plp(x) + p(y)], for all z,y € X,,.

3. Main results

Throughout this part we will assume that p is a convex modular, satisfying the As-
condition. Moreover, u stands always for the modular factor.

Definition 3.1. Let C' be a nonempty subset of a modular space X,. A mappingT: C' = X,
with
(1 + p?)u?p*(Tx = Ty) < p*(Tx — y) + p*(z — Ty),
for all z,y € X, is called a modular nonspreading mapping.
Remark 3.1. The definition of nonspreading mappings on a Hilbert space H (see [9]) is

recovered by taking p(xz) = [|z||. Indeed, in this particular case one has p = 1, so the
inequality above becomes:

2||Ta — Ty|* < [|Tx —y|* + ||z - Ty|%,
for all x,y € H.
In the following, we will present an example of nonspreading modular mapping.

Example 3.1. In R, we consider the convex modular

p(x) = |z ]z,
with the modular factor u = V2.
To prove that a mapping 7: R — R is a nonspreading modular mapping, we need to
prove
6|7z —Ty|> < |Tw —y|* + Ty — =, (3.1)
for all z,y € R.
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We take now the mapping
T:R—R, Tz= g

and we check the inequality (3.1), meaning
611yl Tl
g Y =Y

6lz—y|* < |z -2y + |y — 22, (3.2)

3 3

1
—y—z
5Y

)

"

or, in other words,

for all z,y € R.

In the following, we will assume that x > y and we mention that the case y > = can
be proved absolutely similar.

Let a = x —y > 0. This implies that 2 = a + y and the condition (3.2) becomes

6a® <la—y|* + [2a + y|*.
Case I: Let y € [—2a, a]. In this case, we have
6a® < (a —y)* + (2a +y)*,
which is equivalent to
3a(a® + 3ay + 3y%) > 0. (3.3)

But inequality (3.3) is true for all a > 0.
Case II: Let y > a. Because a > 0, we obtain y > 0. We have

6a® < (y — a)® + (2a + y)3,
whish is equivalent to
a® + 3y%a + 15a%y + 2> > 0. (3.4)
But inequality (3.4) is true for all a,y > 0.
Case III: Let y < —2a. It is obvious that y < 0, because a > 0. In this case, we
have
6a° < (a—y)* + (~2a —y)°,
which is equivalent to
3 1
15a2(y + 2a) — 17a° + 5yz(y + 2a) + 5y?’ <0. (3.5)

But inequality (3.5) is true for all @ > 0 and y < 0, given that y + 2a < 0.
Based on relationships (3.3), (3.4) and (3.5), which turned out to be true, we conclude

that Tz = §x7 for x € R is a nonspreading modular mapping in relation to the modular

p(x) = |z| /]z].

We consider that this example is extremely significant for the type of operators that
will be worked on in the following results regarding the convergence of the chosen iterative
process and comes as a natural complement to other examples previously presented in the
literature.

Next, we introduce some characteristic properties of the newly introduced class of
operators.

Lemma 3.1. Let C' be a nonempty subset of a modular space X, and let T: C' — C be a
modular nonspreading mapping with F(T) # 0. Then T is a modular quasi-nonezpansive
mapping (i.e. p(Tx —p) < p(x —p), Ve € C, Vp e F(T)).
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Proof. Let p € F(T'). As T is a nonspreading mapping, we have
(1 + p®)?p*(Ta — p) < p*(Tx — p) + p*(z — p),

S0
[(1+ p?)p? = 1] p*(Tz — p) < p*(2 — p).
Using (P1) from Remark 2.1 we get that u > 1, therefore (1 + p?)u? —1 > 1.
In conclusion,
p*(Tx —p) < [(1+ p*)p? = 1] p*(Tx — p) < p*(z - p),
so T' is a quasi-nonexpansive mapping. O

Lemma 3.2. Let C' be a nonempty p-bounded subset of a modular space X, and T: C — C
a modular nonspreading mapping. If {x,} is a sequence in C' such that lim p(Tx, —x,) =0,
n—oo

and T is the p-type function of {x,}, then:

(i) 7(Tz) < 7(z), for allx € X,;

(i) T leaves the minimizing sequences invariant (i.e. if {c,} is a minimizing sequence
for T, then so is {Tc, }).

Proof. (i) First, we will apply the Definition 3.1. Based on this, we get
(1 + ) p*(Ten, — Ta) < p*(Txy — x) + p* (2, — Tx),
that is
(1 +p?) [2p*(Tay — Tx) = p*(xn — T2)] < p?(Tay — ) — p?p?(2y — T

It follows
12 [ (@0 — @) — P20 — T2)] = (14 i2) [120% (T, — T) — p*(w, — T)]
+ 120 (@n — x) — p* (T, — )] .
Next we will prove that

lim sup [MQpQ(Txn —Tx) — p*(x, — Tz)| > 0.

n—oo

Indeed, using property (P2), we find that

oy —Tx) = p (2 — Txn) + Tz, — Tx)) < pp(a, — Txy) + pp(Tx, — Tx),
S0

pp(Tan —Tx) = plan —Ta) = —pp(xn — Try).

By multiplying this last inequality with pup(Tz, —Tx)+ p(z, —Tx), which is obviously

positive, we obtain
42Ty — T) = (@ — T2) > —pipln — Tn) - [p(T 0 — T) + plan — )]

Because C' is p-bounded it follows that pp(Tz, — Tx) + p(x, — Tz) is also bounded.

Moreover, lim p(Tx, — x,) = 0 and, by applying limsup, it follows that
n—oo

lim sup [,u2p2(Tmn —Tx) — p*(x, — Ta:)] > 0.
n—oo
Similarly, one obtains
lim sup [/12,02(1‘” — ) — p*(Tx, — z)] > 0.

n—oo
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Taking lim sup in (3.6), we find
p? - limsup [p*(z, — x) — p*(2, — Tz)] > 0.

n— oo

From this
lim sup p?(x, — ) > limsup p?(x, — Tx),
n—roo n—oo

S0
lim sup p(z,, — x) > limsup p(z,, — Tx).

n—oo n— oo
which closes the proof.

(ii) If {¢,,} is a minimizing sequence for 7, we find that

A Ten) = Jefr ()

Using the conclusion in (i) we have
. < 1 < I _ .
;25\7’(1’) < nlggoT(TC") < nl;n;or(cn,) ;IEIE'T(I) (3.7)
From (3.7) it is clear that

nlLH;OT(Tc,L) = H}Qf 7(z),

so {T¢y,} is a minimizing sequence for 7. O

Proposition 3.1. Let C' be a nonempty, convex and p-closed subset of a p-complete modular
space X,. Assume that p is (UUCL) and satisfies Fatou property. Consider the p-type
function T: C — [0,00] of a sequence {x,} C X, and suppose 19 = ingr(x) < oo. Let {cp}
(A

and {d,} be two minimizing sequence for T. Then,

(i) any conver combination of {c,} and {d,} is a minimizing sequence for T as well;

(ii) nILH;op(Cn —d,) =0.
Proof. The proof does not differ at all from the proof of Proposition 1 from [7].

(i) We consider

en = Aep + (1= N)dy,

for A € (0,1) and n > 1.

For any = € C, we have

plen — 7)< Aplen — ) + (1= Npldn — ), 1> 1,

therefore

limsup p(e, — &) < Alimsup p(c, — 2.,) + (1 — Mlimsup p(d,, — ), n > 1,

m—r00 m—r00 m—oo
meaning that
T(en) < A(en) + (1 — N)7(dy).

Passing to the limit and keeping in mind that {c, } and {d,,} are minimizing sequences,

we obtain
7o = inf 7(x) < lim 7(e,) < Ao+ (1 = N)79 = 70,

zeC n—oo
where we get the conclusion.

1
(ii) Notice that, for e, = 3 (cn +dyn), n>1, we have ¢, — d,, = 2(e, — dp), n > 1.

From (i), {e,} is a minimizing sequence and, according to Lemma 2.2, all minimizing
sequences p-converge to the same point, which we denote by z. Hence,

plen —do) = p (C";d") < L(plen—2) +pld—2) > 1
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Using (i), we deduce that lim p(e, —d,) = 0. From As - condition, we will also have
n—0o0
plen = dn) < w(2)p(en — dn).
Taking n — oo, we obtain the conclusion in this case. O

In 2016, Sintunavarat and Pitea ([16]) introduced the S,, iteration procedure defined
as follows: for an arbitrary 21 € C, a sequence {x,} is obtained by the rule:

Zn = (1 - ’Yn) T + VnYn (38)
Tnt1 = (1 — an) Tzp + @y Tyn,
for all n > 1, where {a,}, {8} and {7, } are real sequences (0,1).

Lemma 3.3. Let C be a nonempty p-bounded and convex subset of X, and let T: C' — C
be a modular nonspreading mapping with F(T) # (). For an arbitrary chosen x1 € C, let the
sequence {x,} be generated by the iterative process (3.8).

Then, nli_{r;()p(xn —p) exists for any p € F(T).

Proof. Let p € F(T). From Lemma 3.1 we have

p(T'z —p) < p(z —p),
for all x € C.
Now using this inequality and the convexity of p, we find that

p(yn —p) = p((1 = Bn)xn + BpTxn —p)
< ( - Bn)p(ajn _p) + Bnp(Txn - p) (3 9)
< ( - Bn)p(xn _p) + ﬁnp(xn - p) .
= p(zn — D).
Using (3.9), we get
p(zn - p) = p((l - Wn)xn + YnYn — p)
< (1 - ’Yn)p(xn - p) + 'an(yn - p) (3 10)

p(xyn — p).
From (3.9) and (3.10), we have

p(Tnp1 —p) = p((1 —an)T2n + anTyn — p)
< (1 —ap)p(Tzy, _p) + anp(Tyn — p)
< (1 = an)p(zn — p) + anp(yn — p) (3.11)
< (1 —an)p(zn —p) + anp(zn —p)
= plzn —p).
This involves that the sequence {p(x, — p)},~, is bounded and nonincreasing for any
p € F(T), so nan;Op(zn — p) exists for any p € F(T). O

Theorem 3.1. Let X, be a p-complete modular space and C' be a nonempty convex p-
closed and p-bounded subset of X,. Suppose p is (UUC1) and satisfies Fatou property. Let
T: C — C be a modular nonspreading mapping and let the sequence {x,} be generated by

the iterative process (3.8) with {aw}, {Bn} and {vn} in (0,1) and {5,} bounded away from
0 and 1.

Then F(T) # 0 if and only if li_>m p(xy — Txy) = 0.
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Proof. First of all, suppose F(T) # 0 and take p € F(T). According to Lemma 3.3, the
limit 1i_>m p(x, — p) exists and we will denote its value with r.
n o0

Using Lemma 3.1, we obtain

limsup p(T'z,, — p) < lim p(x, —p) =r.
n—oo

n— 00

On the other hand, using the relation (3.11) and the Lemma 3.1, together with the
convexity of p, we obtain

p(@ny1 —p) < (1 —an)p(zn —p) + anp(yn — p)

(1—an)p ((1 — Yn)Tn + YnYn — ) + np(Yn — D)

(1- an)(l Yn)p(@n —p) + [(1 = an)¥n + an] p(yn — p)
p(zn )+[1—(1—%)(1—an)] (Pp(Yn —p) — p(zn — D)),

|| IA I

which implies
p(xni1—p) = p(an —p)
T= (1 =) (1 —an)

< p(Yn —p) — p(zn — p).
Therefore

p(Tnt1 —p) — p(an —p)
1—(1—7) 1 —ap)

p(Tni1 —p) — p(on —p) < < p(Yn —p) — p(xn — ),

S0
p(Tnt1 —p) < p(yn — D).
It is worth noting that, according to inequality (3.9), p(yn — p) < p(x, — p), which
implies that
r= lim p(y, — p).

n— o0
It follows
lim p(ﬁn(Twn _p) + (1 - ﬁn)(mn _p)) = lim p(yn - p) =T
n— oo n—00

and, since the conditions of Lemma 2.1 are now checked, we see that lim p(Tz, —z,) = 0.
n—oo

Conversely, let 7 denote the p-type function of {z,} and let {¢,} be a minimizing
sequence for T converging to a point z € C, which implies that lim p(c, — z) = 0 (Lemma
n—oo
2.2 ensures this convergence).
Using Lemma 3.2 (ii), {T¢c,} is a minimizing sequence as well and by Proposition 3.1
it is easily observed that lim p(c, — T¢c,,) = 0.
n—oo
Using now Lemma 3.2 (i), we have
0 < limsup p(c, — Tz) < limsup p(¢, — z) = 0,
n—roo n—oo
which involves that lim p(c, —Tz) = 0.
n—0o0

By the uniqueness of the limit, we have Tz = z. O

Theorem 3.2. Let C be a nonempty p-compact and conver subset of a complete modular
space X, and let p, T and {x,} be as in Theorem 3.1. Then, the sequence {xy,} p-converges
to a fized point of T'.

Proof. The p-compactness of C' implies the existence of a subsequence {z,, } of {z,} which
p-converges to a point z € C.
From Lemma 3.2, we obtain
0 <limsup p(zpn, — T2) < limsup p(z,, — 2) =0,

n—oo n— oo

hence lim p(z,, —Tz) = 0. By the uniqueness of the limit, we have Tz = z.
n—oo
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From Lemma 3.3, it follows that the limit lim p(x, — z) exists and then the sequence
n— oo

{z,} p-converges to z, where z € F(T). O

4. Conclusions

Quadratic nonexpansiveness conditions of nonspreading or hybrid type are a recent
direction in fixed point theory. Initiated in the setting of Banach spaces, directly related
with the duality map, they reach a more approachable expression in the particular setting
of a Hilbert space. This paper adapted the expression of nospreadingness in Hilbert setting
to a modular framework. The analysis specifically looked at issues related to necessary and
sufficient conditions for the existence of fixed points and was performed via the S, itera-
tion procedure. A convergence criterion was also established under modular compactness
assumption.

REFERENCES

[1] A. A.N. Abdou, M. A. Khamsi, Fized point theorems in modular vector spaces, J. Nonlinear. Sci. Appl.,
2017, 10, 4046-4057.

[2] A. Bejenaru, M. Postolache, Generalized Suzuki-type mappings in modular vector spaces, Optimization,
2020, 69 (9), 2177-2198.

[3] A. Bejenaru, C. Ciobanescu, New partially projective algorithm for split feasibility problems with appli-
cation to BVP, J. Nonlinear Convex Anal., 2022.

[4] C. Ciobanescu, T. Turcanu, On iteration Sy for operators with condition (D), Symmetry, 2020, 12,
1676-1691.

[5] S. Ishikawa, Fized points by a new iteration method, Proc. Amer. Math. Soc., 1974, 44, 147-150.

[6] 1. Karahan, M. Ozdemir, A general iterative method for approximation of fized points and their appli-
cations, Adv. Fixed Point Theory, 2013, 3 (3), 510-526.

[7] W. Kassab, T. Turcanu, Numerical reckoning fized points of (pE)-type mappings in modular vector
spaces, Mathematics, 2019, 7 (5), 390.

[8] M. A. Khamsi, W. M. Kozlowski, Fized Point Theory in Modular Function Spaces, Birkhauser/Springer,
Cham, (2015).

[9] F. Kohsaka, W. Takahashi, Fized point theorems for a class of nonlinear mappings related to mazimal

momnotone operators in Banach spaces, Arch. Math., 2008, 91, 166-177.

| W. M. Kozlowski, Modular Function Spaces, M. Dekker, New York-Basel, 1988.

] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 1953, 4, 506-510.

[12] J. Musielak, Orlicz Spaces and Modular Spaces, Springer - Verlag, Berlin, Germany, 1983.

] J. Musielak, W. Orlicz, On modular spaces, Studia Mathematica, XVIII, 1959.

] M. A. Noor, New approzimation schemes for general variational inequalities, J. Math. Anal. Appl.,

2000, 51 (1), 217-229.

[15] D. R. Sahu, A. Pitea, M. Verma, A new iteration technique for nonlinear operators as concerns convex
programming and feasibility problems, Numer. Algorithms 2020, 83 (2), 421-449.

[16] W. Sintunavarat, A. Pitea, On a new iteration scheme for numerical reckoning fized points of Berinde
mappings with convergence analysis, J. Nonlinear Sci. Appl., 2016, 9, 2553-2562.

[17] T. Suzuki, Fized point theorems and convergence theorems for some generalized nonexpansive mappings,
J. Math. Anal. Appl., 2008, 340 (2), 1088-1095.

[18] B. S. Thakur, D. Thakur, M. Postolache, A new iteration scheme for approzimating fized points of
nonezxpansive mappings, Filomat 2016, 30 (10), 2711-2720.

[19] G. I. Usurelu, A. Bejenaru, M. Postolache, Newton-like methods and polynomiographic visualization of
modified Thakur processes, Int. J. Comput. Math., 2021, 98 (5), 1049-1068.

[20] G. I. Usurelu, A. Bejenaru, M. Postolache, Operators with property (E) as concerns numerical analysis
and visualization, Numer. Funct. Anal. Optim., 2020, 41 (11), 1398-1419.

[21] Y. Yao, R. P. Agarwal, M. Postolache, Y. C. Liu, Algorithms with strong convergence for the split
common solution of the feasibility problem and fized point problem, Fixed Point Theory Appl., 2014,
Art. No. 183.

[22] Y. Yao, M. Postolache, Y. C. Liou, Strong convergence of a self-adaptive method for the split feasibility
problem, Fixed Point Theory Appl. 2013, Art. No. 201.



