

ELECTRICAL MODELING OF THE BUFFER LAYER FOR A Cu₂O/ZnO SOLAR CELL USING SILVACO ATLAS

Constantin DUMITRU¹, Vlad-Florin MUSCUREL², Ørnulf NORDSETH³,
Laurențiu FARĂ⁴, Paul STERIAN⁵

A numerical analysis of the ZnO buffer layer based on physical modeling in SILVACO Atlas has been carried out for a Cu₂O/ZnO subcell in a Si-based tandem heterojunction solar cell design, in order to evaluate and improve the metal-oxide subcell performance. The influence of the thickness and electronic parameters of the buffer layer on the electrical performance of the Cu₂O/ZnO subcell was investigated. A study for the optimum buffer layer electron affinity has been made to find the most suitable candidate materials. This leads to a conclusion that the ZnO buffer layer could be replaced with a theoretically better Ta₂O₅, β-Ga₂O₃ or a compound zinc oxide buffer layer.

Keywords: solar cell, zinc oxide, buffer layer, cuprous oxide

1. Introduction

Semiconducting metal oxides such as ZnO and Cu₂O have competitive production costs while possessing a high optical absorption and chemical stability and are promising candidate materials for implementation in a Si-based tandem heterojunction solar cell (STHSC). Currently, the highest conversion efficiency for a ZnO/Cu₂O heterojunction is about 8% [1], with the potential to reach 14% as reported by Takiguchi [2] and a known theoretical maximum efficiency of 19-20% [3]. The purpose of this paper is to evaluate and optimize the ZnO buffer layer in the metal-oxide subcell. The buffer layer used in the cell is the focus in the current step of the subcell development and this simulation due to its importance in the overall cell design. The buffer material needs to have the proper

¹ Eng., Academic Center for Optical Engineering and Photonics, Faculty of Applied Sciences, University POLITEHNICA of Bucharest, Romania, e-mail: condumitru@yahoo.com

² Eng., Academic Center for Optical Engineering and Photonics, Faculty of Applied Sciences, University POLITEHNICA of Bucharest, Romania, e-mail: vmuscurel@yahoo.com

³ PhD Senior Scientist, Institute for Energy Technology (IFE), Department for Solar Energy, Kjeller, Norway, e-mail: Ornulf.Nordseth@ife.no

⁴ Prof., Academic Center for Optical Engineering and Photonics, Faculty of Applied Sciences, University POLITEHNICA of Bucharest; Academy of Romanian Scientists, Romania, e-mail: lfara@renerg.pub.ro

⁵ Prof., Academic Center for Optical Engineering and Photonics, Faculty of Applied Sciences, University POLITEHNICA of Bucharest; Academy of Romanian Scientists, Romania, e-mail: paulesterian@yahoo.com

band alignment in the structure, to be used with the Cu_2O layer in a heterojunction. The band alignment takes into account the discontinuities in the valence band maximum energy and the conduction band minimum energy which is in focus here. The alignment of the conduction band, referred to as conduction band offset is one of the important reasons of low open circuit voltages (V_{oc}) [4]. Choosing the right material that suits the low electron affinity of the Cu_2O and has convenient band alignment, would increase the voltages and efficiency of the cells.

2. Materials and Method

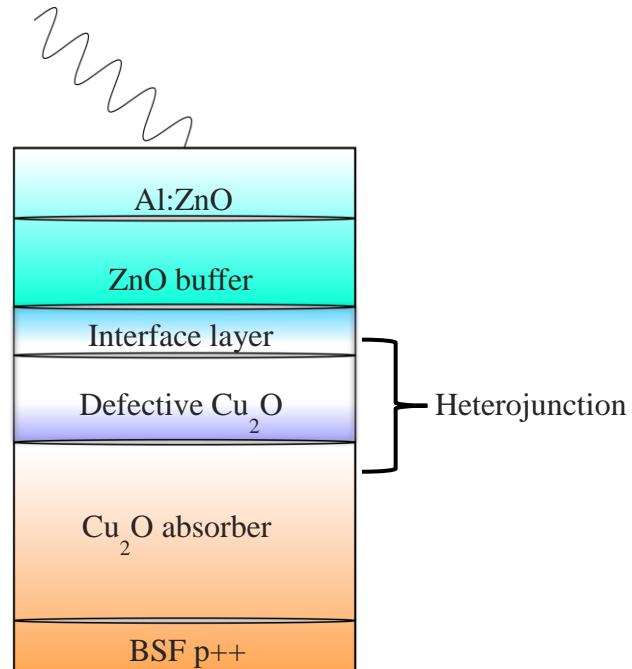


Fig. 1. Schematic of the $\text{Cu}_2\text{O}/\text{Al:ZnO}$ subcell (as implemented by Takiguchi et al.[2])

Simulation of a $\text{Cu}_2\text{O}/\text{Al:ZnO}$ subcell has been done using Silvaco Atlas. The schematic of the $\text{Cu}_2\text{O}/\text{Al:ZnO}$ subcell is shown in Fig. 1. We have calculated the cell short circuit current density, open circuit voltage, power conversion efficiency and external quantum efficiency curves varying key parameters of the ZnO buffer layer, such as layer thickness and electron affinity, in order to improve the current buffer layer and to identify the alternative optimum material for the Cu_2O -based heterojunction subcell. Buffer layer input data are implemented according to Takiguchi's article [2]. We started with 3.65 eV electron affinity and varied the buffer layer thickness up to 0.2 μm and then varied the electron affinity from around 2.5 eV to 5 eV, which would include materials such as Ga_2O_3 , Ta_2O_5 ,

$\text{Zn}(\text{O},\text{S})$ and $\text{Zn}_{1-x}\text{Ge}_x\text{O}$. These materials have favorable electron affinity and CBO (conduction band offset) with cuprous oxide, or can be manipulated via compound ratios for proper band alignment [1], [4], [5], [6].

3. Results and Discussion

In Fig. 2, the influence of the buffer layer thickness on the overall cell performance is shown, suggesting an optimum thickness in the range from 0.05 to 0.1 μm while taking into account buffer electron affinity of 3.65 eV.

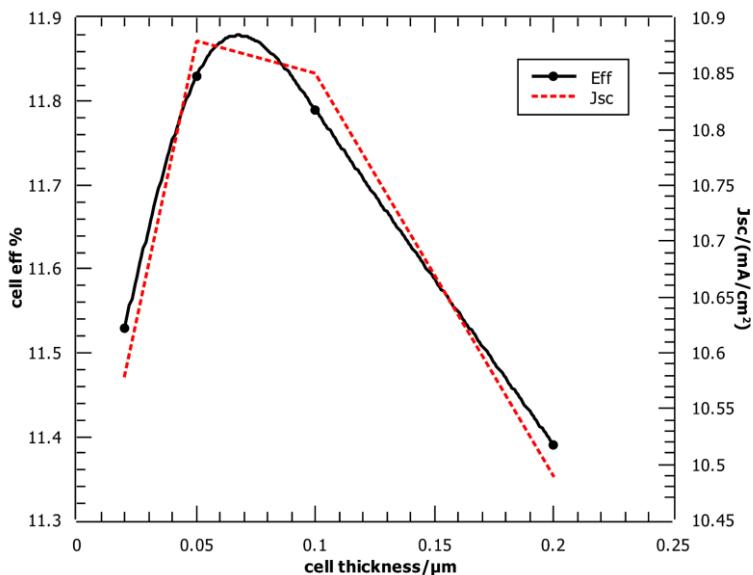


Fig. 2. J_{sc} and power conversion efficiency dependence on the buffer layer thickness

Fig. 3 shows cell open circuit voltage and power conversion efficiency for various electron affinities of the buffer layer. A good performance can be seen in the range from 3.4 eV to 3.7 eV. Fig. 4 shows the external quantum efficiency (EQE) curve for the subcell, for different electron affinities of the buffer layer. The EQE curves suggest that the optimum interval for the electron affinity for the buffer layer is in the range from 3.2 eV to 3.65 eV. In this range, the EQE reaches over 80% in the 360-560 nm wavelength range.

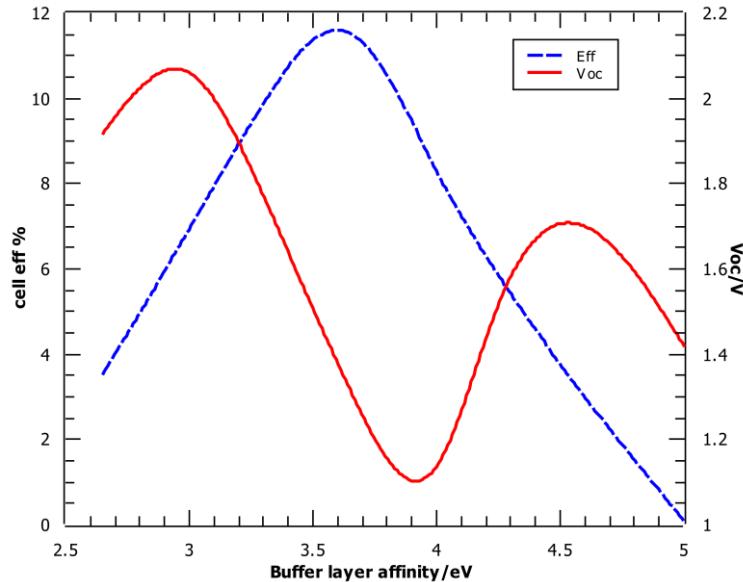


Fig. 3. Voc and cell efficiency dependences on the electron affinity of the buffer layer

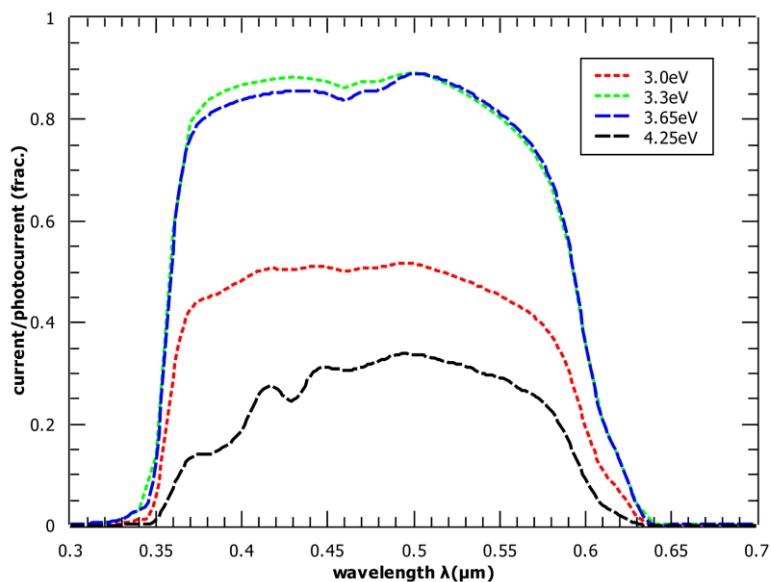


Fig. 4. EQE for different electron affinities for the buffer layer

Comparing our results, it was observed that the current buffer layer (3.65 eV E_{EA}) thickness is optimal in the range from 0.05 μm to 0.1 μm . When results were compared with the key parameters of materials found in literature we saw that the electron affinity is optimal in the range from 3.2 eV to 3.7 eV. Suitable

materials around these values are based on β -Ga₂O₃, Ta₂O₅, Zn(O,S) and Zn_{1-x}Ge_xO.

Energy band alignment has been properly discussed in literature [7], [8] and the effect of the CBO on the open circuit voltage has been analyzed by Brandt et al. [4]. Therefore, it is known that for Cu₂O devices, large conduction band offsets mean lower open circuit voltages. A conduction band offset optimized for peak open circuit voltage is around ± 0.2 eV [9]. Layer deposition method has a great influence on the energy band alignment at the interface. However, band alignment can be manipulated at metal-oxide heterojunctions with intrinsic defects and impurities for the constituents, because this way the Fermi level position can be controlled and therefore reduce the conduction band offset. That being said, the multi-component zinc oxide, where we have tunable conduction bands, can control the compound ratios and defects properties are suitable for Cu₂O-based heterojunctions. Among these, Zn(O,S) [6] and Zn_{1-x}Ge_xO [1] have been investigated and confirmed as candidate materials for buffer layer implementation in a metal-oxide solar cell. Ga₂O₃ is another good option here, because it offers a good electronic alignment with a band offset around 0.38 eV [4] and a smaller electron affinity than ZnO. Ga₂O₃ also yields good efficiencies in literature studies and experiments [10], [11]. Ta₂O₅ also has favorable conduction band offset, and can be manufactured at low temperature [5]. Its electron affinity is closer to the cuprous oxide [12] and therefore another good potential candidate for the buffer layer in a Cu₂O-based heterojunction solar cell. These materials are in focus for ongoing experimental studies in order to optimize the Cu₂O-based [13] heterojunction subcell for the silicon tandem implementation.

4. Conclusions

In this work, SILVACO Atlas was adopted to investigate the influence of the thickness and electron affinity of the buffer layer on the electrical performance of a ZnO/Cu₂O subcell. A ZnO buffer thickness below 0.1 micrometers is optimal and a buffer layer with electron affinity in the range from 3.2 eV to 3.7 eV is recommended for peak performance of the Cu₂O-based heterojunction subcell. Suitable candidate materials for the optimum buffer layer are Ta₂O₅, β -Ga₂O₃, Zn(O,S) and Zn_{1-x}Ge_xO, which have a closer electron affinity to the cuprous oxide and benefit from convenient band alignment, and so would theoretically, provide a better performance than the original ZnO layer. Further experimental work is required for such materials in order to find the best candidate.

R E F E R E N C E S

- [1]. *T. Minami, Y. Nishi, T. Miyata*, “Efficiency enhancement using a $Zn_{1-x}Ge_x$ -O thin film as an n-type window layer in Cu_2O -based heterojunction solar cells”, in *Appl. Phys. Express* **9**, 052301, 2016.
- [2]. *Y. Takiguchi and S. Miyajima*, “Device simulation of cuprous oxide heterojunction solar cells” in *Jpn. J. Appl. Phys.* **54** 112303, 2015.
- [3]. *T. Minami, Y. Nishi, T. Miyata*, “Relationship between the electrical properties of the n-oxide and p- Cu_2O layers and the photovoltaic properties of Cu_2O -based heterojunction solar cells”, in *Sol. Energ. Mat. Sol. Cells*, **147**, pp. 85-93, 2016.
- [4]. *Brandt Riley E., Young Matthew, Park Helen Hejin, Dameron Arrelaine, Chua Danny, Lee Yun Seog, Teeter Glenn, Gordon Roy G. and Buonassisi Tonio*, “Band offsets of n-type electron-selective contacts on cuprous oxide (Cu_2O) for photovoltaics”, in *Appl. Phys. Lett.*, **105**, 263901, 2014.
- [5]. *L. Pereira, P. Barquinha, E. Fortunato, R. Martins, D. Kang, C.J. Kim, H. Lim, I. Song, Y. Park*, “High k dielectrics for low temperature electronics”, in *Thin Solid Films*, **vol. 516**, issue 7, pp. 1544-1548, 2008.
- [6]. *Y. Tolstova, S.T. Omelchenko, R.E. Blackwell and A.M. Shing*, “Polycrystalline Cu_2O photovoltaic devices incorporating $Zn(O,S)$ window layers” in *Sol. Energ. Mat. Sol. Cells*, **160**, pp. 340-345, 2017.
- [7]. *D.K. Zhang, Y.C. Liu, Y.L. Liu and H. Yang*, “The electrical properties and the interfaces of $Cu_2O/ZnO/ITO$ p-i-n heterojunction”, in *Physica B* **351**, pp. 178-183, 2004.
- [8]. *B. Kramm, A. Laufer, D. Reppin, A. Kronenberger, P. Hering*, “The band alignment of Cu_2O/ZnO and Cu_2O/GaN heterostructures” in *Appl. Phys. Lett.* **100**, 094102, 2012.
- [9]. *Sebastian Siol, Jan C. Hellmann, S. David Tilley, Michael Grätzel, Jan Morasch, Jonas Deuermeier, Wolfram Jaegermann, and Andreas Klein*, “Band Alignment Engineering at Cu_2O/ZnO Heterointerfaces”, in *ACS Appl. Mater.* 2016.
- [10]. *T. Minami, Y. Nishi and T. Miyata* “High-efficiency Cu_2O -based heterojunction solar cells fabricated using a Ga_2O_3 thin film as n-type layer” in *Appl. Phys. Express* **6** 044101, 2013.
- [11]. *T. Minami, Y. Nishi and T. Miyata* “Heterojunction solar cell with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and p-type sodium-doped Cu_2O sheet” in *Appl. Phys. Express* **8** 022301, 2015.
- [12]. *J. Robertson and B. Falabretti*, “Band offsets of high K gate oxides on III-V semiconductors”, in *J. Appl. Phys.*, **100**, 014111, 2006.
- [13]. *L. Fara and M. Yamaguchi* 2013 *Advanced Solar Cell Materials, Technology, Modeling, and Simulation* (Hershey: IGI Global).