
U.P.B. Sci. Bull., Series C, Vol. 87, Iss. 1, 2025 ISSN 2286-3540

ENHANCING E-HEALTH CYBERSECURITY AND

RESILIENCE: SHIFTING FROM MONOLITHIC TO

MICROSERVICES ARCHITECTURE

Cristian CONTAȘEL1, Răzvan RUGHINIȘ 2, Dumitru Cristian TRANCĂ 3,

Dinu ȚURCANU 4

This study provides an innovative architectural model for e-Health systems

that aims to improve cyber resilience while maintaining high availability under

fluctuating traffic loads. We examined typical cybersecurity incidents in the field of

e-Health, their correlations with architectural defects, and frequent design patterns

in currently operational systems. A testing approach based on our research finds

those weaknesses and proposes viable fixes. In this paper, a comprehensive support

strategy for transitioning from conventional monolithic architectures to

microservices is presented. This change makes use of cloud computing's vertical and

horizontal scalability to maximize resource utilization while ensuring system

reliability. We also discuss deployment ideas for the new microservices, focusing on

operational resilience and cybersecurity in e-Health environments.

Keywords: e-Health, Cloud Computing, Microservices Architecture, Monolithic

Architecture, Microservices Deployment, Scaling

1. Introduction

Nowadays, e-Health software systems are becoming more frequent in our

lives. We use these systems whether we are simple patients, doctors, or

collaborators with a medical institution. By automating various flows and

procedures, these systems improve medical safety, reduce human error, and save

money.

Given their rapid adoption, e-health systems require robust cybersecurity

to protect against DDoS and ransomware attacks. These incidents can disrupt

healthcare, compromise patient care, and compromise data privacy. To address

these issues, we propose that e-Health systems evolve from monolithic to

1 As., Dept. of Computer Science and Engineering, National University of Science and

Technology POLITEHNICA Bucharest, Romania, e-mail: cristian@hanzu.ro
2 Prof., Dept. of Computer Science and Engineering, National University of Science and

Technology POLITEHNICA Bucharest, Romania, e-mail: razvan.rughinis@upb.ro
3 Lecturer, Dept. of Computer Science and Engineering, National University of Science and

Technology POLITEHNICA Bucharest, e-mail: dumitru.tranca@upb.ro
4 Assoc. Prof., Dep. of Software Engineering and Automatics, Technical University of Moldova,

Chișinău, Moldova, e-mail: dinu.turcanu@adm.utm.md

22 Cristian Contașel, Răzvan Rughiniș, Dumitru Cristian Trancă, Dinu Țurcanu

microservices architectures. This architectural transformation isolates breaches to

particular services and improves scalability to handle sudden demand spikes,

which occur frequently during health crises like the COVID-19 pandemic. Our

article will explain in detail how microservices can improve healthcare IT

infrastructure cybersecurity and operational resilience.

In the past, e-Health software had a slow adoption rate because of strict

requirements and legal regulations that required extensive research and testing

before it could be made available. In 2018, the proportion of patients who used

medical software services was nearly zero [1]. According to Business Research

Company's 2024 forecast [2], the medical software market is expected to grow at

a rate of 14,6% per year until 2028.

The COVID-19 pandemic accelerated the adoption of these systems by

limiting contact between people and forcing both patients and medical units to

adopt new e-Health systems for patient care. Because of COVID-19, the number

of patients who began using medical software services increased to 13% of all

patients [3]. Unfortunately, this increase in adoption highlighted the limitations of

e-Health systems, as many of them became overwhelmed by the volume of traffic

they had to handle or were unable to accommodate new features.

To determine the traffic variation for e-Health systems, a traffic analysis

was conducted using CO APCD public data from April 2018 to March 2024. The

results are shown in Fig. 1 and Fig. 2.

Fig. 1. Application usage between 01.11.2018 and 01.10.2023, based on the number of users/day

As described in Fig. 1, before COVID-19, the e-Health system had a small

number of users per day (less than 20,000), but after the pandemic, the number

increased to 121,000 users per day.

After all of the restrictions were lifted, the number of users decreased

slightly, by approx. 9% per month. This decrease was caused by urban people in

general, while in rural areas, usage did not change significantly between 2021 and

2023, as can be distinguished in Fig. 2.

Enhancing E-health cybersecurity and resilience: shifting from monolithic to microservices… 23

Fig. 2. Application usage between 01.11.2018 and 01.10.2023, divided by area type.

The same trend is confirmed by KFF and Epic Research's [4] analysis of

the share of outpatient visits by telehealth by area type, which is presented in

Fig. 3.

Fig. 3. KFF and Epic Research analysis of share of outpatient visits by telehealth by area type

The current challenge in medical software systems is how to mitigate

cybersecurity threats and risks, and also how to handle the performance issues

caused by the significantly increased workload as a consequence of their rapid

adoption.

This article propose a new microservice e-Health system to effectively

manage fluctuations in traffic and reduce costs by incorporating both vertical and

horizontal scaling methods.

2. Related Work

One of the global impacts of the coronavirus was in the healthcare

industry. COVID-19 caused overcrowding in the hospitals, which makes it

impossible for patients and doctors to meet in person for a consultation. e-Health

systems, in addition to the roles for which they were developed, also took on a

new role as a mediator in order to respond to this situation. Additionally, new

24 Cristian Contașel, Răzvan Rughiniș, Dumitru Cristian Trancă, Dinu Țurcanu

features were either developed or used more frequently in order to meet this

demand: contact tracing, telehealth (online consultation with a doctor), automated

diagnosis, forecasting of material resource requirements, and individual medical

record about the COVID-19 illness.

The NIST cybersecurity framework is one of the lightweight models for

addressing new threats and risks present in e-Health systems. The NIST

cybersecurity framework (CSF) consists of the following stages: identify, protect,

detect, respond, and recover the system.

The most common COVID-19-related attacks on e-Health systems are

ZOOM bombing, COVID-19 phishing attacks, malware, and network availability

[5].

In this paper, we discuss network availability issues in e-Health systems.

In order to do so, we extract a common architectural model based on a study that

was carried out on medical units. This study identifies the most commonly used

e-Health software systems, as well as the key features required. The study

included 45 hospitals and medical clinics in Bucharest, in the public and private

sectors.

The main features requested by industry from an e-Health system are:

electronic health record, medical diagnosis, e-prescribing, telemedicine, medical

database, medical imaging; medical laboratory, and clinic management.

All of these features enable effective collaboration among patients,

doctors, and clinics, making any disease easier to control or cure.

Based on the architecture of e-Health software systems, 17 out of 45

entities use only local software systems, while 28 use web applications. The most

common architecture followed the model-view-controller monolith pattern

(MVC).

In software engineering, a monolithic application refers to an application

that is designed as a single service [6]. This approach generates some advantages

in terms of cost reduction [7]: easy to deploy, easy to debug, faster end-to-end

testing, increased performance, and one code-base.

Because of all those advantages that generate a rapid development and

testing, the monolithic architecture is present in a lot of e-Health software

systems.

To create a common overview of the analyzed e-Health software systems,

we identify the core and optional modules that can be combined to create a system

that includes all of the previously described features.

The monolithic e-Health architecture pattern that contains all the modules

in order to support the core and optional features is described in Fig. 6.

Enhancing E-health cybersecurity and resilience: shifting from monolithic to microservices… 25

Fig. 6. Monolithic e-Health architecture software pattern

3. Monolithic e-Health architecture software performance

To identify the main issues in the system, the following types of

performance tests were carried out: stress testing, endurance testing, and spike

testing.

Stress testing is a performance test that provides an overview of system

capacity limits and determines the architecture's robustness [8].

The endurance test is used to determine how long the system can operate

under continuous load [9]. In general, memory usage is monitored in order to

detect memory leaks.

Spike testing is performed to identify the system's behavior when the

number of users or their actions unexpectedly increases, in order to determine

what actions are required to handle dramatic load changes.

In e-Health software, the main concerns about the number of users come

from the patient role. Because of this issue, the designed scenarios should be

based on the main action that patients can perform. The testing scenarios are

described in table 1.
Table 1

Defined test scenarios

Test nr. 1 2 3

Goal Retrieve appointment

results

Schedule telemedicine

appointment

Retrieve laboratory

result

Involved

components

Firewall, Web

application, FTP server,

SQL server

Firewall, Web application,

SQL server, Streaming

server

Firewall, Web

application, SQL

server, FTP server,

Laboratory system

26 Cristian Contașel, Răzvan Rughiniș, Dumitru Cristian Trancă, Dinu Țurcanu

Apache JMeter was used to perform automated testing. Apache JMeter is a

widely used open-source framework designed for conducting performance testing

[1]. The instances of JMeter was hosted on Azure by using Azure Cloud Service.

To determine the maximum number of threads supported by JMeter in

Azure Cloud Service, a progressive increase in the number of threads was

performed from 100 to 2000, with 10 threads added each step.

The upper limit for JMeter determined during the test was 1000 threads

per instance; after this limit, JMeter's performance was degraded. The results of

the stress testing are presented in Table 2.
Table 2

Stress testing results

Number of

threads

(users)

Test 1 Test 2 Test 3

Error (%) Success (%) Error (%) Success (%) Error (%) Success (%)

150.000 0.00 100 0.00 100 0.00 100

160.000 0.00 100 1.3 98.7 0.2 99.8

170.000 0.4 99.6 4.7 95.3 1.2 98.8

200.000 14.57 85.43 23.5 76.5 45.2 54.8

250.000 35.67 64.33 48.16 51.84 72.8 27.2

The error % in table 2 denotes the proportion of requests with errors

among the total number of requests made by JMeter during the test. We consider a

request to have an error status if it failed or returned an error code (HTTP Status

Codes class 400 or 500).

The success% represents the percentage of successful requests among all

requests made by JMeter during the test execution. We consider a request to be

successful if its HTTP Status Codes class is 200 or 300.

The number of users was limited during the tests to 250.000 due to the

cost of resources required to perform the stress test, but, as shown in table 2, the

system performance was damaged very strongly after the number of 170.000.

4. Ensuring monolithic e-Health system stability

To guarantee the e-Health system's availability and prevent system failure,

a series of actions can be implemented at a reduced cost in accordance with the

results of the testing scenario.

How the main concerns about the number of users is derived from the

patient role, it is possible to restrict the access for that category of users based on

Enhancing E-health cybersecurity and resilience: shifting from monolithic to microservices… 27

a queue system, in order to limit the active user to a maximum number of 150.000

or lower, depending on how many doctors should be accommodated within the

system. The average waiting time in the queue was 19 minutes. The time was

determined by averaging the queue's waiting times over a seven-day period.

To make that distinction, the system can use different endpoints to enable

doctors to use the system. That endpoint can be restricted by role or IP address to

ensure that it is only accessible from hospitals and medical clinics. The Spring

Security module was used to enforce the restrictions.

For monolithic architectures, the only available scaling is vertical, which is

limited by hardware constraints.

5. Proposed microservices cloud architecture for e-Health systems

In order to effectively manage load differences and maintain a lower

infrastructure cost, the primary characteristic of the new architecture is its vertical

and horizontal scalability [10].

The proposed system architecture is based on microservices, which allow

the original monolithic application to be split into multiple independent services

capable of performing work independently. This independence enables the booth

scaling system to be implemented. We will be able to initiate new workers for

each service in accordance with the system load. Additionally, we will be able to

enhance the computational power of current workers.

The splitting of the microservices was done based on the functionality of

the system to be able to provide the features to users independently of each other,

so that if a set of microservices no longer works properly, the system can manage

the rest of the features independently.

In order to accomplish this, we divide the services into Level 1 and Level

2 services. Level 1 services are mapped to various system features in order to

provide system functionality. They have a caching and optimization of the request

mechanism in place, and they are also capable of storing data in the SQL module.

The level 2 services are the ones that provide support for the level 1

services and are capable of integrating with various subsystems that are not

scalable, such as external providers or outdated applications (e.g., laboratory

systems).

Messaging and queues are used to facilitate communication between

services. All of this logic is abstracted in the Message broker.

This separation of services between Layer 1 and Layer 2 is also necessary

to facilitate the seamless transition of the application from a monolithic

architecture to a decoupled architecture. The main goal of this progressive

migration is to use the power of microservices even if the original architecture has

not been fully migrated.

28 Cristian Contașel, Răzvan Rughiniș, Dumitru Cristian Trancă, Dinu Țurcanu

The transition from a monolithic to a microservice architecture is

presented in Fig. 7.

Fig. 7. e-Health system architecture transition.

The transition step involves the addition of cloud services one by one, and

the new API gateway module ensures seamless connectivity with these services.

In order to optimize performance, a caching system was implemented.

Fig. 8. Microservices of the resulting e-Health system

Enhancing E-health cybersecurity and resilience: shifting from monolithic to microservices… 29

Fig. 8 presents the entire set of microservices integrated into the new

architecture. The microservices architecture that results is composed of 16

services, which are categorized into Layer 1 and Layer 2 levels.

6. Microservices e-Health systems deployment

Based on the analysis made by Tabish Mufti, Pooja Mittal and Bulbul

Gupta in the paper “A Review on Amazon Web Service (AWS), Microsoft Azure

& Google Cloud Platform (GCP) Services” [11], Microsoft Azure was chosen as

the cloud provider due to lower service costs when compared to AWS and GCP,

as well as the availability of additional options such as machine learning, analytics

services, and AI support.

The main options for deploying microservices in Microsoft Azure are

Cloud Services and Azure Web Apps. To determine which solution was used, the

effective cost for 24 hours was used. The cost of booth solutions is shown in table

3 and table 4, and it was calculated using West Europe region datacenters with an

Azure Hybrid Benefit Windows license and a one-year savings plan.
Table 3

Deployment Scenario cost for Azure App Service

Microservice Instance

nr.

Tier Tier

24h

cost

($)

Total

24h

Cost

($)

Doctor data service 2 S1: 1 Cores, 1.75 GB RAM, 50 GB 2.40 4.8

Patient data service 2 S1: 1 Cores, 1.75 GB RAM, 50 GB 2.40 4.8

Medication service 2 S1: 1 Cores, 1.75 GB RAM, 50 GB 2.40 4.8

Analysis service 2 S2: 2 Cores, 3.5 GB RAM, 50 GB 4.80 9.6

Result interpreter service 2 S2: 2 Cores, 3.5 GB RAM, 50 GB 4.80 9.6

Portable devices service 2 S3: 4 Cores, 7 GB RAM, 50 GB 9.60 19.2

Telemedicine service 3 S2: 2 Cores, 3.5 GB RAM, 50 GB 4.80 14.4

Files service 2 S3: 4 Cores, 7 GB RAM, 50 GB 9.60 19.2

Medical imaging service 2 S3: 4 Cores, 7 GB RAM, 50 GB 9.60 19.2

Laboratory system service 1 S3: 4 Cores, 7 GB RAM, 50 GB 9.60 9.60

File management service 1 S2: 2 Cores, 3.5 GB RAM, 50 GB 4.80 4.80

30 Cristian Contașel, Răzvan Rughiniș, Dumitru Cristian Trancă, Dinu Țurcanu

AI result interpreter service 1 S2: 2 Cores, 3.5 GB RAM, 50 GB 4.80 4.80

Notification service 1 S1: 1 Cores, 1.75 GB RAM, 50 GB 2.40 2.40

Streaming service 2 S2: 2 Cores, 3.5 GB RAM, 50 GB 4.80 9.6

Static resources service 1 S2: 2 Cores, 3.5 GB RAM, 50 GB 4.80 4.80

User management service 1 S3: 4 Cores, 7 GB RAM, 50 GB 9.60 9.60

Table 4

Deployment Scenario cost for Azure Cloud Service

Microservice Instance

nr.

Tier Tier

24h

cost

($)

Total

24h

Cost

($)

Doctor data service

Patient data service

2 D3: 4 vCPUs, 14 GB RAM, 200

GB

14.23 28.46

Medication service

Analysis service

Medication service

Result interpreter service

AI result interpreter service

Medical imaging service

2 D4: 8 vCPUs, 28 GB RAM, 400

GB

28.49 56.98

Portable devices service

Notification service

2 D3: 4 vCPUs, 14 GB RAM, 200

GB

14.23 28.46

Telemedicine service

Streaming service

3 D13: 8 vCPUs, 56 GB RAM, 400

GB

29.81 89.43

User management service

Static resources service

File management service

Laboratory system service

Files service

1 D4: 8 vCPUs, 28 GB RAM, 400

GB

28.49 28.49

According to tables 3 and 4, the estimated cost of Azure Cloud Service

deployment is $231.82, while Azure App Service deployment is estimated at

$151.2. However, the decision to deploy the microservices into one of these

solutions should also consider the computational power required to handle the

same number of requests.

Enhancing E-health cybersecurity and resilience: shifting from monolithic to microservices… 31

The number of instances and their capabilities were selected based on the

temporal and spatial complexity of microservices, with the goal of ensuring an

average time of less than 0.1 ms for messages in the message broker.

7. Microservices e-Health systems performance

In order to measure the performance differences between the original

architecture and the microservices architecture, the exact same set of tests

(described in Table 1) was executed. However, the tests were executed on both the

Azure Cloud Service and Azure App Service deployment scenarios.

How the original architecture was able to handle the tests for 170,000

users, now the test scenarios begin at 200.000 and are run in Azure Cloud to

provide adequate power.
Table 5

The result of stress testing using Azure App Service with automatic horizontal scaling.

Number of

threads

(users)

Test 1 Test 2 Test 3

Error (%) Success (%) Error (%) Success (%) Error (%) Success (%)

200.000 0.00 100 0.00 100 0.00 100

250.000 0.2 99.8 0.1 99.9 0.00 100

300.000 0.7 99.3 0.4 99.6 0.3 99.7

350.000 1.25 98.75 1.45 98.55 1.2 98.8

400.000 1.3 98.7 1.7 98.3 2 28.0

Table 6

The result of stress testing using Azure Cloud Service with horizontal scale mechanism.

Number of

threads

(users)

Test 1 Test 2 Test 3

Error (%) Success (%) Error (%) Success (%) Error (%) Success (%)

200.000 0.00 100 0.00 100 0.00 100

250.000 0.00 100 0.00 100 0.00 100

300.000 0.9 99.1 0.5 99.5 0.6 99.4

350.000 1.1 98.9 1.3 98.7 1.5 98.5

400.000 1.0 99.0 1.25 98.75 2.1 97.9

32 Cristian Contașel, Răzvan Rughiniș, Dumitru Cristian Trancă, Dinu Țurcanu

According to the stress tests, presented in table 5 and table 6, the system's

performance has substantially improved. However, the addition of new machines

to the system, which is caused by horizontal scaling, results in some failed

requests.

8. Conclusions

The e-Health software system market is a dynamic market that is

constantly evolving in response to technological advancements and the

introduction of new devices. .

The current software generally uses a monolithic architecture design,

which is enforced by the presence of legacy technologies and standards, due to the

fact that e-Health software systems have been used in a relatively narrow and

closed market for long time.

Unfortunately, the monolithic architecture can no longer cope with market

demands and fluctuations in order to meet actual cyber resilience requirements

and medical projects exceed the entry-level constraints.

In order to mitigate the risk that impacts network availability and

guarantee the high availability of e-Health software systems, this paper suggests

the implementation of cloud computing and microservices as a solution. The main

goal of the transition from monolithic architecture to microservices architecture in

e-Health software systems is to establish a new layer between legacy software and

the new expectations and behaviors of users. Additionally, it intends to provide

support and scaling to accommodate a high volume of concurrent requests.

This requirement was highlighted and enforced during the COVID-19

cyber resilience in e-Health system. During the pandemic period, e-Health

systems had to deal with major changes in user behavior, which highlighted the

need for decoupling performance between different software modules.

To make that performance decoupling possible, this paper proposes a

transition to microservices that allow vertical and horizontal scaling. In order to

minimize hardware overhead, the proposal is to utilize cloud solutions to host all

components of the e-Health system.

The performance of a microservices e-Health system hosted in the cloud

remains the same regardless of the type of PASS used, as demonstrated in this

paper. The solution of Azure Cloud Services offers greater control, while the

solution of Azure VMs or Azure App Service offers greater abstraction.

The transition from a monolithic to a microservices architecture enhances

e-health cybersecurity. Single points of failure can make a monolithic system

vulnerable to DDoS attacks, which overwhelm it with traffic. The microservices

architecture distributes load across smaller, scalable services. A monolithic

system cannot absorb and mitigate increased traffic like this distribution.

Enhancing E-health cybersecurity and resilience: shifting from monolithic to microservices… 33

Additionally, zero-day exploits target unknown software vulnerabilities. A

single vulnerability in a monolithic system has the potential to compromise the

entire system. The exploit does not spread across microservices because it only

affects the compromised service. Each microservice can be isolated, patched, and

redeployed independently, improving system security.

Monolithic architectures make security updates difficult and risky,

requiring downtime. Service-by-service updates are easier with microservices.

This speeds patch implementation and reduces downtime, improving system

security.

Furthermore, the microservices architecture isolates databases and other

resources by separating functions into services. This isolation helps to limit data

breaches to a single service rather than the whole system. Unlike monolithic

systems, microservices can use security protocols that are appropriate for their

needs. This flexibility maximizes security based on service sensitivity and needs.

Moving from monolithic to microservices architecture in e-health systems

improves resilience in several ways. Microservices reduce system downtime

because minor failures do not impact the entire system. Only the broken

microservice needs to be patched; the rest is operational. This minimizes

downtime, which is critical for 24/7 healthcare services. Moreover, microservices

scale up or down independently based on demand, improving traffic spike

response. Microservices can handle high user loads, such as during a health crisis,

by adding resources to busy services without affecting less busy ones.

Because microservices are separate, updates and bug fixes can be applied

to individual services without crashing the system. This lets security patches and

new features be released quickly and securely, keeping the system secure. In

addition, microservices architecture separates services, so a security breach in one

doesn't affect others. Containment reduces data breaches.

Each microservice can have customized security measures. This enables

more precise security tailored to each service's data or transactions.

Thus, the proposed microservices architecture improves e-health systems'

cyber-resilience by addressing these vulnerabilities, making them better prepared

for current and emerging cybersecurity threats. Microservices architecture also

makes e-health systems more flexible, reliable, and secure, which is crucial for

meeting healthcare technology's growing demands. In healthcare, system

availability and data integrity are crucial.

R E F E R E N C E S

[1] - B. Kalis, M. Collier, and R. Fu, “10 promising AI applications in health care,” Harvard

Business Review, 2018.

34 Cristian Contașel, Răzvan Rughiniș, Dumitru Cristian Trancă, Dinu Țurcanu

[2] - Business Research Company, “Medical Software Global Market Report 2024 – By Software

Type,” 2024.

[3] - M. J. Dickstein, K. Ho, and N. Mark, “Market segmentation and competition in health

insurance,” Journal of Political Economy, vol. 132, no. 1, pp. 1-33, Jan. 2024.

[4] - N. Mulvaney-Day, D. Dean, K. Miller, and J. Camacho-Cook, “Trends in use of telehealth for

behavioral health care during the COVID-19 pandemic: Considerations for payers and

employers,” American Journal of Health Promotion, 2022.

[5] - T. Weil and S. Murugesan, “IT risk and resilience—Cybersecurity response to COVID-19,”

IT Professional, vol. 22, no. 3, pp. 6-11, 2020.

[6] - G. Blinowski, A. Ojdowska, and A. Przybyłek, “Monolithic vs. microservice architecture: A

performance and scalability evaluation,” IEEE Access, vol. 10, pp. 1-13, 2022.

[7] - U. Chouhan, V. Tiwari, and H. Kumar, “Comparing microservices and monolithic

applications in a DevOps context,” in Proc. 2023 3rd Asian Conf. on Innovation in

Technology (ASIANCON), India, 2023, pp. 45-53.

[8] - J. E. Breneman, C. Sahay, and E. E. Lewis, Introduction to Reliability Engineering: A

Complete Revision of the Classic Text on Reliability Engineering, USA, 2022.

[9] - S. Pargaonkar, “A comprehensive review of performance testing methodologies and best

practices: Software quality engineering,” International Journal of Science and Research

(IJSR), 2023.

[10] - V. Millnert and J. Eker, “HoloScale: Horizontal and vertical scaling of cloud resources,” in

Proc. 2020 IEEE/ACM 13th Int. Conf. on Utility and Cloud Computing (UCC), UK, 2020,

pp. 89-98.

[11] - M. Czuper, Applying Automated Performance Testing with Apache JMeter, Espoo, 2022.

[12] - B. Gupta, P. Mittal, and T. Mufti, “A review on Amazon Web Service (AWS), Microsoft

Azure & Google Cloud Platform (GCP) services,” in Proc. 2nd Int. Conf. on ICT for

Digital, Smart, and Sustainable Development, 2021, pp. 123-130.

