
U.P.B. Sci. Bull., Series A, Vol. 80, Iss. 1, 2018                                                     ISSN 1223-7027 

BANACH SPACE PROPERTIES SUFFICIENT FOR THE 

DOMÍNGUEZ-LORENZO CONDITION 

Mina DINARVAND1 

In this paper, we consider some geometric properties on Banach spaces 

concerning the García-Falset coefficient and the von Neumann-Jordan type constant, 

which imply the Domínguez-Lorenzo condition and thus the existence of fixed points 

for multivalued nonexpansive mappings. The obtained results generalize some 

previous results in the recent literature. We also show that our results are sharp.  
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1. Introduction 

In 1969, Nadler [1] extended the Banach Contraction Principle to 

multivalued contractive mappings in complete metric spaces. Since then, the metric 

fixed point theory of multivalued mappings has been rapidly developed. Some 

classical fixed point theorems for singlevalued nonexpansive mappings have been 

extended to multivalued nonexpansive mappings. One of the first results in this 

direction was established by Lim [2] in the framework of a uniformly convex 

Banach space. Later on, by using Edelstein's method of asymptotic centers, Kirk 

and Massa [3] proved the existence of a fixed point for a multivalued nonexpansive 

self-mapping in a Banach space, for which the asymptotic center of any bounded 

sequence in a closed bounded convex subset is nonempty and compact. 

            Despite of the above results, some important questions remain still open, for 

instance, the possibility of extending the celebrated Kirk's theorem [4], i.e., do 

Banach spaces with weak normal structure (ω-NS) have the fixed point property 

(FPP) for multivalued nonexpansive mappings? 

In 2004, Domínguez Benavides and Lorenzo [5] proved that nearly 

uniformly convex spaces have the FPP for multivalued nonexpansive mappings 

with compact and convex values. Dhompongsa et al. [6] noticed that the main tool 

used in the proof of that result is a relationship concerning the Chebyshev radius of 

the sequence. Consequently, they introduced the so called Domínguez-Lorenzo 

condition ((DL)-condition, in short), which implies ω-NS (see [6]) of a Banach 

space and in turn the FPP for multivalued nonexpansive mappings (see [7]). 
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Therefore, a first approach to the problem of extending Kirk’s theorem is to study 

whether properties implying ω-NS also imply the (DL)-condition. Positive results 

will give only partial answers to the problem, because it is known that uniform 

normal structure does not imply the (DL)-condition (see [8]). 

 Recently, many geometric constants for a Banach space have been 

investigated. Among them, the von Neumann-Jordan constant is one of the most 

widely studied geometric constants. In connection with the celebrated work of 

Jordan and von Neumann concerning inner products [9], the von Neumann-Jordan 

constant of 𝐶𝑁𝐽(𝑋) of a Banach space 𝑋 was introduced by Clarkson [10] as the 

smallest constant 𝐶 for which 

1

𝐶
≤
∥ 𝑥 + 𝑦 ∥2+∥ 𝑥 − 𝑦 ∥2

2(∥ 𝑥 ∥2+∥ 𝑦 ∥2)
≤ 𝐶 

holds for all 𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ≠ (0,0). If 𝐶 is the best possible constant on the 

right-hand side of the above inequality, then so is 
1

𝐶
 on the left-hand one. Such a 

constant is important due to its strong connection with some useful geometric 

properties.  

            Throughout this paper, we assume that 𝑋 be a Banach space with the unit 

sphere 𝑆𝑋 = {𝑥 ∈ 𝑋 ∶  ∥ 𝑥 ∥= 1} and the closed unit ball 𝐵𝑋 = {𝑥 ∈ 𝑋 ∶  ∥ 𝑥 ∥≤
1}. 
            Recently, Takahashi [11] has introduced the von Neumann-Jordan type 

constant by 

𝐶𝑡(𝑋) = sup {
𝐽𝑋,𝑡
2 (𝜏)

1 + 𝜏2
 ∶   0 ≤ 𝜏 ≤ 1} 

for −∞ ≤ 𝑡 < ∞, where the James type constant 𝐽𝑋,𝑡(𝜏) is defined as 
𝐽𝑋,𝑡(𝜏)

=

{
 
 

 
 
sup{(

∥ 𝑥 + 𝜏𝑦 ∥𝑡+∥ 𝑥 − 𝜏𝑦 ∥𝑡

2
)

1
𝑡

 ∶   𝑥, 𝑦 ∈ 𝑆𝑋},        − ∞ < 𝑡 < ∞, 𝑡 ≠ 0,

sup{√∥ 𝑥 + 𝜏𝑦 ∥, ∥ 𝑥 − 𝜏𝑦 ∥    ∶   𝑥, 𝑦 ∈ 𝑆𝑋},                                               𝑡 = 0,

sup{ min{∥ 𝑥 + 𝜏𝑦 ∥, ∥ 𝑥 − 𝜏𝑦 ∥}   ∶    𝑥, 𝑦 ∈ 𝑆𝑋},                                 𝑡 = −∞.

 

Here, we remark that 𝐽(𝑋) = 𝐽𝑋,−∞(1). By taking 𝑡 = −∞  in the definition of 

𝐶𝑡(𝑋), we get the constant 

𝐶−∞(𝑋) = sup {
𝐽𝑋,−∞
2 (𝜏)

1 + 𝜏2
 ∶   0 ≤ 𝜏 ≤ 1} . 

 

It is obvious that the von Neumann-Jordan type constant includes some known 

constants, such as the von Neumann-Jordan constant 𝐶𝑁𝐽(𝑋) (see [10]) and the 

Zbăganu constant 𝐶𝑍(𝑋)  (see [12]). These constants are defined by 𝐶𝑁𝐽(𝑋) =



Banach space properties sufficient for the Domínguez Lorenzo condition             213 

 

𝐶2(𝑋)  and 𝐶𝑍(𝑋) = 𝐶0(𝑋) . As regards the above constants, the following 

inequalities do hold (see [11]): 

                                               
1

2
(𝐽(𝑋))2 ≤ 𝐶−∞(𝑋) ≤ 𝐶𝑍(𝑋)

≤ 𝐶𝑁𝐽(𝑋).                                     (1.1) 

Many recent studies have focused on geometric properties concerning some well 

known moduli and coefficients, which imply normal structure of Banach spaces and 

the existence of fixed points for multivalued nonexpansive mappings. For more 

details in this direction, we refer the reader to [6, 7, 8, 13, 14, 15, 16, 17, 18, 19, 20, 

21] and the references mentioned therein. 

            The purpose of this work is to investigate some geometric conditions on a 

Banach space 𝑋 in terms of the García-Falset coefficient and the von Neumann-

Jordan type constant, which imply the Domínguez-Lorenzo condition and thus the 

existence of fixed points for multivalued nonexpansive mappings. Our main results 

generalize some existing results in the literature on this topic. Moreover, we show 

that the results are sharp. 

2. Preliminaries 

In the following lines, we give some notions and definitions which will be 

needed in the sequel. 

Let 𝑋 be a Banach space and 𝐸 be a nonempty subset of 𝑋. We shall denote 

by 𝐶𝐵(𝐸) the family of all nonempty bounded closed subsets of 𝐸 and by 𝐾𝐶(𝐸) 
the family of all nonempty compact convex subsets of 𝐸. 

A multivalued mapping 𝑇: 𝐸 ⟶ 𝐶𝐵(𝑋) is said to be nonexpansive if  

𝐻(𝑇𝑥, 𝑇𝑦) ≤ ∥ 𝑥 − 𝑦 ∥ ,                   𝑥, 𝑦 ∈ 𝐸, 
 

where 𝐻(∙,∙) denotes the Hausdorff metric on 𝐶𝐵(𝑋) defined by 

 

𝐻(𝐴, 𝐵) = max {sup
𝑥∈𝐴

inf
𝑦∈𝐵

∥ 𝑥 − 𝑦 ∥,   sup
𝑦∈𝐵

inf
𝑥∈𝐴

∥ 𝑥 − 𝑦 ∥} ,                    𝐴, 𝐵

∈ 𝐶𝐵(𝑋). 
A point 𝑥 ∈ 𝐸 is a fixed point of 𝑇 if and only if  𝑥 is contained in 𝑇𝑥. 

 

            Let {𝑥𝑛} be a bounded sequence in 𝑋. The asymptotic radius 𝑟(𝐸, {𝑥𝑛}) and 

the asymptotic center 𝐴(𝐸, {𝑥𝑛}) of {𝑥𝑛} in 𝐸 are defined by 

𝑟(𝐸, {𝑥𝑛}) = inf  { lim sup
𝑛→∞

∥ 𝑥𝑛 − 𝑥 ∥    ∶     𝑥 ∈ 𝐸} 

and 

𝐴(𝐸, {𝑥𝑛}) = {𝑥 ∈ 𝐸   ∶     lim sup
𝑛→∞

∥ 𝑥𝑛 − 𝑥 ∥= 𝑟(𝐸, {𝑥𝑛})}, 
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respectively. It is known that 𝐴(𝐸, {𝑥𝑛}) is a nonempty weakly compact convex 

set whenever 𝐸 is (see [22]). 

            The sequence {𝑥𝑛}  is called regular with respect to 𝐸  if 𝑟(𝐸, {𝑥𝑛}) =

𝑟(𝐸, {𝑥𝑛𝑖}) for all subsequences {𝑥𝑛𝑖} of {𝑥𝑛}. 

 

Lemma 2.1. (Goebel [23], Lim [2]) Let {𝑥𝑛} and 𝐸 be as above. Then there always 

exists a subsequence of {𝑥𝑛} which is regular with respect to 𝐸. 

 

            Let 𝐶  be a nonempty bounded subset of 𝑋 . The Chebyshev radius of 𝐶 

relative to 𝐸 is defined by 

𝑟𝐸(𝐶) ≔ inf  {sup{∥ 𝑥 − 𝑦 ∥   ∶     𝑦 ∈ 𝐶}    ∶     𝑥 ∈ 𝐸}. 
In 2006, Dhompongsa et al. [6] introduced the Domínguez-Lorenzo condition 

((DL)-condition, in short) as follows. 

 

Definition 2.2. ([6]) A Banach space 𝑋 is said to satisfy the (DL)-condition if there 

exists 𝜆 ∈ [0,1) such that for every weakly compact convex subset 𝐸 of 𝑋 and for 

every bounded sequence {𝑥𝑛} in 𝐸 which is regular with respect to 𝐸, 

𝑟𝐸(𝐴(𝐸, {𝑥𝑛})) ≤ 𝜆 𝑟(𝐸, {𝑥𝑛}). 
            In [6, Theorem 3.2] it was proved that the (DL)-condition implies weak 

normal structure. We recall that a Banach space 𝑋 is said to have weak normal 

structure (𝜔 -NS) if for every weakly compact convex subset 𝐾  of 𝑋  with 

diam(𝐾) ≔ sup{∥ 𝑥 − 𝑦 ∥   ∶     𝑥, 𝑦 ∈ 𝐾} > 0, there exists 𝑥 ∈ 𝐾 such that sup{∥
𝑥 − 𝑦 ∥   ∶     𝑦 ∈ 𝐾} < diam(𝐾). 
            The (DL)-condition also implies the existence of fixed points for 

multivalued nonexpansive mappings. 

 

Theorem 2.3. ([7]) Let 𝐸 be a nonempty weakly compact convex subset of a Banach 

space 𝑋 and 𝑇: 𝐸 ⟶ 𝐾𝐶(𝐸) be a nonexpansive mapping. If 𝑋 satisfies the (DL)-

condition, then 𝑇 has a fixed point. 

            In the attempts to find sufficient conditions for the weak fixed point 

property, many other geometrical properties have been described. Next, we will 

recall some of these properties involving normal structure. 

 

Definition 2.4. ([24]) A Banach space 𝑋 has the Opial property if for every weakly 

null sequence {𝑥𝑛} and every 𝑥 ≠ 0 in 𝑋, 

lim inf
𝑛→∞

∥ 𝑥𝑛 ∥ < lim inf
𝑛→∞

∥ 𝑥𝑛 + 𝑥 ∥. 

We will say that 𝑋 satisfies the nonstrict Opial property if 

lim inf
𝑛→∞

∥ 𝑥𝑛 ∥ ≤ lim inf
𝑛→∞

∥ 𝑥𝑛 + 𝑥 ∥ 

under the same conditions. 
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            The Opial modulus of 𝑋 [25] is defined for 𝑐 ≥ 0 as 

𝑟𝑋(𝑐) = inf  {lim inf
𝑛

∥ 𝑥𝑛 + 𝑥 ∥ −1} , 

 

where the infimum is taken over all 𝑥 ∈ 𝑋  with ∥ 𝑥 ∥ ≥ 𝑐  and all weakly null 

sequences {𝑥𝑛} in 𝑋 with lim inf𝑛 ∥ 𝑥𝑛 ∥ ≥ 1. 
            This modulus satisfies the following properties (see [26, 27]): 

• 𝑟𝑋 is nondecreasing and continuous in [0,∞). 
• 𝑐 − 1 ≤ 𝑟𝑋(𝑐) ≤ 𝑐 for all 𝑐 ≥ 0. In particular, 𝑟𝑋(𝑐) > 0 for all 𝑐 > 1. 

• If 𝑟𝑋(0) < 0, then 𝑟𝑋 is constant in [0, −𝑟𝑋(0)]. 
• 𝑋 has the nonstrict Opial property if and only if  𝑟𝑋(𝑐) ≥ 0 for all 𝑐 ≥ 0. 

It is known that a space 𝑋 with the Opial property has 𝜔-NS. Furthermore, 

the condition 𝑟𝑋(1) > 0 implies weak uniform normal structure (see [25]). 

            Recall  that a Banach space 𝑋 is called uniformly non-square provided that 

there exists 𝛿 > 0 such that either ∥ 𝑥 + 𝑦 ∥ ≤ 2 − 𝛿 or ∥ 𝑥 − 𝑦 ∥ ≤ 2 − 𝛿 for all 

𝑥, 𝑦 ∈ 𝐵𝑋 . In [28] it was proved that uniformly non-square Banach spaces are 

reflexive. 

            In 1997, García-Falset [29] introduced the following coefficient, the so-

called García-Falset coefficient, 

𝑅(𝑋) = sup  {lim inf
𝑛→∞

∥ 𝑥𝑛 + 𝑥 ∥} , 

where the supremum is taken over all weakly null sequences {𝑥𝑛} in 𝐵𝑋 and all 𝑥 ∈
𝑆𝑋 . He proved that a reflexive Banach space 𝑋 with 𝑅(𝑋) < 2 enjoys the fixed 

point property (see [22, 30]).  Here, we remark that 1 ≤ 𝑅(𝑋) ≤ 2. 

3. Main Results 

            Throughout this section, let 𝑋  be a Banach space without the Schur 

property, that is, there is a weakly convergent sequence which is not norm 

convergent. 

            The following result is the heart of this paper. 

 

Theorem 3.1. Let 𝑋 be a Banach space and let 𝐸 be a weakly compact convex 

subset of 𝑋. Suppose that {𝑥𝑛} is a bounded sequence in 𝐸 which is regular relative 

to 𝐸. Assume that 𝑟𝑋 (
1

2
) ≥ 0 and   

𝐶−∞(𝑋) < 1 +
1

(𝑅(𝑋))2
. 

Then there exists 𝜆 ∈ (0,1) such that  

𝑟𝐶(𝐴(𝐸, {𝑥𝑛})) < 𝜆 𝑟(𝐸, {𝑥𝑛}). 

 

In particular, if 𝑋 satisfies the nonstrict Opial condition, then 
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𝜆 =
𝐶−∞(𝑋)

1 +
1

(𝑅(𝑋))2

. 

Proof. If 𝑟𝑋 (
1

2
) > 0, then 𝑟𝑋(1) > 0 and the result follows from Corollary 2 in [8]. 

           Now, suppose that  𝑟𝑋 (
1

2
) = 0. For convenience, we denote 𝑟 = 𝑟(𝐸, {𝑥𝑛}) 

and 𝐴 = 𝐴(𝐸, {𝑥𝑛}). We can assume 𝑟 > 0. Since 𝐸 is a weakly compact set, we 

can also assume that {𝑥𝑛} is weakly convergent to a point 𝑥 ∈ 𝐸. 

            If 𝑧 ∈ 𝐴 (𝑧 ≠ 𝑥) , then lim sup𝑛 ∥ 𝑥𝑛 − 𝑧 ∥= 𝑟 . Since the norm is weak 

lower semicontinuity, it follows that 

                                 ‖𝑧 − 𝑥‖
≤ lim inf

𝑛
 ‖𝑧 − 𝑥𝑛‖ ≤ lim sup

𝑛
 ‖𝑥𝑛 − 𝑧‖ = 𝑟.                         (3.1) 

On the other hand, 

𝐵 ≔ lim sup
𝑛

 ‖𝑥𝑛 − 𝑥‖  ≥ 𝑟. 

            Fix 𝜀 > 0. By passing through a subsequence, if necessary, we can assume 

that 

                                           ‖𝑥𝑛 − 𝑥‖ ≤ 𝐵 + 𝜀,                  for all 𝑛
∈ ℕ                                         (3.2) 

            By applying (3.1) and (3.2) and taking into account that 𝑥𝑛 − 𝑥 is weakly 

convergent to 0, we have 

 lim inf
𝑛

∥ 𝑥𝑛 − 2𝑥 + 𝑧 ∥ 

= lim inf
𝑛

‖
𝑟

𝐵 + 𝜀
(𝑥𝑛 − 𝑥) + (1 −

𝑟

𝐵 + 𝜀
) (𝑥𝑛 − 𝑥) +

𝑟

𝑟
(𝑧 − 𝑥)‖ 

                                               

≤ 𝑟 lim inf
𝑛

‖
(𝑥𝑛 − 𝑥)

𝐵 + 𝜀
+
𝑧 − 𝑥

𝑟
‖ + (1 −

𝑟

𝐵 + 𝜀
) lim sup 

𝑛
‖𝑥𝑛 − 𝑥‖ 

      ≤ 𝑟𝑅(𝑋) + (1 −
𝑟

𝐵 + 𝜀
) lim sup 

𝑛
‖𝑥𝑛 − 𝑥‖ 

                        = 𝑟𝑅(𝑋) + (1 −
𝑟

𝐵 + 𝜀
)𝐵 = 𝑟 (𝑅(𝑋) +

𝐵

𝑟
−

𝐵

𝐵 + 𝜀
). 

 

Denote 𝑅(𝜀) = 𝑅(𝑋) +
𝐵

𝑟
−

𝐵

𝐵+𝜀
. Since 𝐸 is convex and 𝑅(𝜀) ≥ 1, it follows that 

2

(𝑅(𝜀))2+1
𝑥 +

(𝑅(𝜀))2−1

(𝑅(𝜀))2+1
𝑧 ∈ 𝐶. Hence, we have 

lim sup
𝑛

‖𝑥𝑛 − (
2

(𝑅(𝜀))2 + 1
𝑥 +

(𝑅(𝜀))2 − 1

(𝑅(𝜀))2 + 1
𝑧)‖ ≥ 𝑟. 
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On the other hand, the weak lower semicontinuity of the norm implies that 

lim inf
𝑛

 ‖((𝑅(𝜀))2 − 1)(𝑥𝑛 − 𝑥) − ((𝑅(𝜀))2 − 1)(𝑧 − 𝑥)‖

≥ ((𝑅(𝜀))2 − 1)‖𝑧 − 𝑥‖. 
            In view of the above inequalities, we can find a natural number 𝑁 such that 
(1) ‖𝑥𝑁 − 𝑧‖ ≤ 𝑟 + 𝜀. 
(2) ‖𝑥𝑁 − 2𝑥 + 𝑧‖ ≤ 𝑅(𝜀)(𝑟 + 𝜀). 

(3) ‖𝑥𝑁 − (
2

(𝑅(𝜀))2 + 1
𝑥 +

(𝑅(𝜀))2 − 1

(𝑅(𝜀))2 + 1
𝑧)‖ ≥ 𝑟 − 𝜀. 

(4) ‖((𝑅(𝜀))2 − 1)(𝑥𝑛 − 𝑥) − ((𝑅(𝜀))2 − 1)(𝑧 − 𝑥)‖

≥ ((𝑅(𝜀))2 − 1)‖𝑧 − 𝑥‖ (
𝑟 − 𝜀

𝑟
).       

 

            We now consider 𝑢 = (𝑅(𝜀))2(𝑥𝑁 − 𝑧)  and 𝑣 = (𝑥𝑁 − 2𝑥 + 𝑧) . 

According to the above estimates, we obtain ‖𝑢‖ ≤ (𝑅(𝜀))2(𝑟 + 𝜀) and ‖𝑣‖ ≤
𝑅(𝜀)(𝑟 + 𝜀) and so that 

 

‖𝑢 + 𝑣‖ = ‖(𝑅(𝑋))2((𝑥𝑁 − 𝑥) − (𝑧 − 𝑥)) + (𝑥𝑁 − 𝑥) + (𝑧 − 𝑥)‖ 

       = ((𝑅(𝜀))2 + 1)‖(𝑥𝑁 − 𝑥) −
(𝑅(𝜀))2 − 1

(𝑅(𝜀))2 + 1
(𝑧 − 𝑥)‖ 

                    = ((𝑅(𝜀))2 + 1) ‖𝑥𝑁 − (
2

(𝑅(𝜀))2 + 1
𝑥 +

(𝑅(𝜀))2 − 1

(𝑅(𝜀))2 + 1
𝑧)‖ 

  ≥ ((𝑅(𝜀))2 + 1)(𝑟 + 𝜀),                                               
 

    ‖𝑢 − 𝑣‖ = ‖(𝑅(𝑋))2((𝑥𝑁 − 𝑥) − (𝑧 − 𝑥)) − ((𝑥𝑁 − 𝑥) + (𝑧 − 𝑥))‖ 

        = ‖((𝑅(𝜀))2 − 1)(𝑥𝑁 − 𝑥) − ((𝑅(𝜀))2 + 1)(𝑧 − 𝑥)‖ 

  ≥ ((𝑅(𝜀))2 − 1)‖𝑧 − 𝑥‖ (
𝑟 − 𝜀

𝑟
).                               

 

            By the definition of 𝐶−∞(𝑋), we have 

𝐶−∞(𝑋) ≥
min{‖𝑢 + 𝑣‖2, ‖𝑢 − 𝑣‖2}

‖𝑢‖2 + ‖𝑣‖2
                                                                 

                          

≥
min {((𝑅(𝜀))2 + 1)2(𝑟 − 𝜀)2, ((𝑅(𝜀))2 + 1)2‖𝑧 − 𝑥‖2 (

𝑟 − 𝜀
𝑟 )

2

 }

(𝑅(𝜀))4(𝑟 + 𝜀)2 + (𝑅(𝜀))2(𝑟 + 𝜀)2
. 

Since ‖𝑧 − 𝑥‖ ≤ 𝑟, it follows that 

𝐶−∞(𝑋) ≥
((𝑅(𝜀))2 + 1)2‖𝑧 − 𝑥‖2 (

𝑟 − 𝜀
𝑟 )

2

(𝑅(𝜀))4(𝑟 + 𝜀)2 + (𝑅(𝜀))2(𝑟 + 𝜀)2
. 
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On taking the limit as 𝜀 → 0, we get 

𝐶−∞(𝑋) ≥ (1 +
1

(𝑅(0))2
) (
‖𝑧 − 𝑥‖

𝑟
)

2

                                    

                                               

= (1

+
1

(𝑅(𝑋) +
𝐵
𝑟 − 1)

2)(
‖𝑧 − 𝑥‖

𝑟
)

2

                                      (3.3) 

At this point, we shall distinguish two cases: 

Case 1. Suppose that 𝐵 = 𝑟, which is the case when 𝑋 satisfies the nonstrict 

Opial condition. From (3.3), we get 

                                                 ‖𝑧 − 𝑥‖

≤

(

 
 
√

𝐶−∞(𝑋)

1 +
1

(𝑅(𝜀))2
)

 
 
𝑟.                                                   (3.4) 

This inequality holds for arbitrary 𝑧 ∈ 𝐴, 𝑧 ≠ 𝑥. Hence, we have 

 

sup 
𝑧∈𝐴

‖𝑥 − 𝑧‖ ≤

(

 
 
√

𝐶−∞(𝑋)

1 +
1

(𝑅(𝜀))2
)

 
 
𝑟, 

which implies that 

𝑟𝐶(𝐴) ≤

(

 
 
√

𝐶−∞(𝑋)

1 +
1

(𝑅(𝜀))2
)

 
 
𝑟. 

Case 2. Suppose that 𝐵 > 𝑟. In this situation 𝑋 cannot meet the nonstrict 

Opial condition. Since 𝑟𝑋 (
1

2
) ≥ 0, the continuity of the Opial modulus allows us to 

find a real number 𝜆 ∈ (0,1) such that 𝑟𝑋 (
𝜆

2
) < 0 and for which 
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𝐶−∞(𝑋) < 1 +
1

(𝑅(𝑋) −
𝑟𝑋 (

𝜆
2)

1 + 𝑟𝑋 (
𝜆
2)
)

2 < 1 +
1

(𝑅(𝑋))2
. 

Clearly, we either have 

                                                                      
‖𝑧 − 𝑥‖

𝑟
≤ 𝑘                                                                  (3.5) 

or 

                
‖𝑧 − 𝑥‖

𝑟
> 𝑘.                     

            In the latter case, since 𝐵 ≤ 2𝑟  and taking a subsequence of {𝑥𝑛}  if 

necessary, we get 

𝑟𝑋 (
𝑘

2
) ≤ 𝑟𝑋 (

‖𝑧 − 𝑥‖

𝐵
) ≤ lim inf

𝑛
‖
𝑥𝑛 − 𝑥

𝐵
+
𝑥 − 𝑧

𝐵
‖ − 1 

= lim inf 
𝑛

‖𝑥𝑛 − 𝑧‖

𝐵
− 1 ≤

𝑟

𝐵
− 1 < 0.         

            From the above estimate and since 𝑟𝑋 (
𝑘

2
) + 1 > 0, it is clear that 

𝐵

𝑟
≤

1

𝑟𝑋 (
𝑘
2) + 1

. 

Therefore, 

𝑅(𝑋) +
𝐵

𝑟
− 1 ≤ 𝑅(𝑋) +

1

𝑟𝑋 (
𝑘
2) + 1

− 1 = 𝑅(𝑋) −
𝑟𝑋 (

𝑘
2)

1 + 𝑟𝑋 (
𝑘
2)
. 

Taking into account (3.3), we deduce 

𝐶−∞(𝑋) ≥ 1 +
1

(𝑅(𝑋) −
𝑟𝑋 (

𝑘
2)

1 + 𝑟𝑋 (
𝑘
2)
)

2 (
‖𝑧 − 𝑥‖

𝑟
)

2

, 

 

which implies that 
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                                 ‖𝑧 − 𝑥‖

≤

(

 
 
 
 
 
 
 

√
  
  
  
  
  
 𝐶−∞(𝑋)

1 +
1

(𝑅(𝑋) −
𝑟𝑋 (

𝑘
2
)

1 + 𝑟𝑋 (
𝑘
2)
)

2

)

 
 
 
 
 
 
 

𝑟.                                          (3.6) 

 

            As a consequence of the inequalities (3.4), (3.5) and (3.6), for any 𝑧 ∈ 𝐴, 

we obtain 
‖𝑧 − 𝑥‖ ≤ 𝜆 𝑟, 

where 

𝜆 = max

{
 
 
 
 

 
 
 
 

√

𝐶−∞(𝑋)

1 +
1

(𝑅(𝑋))2

, 𝑘,

√
  
  
  
  
  
 𝐶−∞(𝑋)

1 +
1

(𝑅(𝑋) −
𝑟𝑋 (

𝑘
2)

1 + 𝑟𝑋 (
𝑘
2)
)

2

}
 
 
 
 

 
 
 
 

< 1. 

Consequently, 

sup
𝑧∈𝐴

‖𝑧 − 𝑥‖ ≤ 𝜆 𝑟, 

from which it follows that 

𝑟𝐶(𝐴) ≤ 𝜆 𝑟. 
This finishes the proof. 

 □ 

Corollary 3.2. Let 𝑋 be a Banach space which satisfies 𝑟𝑋 (
1

2
) ≥ 0. If 

𝐶−∞(𝑋) < 1 +
1

(𝑅(𝑋))2
, 

then 𝑋 satisfies the (DL)-condition. 

Remark 3.3. Corollary 3.2 is sharp in the sense that there is a Banach space 𝑋 such 

that 𝐶−∞(𝑋) = 1 +
1

(𝑅(𝑋))2
 and 𝑋 does not satisfy the (DL)-condition. Consider the 

Bynum space ℓ2,∞  defined as ℓ2,∞ ≔ (ℓ2, ∥ ∙ ∥2,∞)  where ∥ 𝑥 ∥2,∞≔ max{∥

𝑥+ ∥2, ∥ 𝑥
− ∥2 } with 𝑥+(𝑖) = max{𝑥(𝑖), 0} for each 𝑖 ≥ 1 and 𝑥− = 𝑥+ − 𝑥. We 
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use the computation to conclude that the space ℓ2,∞ is a limiting space for Corollary 

3.2, i.e., that corollary is sharp. It is known that 𝐶𝑁𝐽(ℓ2,∞) =
3

2
 (see [19]). From the 

inequality 𝐶−∞(𝑋) ≤ 𝐶𝑁𝐽(𝑋)  (see [11]), we have 𝐶−∞(ℓ2,∞) ≤
3

2
. Take 𝑥 =

(−1, 1, 0, … ) ∈ ℓ2,∞  and 𝑦 = (
1

2
,
1

2
, 0, … ) ∈ ℓ2,∞ . Thus, we obtain ∥ 𝑥 + 𝑦 ∥=∥

𝑥 − 𝑦 ∥=
3

2
, ∥ 𝑥 ∥= 1 and ∥ 𝑦 ∥=

1

√2
 and so 𝐶−∞(ℓ2,∞) ≥

3

2
. Hence, 𝐶−∞(ℓ2,∞) =

3

2
. It is easy to see that 𝑅(ℓ2,∞) = √2 (see [19, 29]). Therefore, we have  

𝐶−∞(ℓ2,∞) =
3

2
= 1 +

1

(𝑅(ℓ2,∞))2
. 

However, fails to have weak normal structure and hence does not satisfy the (DL)-

condition. 

Since the constants 𝐶𝑍(𝑋) and 𝐶𝑁𝐽(𝑋) are more than or equal to 𝐶−∞(𝑋), we get 

the following results. 

 

Corollary 3.4. Let 𝑋 be a Banach space such that 𝑟𝑋 (
1

2
) ≥ 0 and  

𝐶𝑍(𝑋) < 1 +
1

(𝑅(𝑋))2
. 

Then 𝑋 satisfies the (DL)-condition. 

 

Corollary 3.5. ([18]) Let 𝑋 be a Banach space such that 𝑟𝑋 (
1

2
) ≥ 0 and  

𝐶𝑁𝐽(𝑋) < 1 +
1

(𝑅(𝑋))2
. 

Then 𝑋 satisfies the (DL)-condition. 

            Recall that for a normed space 𝑋, the real number 

𝐶𝑃(𝑋) = sup {
∥ 𝑥 − 𝑦 ∥∥ 𝑧 ∥

∥ 𝑥 − 𝑧 ∥∥ 𝑦 ∥ +∥ 𝑧 − 𝑦 ∥∥ 𝑥 ∥
   ∶     𝑥, 𝑦, 𝑧 ∈ 𝑋\{0}, 𝑥 ≠ 𝑦 ≠ 𝑧

≠ 𝑥} 

is called the Ptolemy constant of 𝑋. The notion of the Ptolemy constant of Banach 

spaces was introduced in [31] and recently it has been studied by Llorens-Fuster 

et al. in [32]. 

Because 𝐶𝑍(𝑋) ≤ 𝐶𝑃(𝑋), the next result is a consequence of Corollary 3.4.  

 

Corollary 3.6. Let 𝑋 be a Banach space such that 𝑟𝑋 (
1

2
) ≥ 0 and  

𝐶𝑃(𝑋) < 1 +
1

(𝑅(𝑋))2
. 

Then 𝑋 satisfies the (DL)-condition. 
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            Since  𝑟𝑋 (
1

2
) ≥ 0 whenever 𝑋 satisfies the nonstrict Opial condition, we 

obtain the following result. 

 

Corollary 3.7. Let 𝑋  be a Banach space with the nonstrict Opial condition. 

Suppose that one of the following conditions is satisfied 

(1) 𝐶−∞(𝑋) < 1 +
1

(𝑅(𝑋))2
, 

(2) 𝐶𝑍(𝑋) < 1 +
1

(𝑅(𝑋))2
, 

(3) 𝐶𝑁𝐽(𝑋) < 1 +
1

(𝑅(𝑋))2
, 

(4) 𝐶𝑃(𝑋) < 1 +
1

(𝑅(𝑋))2
. 

Then 𝑋 satisfies the (DL)-condition. 

            Because 𝑅(𝑋) ≥ 1 , it follows that each of the conditions 𝐶−∞(𝑋) < 2 , 

𝐶𝑍(𝑋) < 2  and 𝐶𝑁𝐽(𝑋) < 2  imply reflexivity of 𝑋 . Thus, as a consequence of 

Theorem 2.3 and Corollaries 3.2, 3.4, 3.5 and 3.6, we obtain the following sufficient 

condition so that a Banach space 𝑋  has the FPP for multivalued nonexpansive 

mappings. 

 

Corollary 3.8. Let 𝐸 be a nonempty bounded closed convex subset of a Banach 

space 𝑋  such that 𝑟𝑋 (
1

2
) ≥ 0  and 𝑇: 𝐸 ⟶ 𝐾𝐶(𝐸)  be a nonexpansive mapping. 

Suppose that one of the following conditions is satisfied  

(1) 𝐶−∞(𝑋) < 1 +
1

(𝑅(𝑋))2
, 

(2) 𝐶𝑍(𝑋) < 1 +
1

(𝑅(𝑋))2
, 

(3) 𝐶𝑁𝐽(𝑋) < 1 +
1

(𝑅(𝑋))2
, 

(4) 𝐶𝑃(𝑋) < 1 +
1

(𝑅(𝑋))2
. 

Then 𝑇 has a fixed point. 
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