

STABILITY OF G-FRAMES, APPROXIMATE DUALS AND RESOLUTIONS OF THE IDENTITY IN HILBERT C^* -MODULES

M. Mirzaee Azandaryani¹, M. Rostami²

In this paper, we consider the stability of g-frames and some concepts related to g-frames on Hilbert C^ -modules, such as approximate duals and (a, m) -approximate duals, under different kinds of perturbations. We also obtain some results for the perturbations of fusion frames and resolutions of the identity in Hilbert C^* -modules. Moreover, some new resolutions of the identity are constructed using morphisms of Hilbert C^* -modules.*

Keywords: g-Frame, approximate dual, Hilbert C^* -module.

MSC2020: Primary 42C15, 46L08 Secondary 46H25, 47A05.

1. Introduction and preliminaries

A Hilbert C^* -module is a generalization of a Hilbert space by allowing the inner product to take values in a C^* -algebra rather than in the field of complex numbers. Frank and Larson in [10] presented a general approach to the frame theory in Hilbert C^* -modules. Also fusion frames and g-frames in Hilbert C^* -modules were introduced in [13]. Different kinds of perturbations for frames, g-frames and fusion frames in Hilbert spaces have been introduced (see [4, 5, 7, 6, 25, 24, 16, 14]). After generalizing the frame theory to Hilbert C^* -modules, some authors studied perturbations of frames and g-frames in Hilbert C^* -modules (see [11, 23, 19]). In this paper, we get some new results in perturbations of frames, g-frames and fusion frames in Hilbert C^* -modules.

Suppose that \mathfrak{A} is a unital C^* -algebra and \mathcal{X} is a left \mathfrak{A} -module such that the linear structures of \mathfrak{A} and \mathcal{X} are compatible. \mathcal{X} is a pre-Hilbert \mathfrak{A} -module if \mathcal{X} is equipped with an \mathfrak{A} -valued inner product $\langle \cdot, \cdot \rangle: \mathcal{X} \times \mathcal{X} \longrightarrow \mathfrak{A}$, that is sesquilinear, positive definite and respects the module action. In other words

- (i) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$, for each $\alpha, \beta \in \mathbb{C}$ and $x, y, z \in \mathcal{X}$;
- (ii) $\langle ax, y \rangle = a \langle x, y \rangle$, for each $a \in \mathfrak{A}$ and $x, y \in \mathcal{X}$;
- (iii) $\langle x, y \rangle = \langle y, x \rangle^*$, for each $x, y \in \mathcal{X}$;
- (iv) $\langle x, x \rangle \geq 0$, for each $x \in \mathcal{X}$ and if $\langle x, x \rangle = 0$, then $x = 0$.

For each $x \in \mathcal{X}$, we define $\|x\| = \|\langle x, x \rangle\|^{\frac{1}{2}}$. If \mathcal{X} is complete with the norm $\|\cdot\|$, it is called a *Hilbert \mathfrak{A} -module* or a *Hilbert C^* -module* over \mathfrak{A} .

Some typical examples of Hilbert C^* -modules are as follows.

- Every Hilbert space is a left Hilbert \mathbb{C} -module.
- Every C^* -algebra \mathfrak{A} is a Hilbert \mathfrak{A} -module with the inner product $\langle a, b \rangle = ab^*$ for $a, b \in \mathfrak{A}$.

¹Department of Mathematics, University of Qom, Qom, Iran, e-mail: morteza_ma62@yahoo.com; m.mirzaee@qom.ac.ir

²Faculty of Mathematical and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, 15914 Tehran, Iran, e-mail: mross@aut.ac.ir

- For a Hilbert space \mathcal{H} , the space $\mathcal{B}(\mathcal{H})$ of all bounded linear operators on \mathcal{H} is a Hilbert $\mathcal{B}(\mathcal{H})$ -module via $\langle S, T \rangle = ST^*$.

For each a in a C^* -algebra \mathfrak{A} , we have $|a| = (a^*a)^{\frac{1}{2}}$ and we define $|x| = \langle x, x \rangle^{\frac{1}{2}}$, for each $x \in \mathcal{X}$. The *center* of \mathfrak{A} is denoted by $\mathcal{Z}(\mathfrak{A})$ and is defined by

$$\mathcal{Z}(\mathfrak{A}) = \{a \in \mathfrak{A} : ab = ba, \forall b \in \mathfrak{A}\}.$$

We note that $\mathcal{Z}(\mathfrak{A})$ is a commutative C^* -subalgebra of \mathfrak{A} . Let \mathcal{X} and \mathcal{Y} be Hilbert \mathfrak{A} -modules. The operator $T: \mathcal{X} \rightarrow \mathcal{Y}$ is called *adjointable* if there exists an operator $T^*: \mathcal{Y} \rightarrow \mathcal{X}$ such that $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$, for each $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. Every adjointable operator T is automatically bounded and \mathfrak{A} -linear (that is, $T(ax) = aT(x)$ for each $x \in \mathcal{X}$ and $a \in \mathfrak{A}$). We denote the set of all adjointable operators from \mathcal{X} into \mathcal{Y} by $\mathcal{L}(\mathcal{X}, \mathcal{Y})$. Note that $\mathcal{L}(\mathcal{X}, \mathcal{X})$ is a C^* -algebra and we denote it by $\mathcal{L}(\mathcal{X})$, for more details see [17].

In this paper, we focus on finitely and countably generated Hilbert C^* -modules over unital C^* -algebras. A Hilbert \mathfrak{A} -module \mathcal{X} is *finitely generated* if there exists a finite set $\{x_1, \dots, x_n\} \subseteq \mathcal{X}$ such that every element $x \in \mathcal{X}$ can be expressed as an \mathfrak{A} -linear combination $x = \sum_{i=1}^n a_i x_i, a_i \in \mathfrak{A}$. A Hilbert \mathfrak{A} -module \mathcal{X} is *countably generated* if there exists a countable set $\{x_i\}_{i \in \mathbb{I}} \subseteq \mathcal{X}$ such that \mathcal{X} equals the norm-closure of \mathfrak{A} -linear hull of $\{x_i\}_{i \in \mathbb{I}}$. Let \mathcal{X} be a Hilbert \mathfrak{A} -module. A family $\{f_i\}_{i \in \mathbb{I}} \subseteq \mathcal{X}$ is a *frame* for \mathcal{X} , if there exist real constants $0 < A \leq B < \infty$, such that for each $x \in \mathcal{X}$,

$$A\langle x, x \rangle \leq \sum_{i \in \mathbb{I}} \langle x, f_i \rangle \langle f_i, x \rangle \leq B\langle x, x \rangle. \quad (1)$$

The numbers A and B are called the lower and upper bound of the frame, respectively. In this case, we call it an (A, B) frame. If only the second inequality is required, we call it a *Bessel sequence*. If the sum in (1) converges in norm, the frame is called *standard*.

Let $\mathcal{F} = \{f_i\}_{i \in \mathbb{I}}$ and $\mathcal{G} = \{g_i\}_{i \in \mathbb{I}}$ be standard Bessel sequences in \mathcal{X} . Then we say that \mathcal{G} (resp. \mathcal{F}) is an *alternate dual* or a *dual* of \mathcal{F} (resp. \mathcal{G}), if $x = \sum_{i \in \mathbb{I}} \langle x, f_i \rangle g_i$ or equivalently $x = \sum_{i \in \mathbb{I}} \langle x, g_i \rangle f_i$, for each $x \in \mathcal{X}$.

For more results about frames in Hilbert C^* -modules, see [10, 2].

Let $\{\mathcal{X}_i\}_{i \in \mathbb{I}}$ be a sequence of Hilbert \mathfrak{A} -modules. A sequence $\Lambda = \{\Lambda_i \in \mathcal{L}(\mathcal{X}, \mathcal{X}_i) : i \in \mathbb{I}\}$ is called a *g-frame* for \mathcal{X} with respect to $\{\mathcal{X}_i : i \in \mathbb{I}\}$ if there exist real constants $A_\Lambda, B_\Lambda > 0$ such that for each $x \in \mathcal{X}$,

$$A_\Lambda \langle x, x \rangle \leq \sum_{i \in \mathbb{I}} \langle \Lambda_i x, \Lambda_i x \rangle \leq B_\Lambda \langle x, x \rangle.$$

A_Λ and B_Λ are g-frame bounds of Λ . In this case, we call it an (A_Λ, B_Λ) g-frame. The g-frame is *standard* if for each $x \in \mathcal{X}$, the sum converges in norm. If only the second-hand inequality is required, Λ is called a *g-Bessel sequence*. If $A_\Lambda = B_\Lambda$, the g-frame is called *tight* and if $A_\Lambda = B_\Lambda = 1$, the g-frame is called *Parseval*.

If $\{\mathcal{X}_i : i \in \mathbb{I}\}$ is a sequence of Hilbert \mathfrak{A} -modules, then

$$\bigoplus_{i \in \mathbb{I}} \mathcal{X}_i = \left\{ x = \{x_i\}_{i \in \mathbb{I}} : x_i \in \mathcal{X}_i \text{ and } \sum_{i \in \mathbb{I}} \langle x_i, x_i \rangle \text{ is norm convergent in } \mathfrak{A} \right\},$$

is a Hilbert \mathfrak{A} -module with pointwise operations and \mathfrak{A} -valued inner product

$$\langle x, y \rangle = \sum_{i \in \mathbb{I}} \langle x_i, y_i \rangle,$$

where $x = \{x_i\}_{i \in \mathbb{I}}$ and $y = \{y_i\}_{i \in \mathbb{I}}$.

For a standard g-Bessel sequence Λ , the operator $T_\Lambda: \bigoplus_{i \in \mathbb{I}} \mathcal{X}_i \rightarrow \mathcal{X}$ which is defined by $T_\Lambda(\{g_i\}_{i \in \mathbb{I}}) = \sum_{i \in \mathbb{I}} \Lambda_i^* g_i$ is called the *synthesis operator* of Λ . T_Λ is adjointable and $T_\Lambda^*(x) = \{\Lambda_i x\}_{i \in \mathbb{I}}$. The operator $S_\Lambda: \mathcal{X} \rightarrow \mathcal{X}$ which is defined by $S_\Lambda x = T_\Lambda T_\Lambda^*(x) = \sum_{i \in \mathbb{I}} \Lambda_i^* \Lambda_i(x)$, is

called the *operator* of Λ . If Λ is a standard (A_Λ, B_Λ) g-frame, then $A_\Lambda \cdot \text{Id}_\mathcal{X} \leq S_\Lambda \leq B_\Lambda \cdot \text{Id}_\mathcal{X}$. Recall that if $\Lambda = \{\Lambda_i\}_{i \in \mathbb{I}}$ and $\Gamma = \{\Gamma_i\}_{i \in \mathbb{I}}$ are standard g-Bessel sequences such that $\sum_{i \in \mathbb{I}} \Gamma_i^* \Lambda_i x = x$ or equivalently $\sum_{i \in \mathbb{I}} \Lambda_i^* \Gamma_i x = x$, for each $x \in \mathcal{X}$, then Γ (resp. Λ) is called a *g-dual* of Λ (resp. Γ).

For more results about g-frames in Hilbert C^* -modules, see [13, 26].

In this paper, all C^* -algebras are unital and all Hilbert C^* -modules are finitely or countably generated.

2. (a, m) -approximate duals, perturbations and adjointable operators

In this section, we consider the stability of (a, m) -approximate duals under perturbations and the construction of new (a, m) -approximate duals using adjointable operators.

Recall that $\ell^\infty(\mathbb{I}, \mathfrak{A})$ is the set

$$\left\{ \{a_i\}_{i \in \mathbb{I}} \subseteq \mathfrak{A} : \|\{a_i\}_{i \in \mathbb{I}}\|_\infty = \sup\{\|a_i\| : i \in \mathbb{I}\} < \infty \right\}.$$

throughout this paper, m is always a sequence $\{m_i\}_{i \in \mathbb{I}} \in \ell^\infty(\mathbb{I}, \mathfrak{A})$ with $m_i \in \mathcal{Z}(\mathfrak{A})$, for each $i \in \mathbb{I}$. Each sequence with these properties is called a *symbol*. We recall the following two definitions from [15].

Definition 2.1. Let \mathcal{X} and \mathcal{Y} be Hilbert \mathfrak{A} -modules, and let $\mathcal{F} = \{f_i\}_{i \in \mathbb{I}} \subseteq \mathcal{X}$ and $\mathcal{G} = \{g_i\}_{i \in \mathbb{I}} \subseteq \mathcal{Y}$ be standard Bessel sequences. It was proved in [15] that the operator $M_{m, \mathcal{G}, \mathcal{F}}: \mathcal{X} \rightarrow \mathcal{Y}$ which is defined by $M_{m, \mathcal{G}, \mathcal{F}}(x) = \sum_{i \in \mathbb{I}} m_i \langle x, f_i \rangle g_i$, is adjointable. $M_{m, \mathcal{G}, \mathcal{F}}$ is called the Bessel multiplier for the Bessel sequences \mathcal{F} and \mathcal{G} with symbol m . If $m_i = \mathbf{1}_{\mathfrak{A}}$, for each $i \in \mathbb{I}$, then we denote $M_{m, \mathcal{G}, \mathcal{F}}$ by $M_{\mathcal{G}, \mathcal{F}}$.

In this paper, $\mathcal{F} = \{f_i\}_{i \in \mathbb{I}}$ and $\mathcal{G} = \{g_i\}_{i \in \mathbb{I}}$ are standard Bessel sequences in a Hilbert C^* -module \mathcal{X} , so $M_{m, \mathcal{G}, \mathcal{F}} \in \mathcal{L}(\mathcal{X})$.

Definition 2.2. Let $\Lambda = \{\Lambda_i\}_{i \in \mathbb{I}}$ and $\Gamma = \{\Gamma_i\}_{i \in \mathbb{I}}$ be standard g-Bessel sequences for \mathcal{X} with respect to $\{\mathcal{X}_i\}_{i \in \mathbb{I}}$. Then it was shown in [15] that the operator $M_{m, \Gamma, \Lambda}: \mathcal{X} \rightarrow \mathcal{X}$ which is defined by $M_{m, \Gamma, \Lambda}(x) = \sum_{i \in \mathbb{I}} m_i \Gamma_i^* \Lambda_i(x)$ is adjointable. $M_{m, \Gamma, \Lambda}$ is called the g-Bessel multiplier for the g-Bessel sequences Λ and Γ with symbol m . If $m_i = \mathbf{1}_{\mathfrak{A}}$, for each $i \in \mathbb{I}$, then $M_{m, \Gamma, \Lambda}$ is denoted by $M_{\Gamma, \Lambda}$.

We recall the definitions of approximate duals and approximate g-duals in Hilbert C^* -modules from [18] (we mention that approximate duals for Hilbert spaces were introduced in [9]).

Definition 2.3. (i) Two standard g-Bessel sequences Λ and Γ are approximately dual g-frames if $\|\text{Id}_\mathcal{X} - M_{\Gamma, \Lambda}\| < 1$. In this case, we say that Γ is an approximate g-dual of Λ .
(ii) Two standard Bessel sequences \mathcal{F} and \mathcal{G} are approximately dual frames if $\|\text{Id}_\mathcal{X} - M_{\mathcal{G}, \mathcal{F}}\| < 1$. In this case, we say that \mathcal{G} is an approximate dual of \mathcal{F} .

Note that if $a \in \mathcal{Z}(\mathfrak{A})$ and $T \in \mathcal{L}(\mathcal{X})$, then the operator $aT: \mathcal{X} \rightarrow \mathcal{X}$ which is defined by $(aT)(x) = aT(x)$ is adjointable with $(aT)^* = a^* T^*$.

Now we state the definition of (a, m) -approximate duals from [20].

Definition 2.4. Let m be a symbol and $a \in \mathcal{Z}(\mathfrak{A})$.

(i) Let Λ and Γ be standard g-Bessel sequences. Then we say that Γ is an (a, m) -approximate g-dual (resp. (a, m) -g-dual) of Λ if $\|\text{Id}_\mathcal{X} - aM_{m, \Gamma, \Lambda}\| < 1$ (resp. $\text{Id}_\mathcal{X} = aM_{m, \Gamma, \Lambda}$).

(ii) Let \mathcal{F} and \mathcal{G} be standard Bessel sequences. Then we say that \mathcal{G} is an (a, m) -approximate dual (resp. (a, m) -dual) of \mathcal{F} if $\|\text{Id}_{\mathcal{X}} - aM_{m, \mathcal{G}, \mathcal{F}}\| < 1$ (resp. $\text{Id}_{\mathcal{X}} = aM_{m, \mathcal{G}, \mathcal{F}}$).

Note that if $a = \mathbf{1}_{\mathfrak{A}}$, $m_i = \mathbf{1}_{\mathfrak{A}}$, for each $i \in \mathbb{I}$, then (a, m) -approximate duality coincides with the concept of approximate duality stated in Definition 2.3.

If Γ is an (a, m) -approximate g -dual of Λ , then using Newmann series, we get $M_{m, \Gamma, \Lambda}^{-1} = a \sum_{n=0}^{\infty} (\text{Id}_{\mathcal{X}} - aM_{m, \Gamma, \Lambda})^n$, and for each $x \in \mathcal{X}$, we have the following reconstruction formula:

$$x = M_{m, \Gamma, \Lambda} M_{m, \Gamma, \Lambda}^{-1} x = a \sum_{n=0}^{\infty} M_{m, \Gamma, \Lambda} (\text{Id}_{\mathcal{X}} - aM_{m, \Gamma, \Lambda})^n x.$$

The following result is a generalization of Proposition 3.7 in [18] to (a, m) -approximate duals.

Proposition 2.1. *Let Λ be a standard g -Bessel sequence and $\Psi = \{\psi_i\}_{i \in \mathbb{I}}$ be an (a, m) -approximate g -dual (resp. an (a, m) - g -dual) of Λ with upper bound C . If Γ is a sequence such that $\Gamma - \Lambda := \{\Gamma_i - \Lambda_i\}_{i \in \mathbb{I}}$ is a standard g -Bessel sequence with upper bound K and $\|a\|^2 \|m\|_{\infty}^2 CK < (1 - \|\text{Id}_{\mathcal{X}} - aM_{m, \Psi, \Lambda}\|)^2$ (resp. $\|a\|^2 \|m\|_{\infty}^2 CK < 1$), then Ψ is an (a, m) -approximate g -dual of Γ and Γ is a standard g -frame.*

Proof. Similar to the proof of Proposition 3.7 in [18], we get Γ is a standard g -Bessel sequence. Now using the Cauchy-Schwarz inequality in Hilbert C^* -modules, for each $x \in \mathcal{X}$, we have

$$\begin{aligned} \|(\text{Id}_{\mathcal{X}} - aM_{m, \Psi, \Gamma})x\| &\leq \|(\text{Id}_{\mathcal{X}} - aM_{m, \Psi, \Lambda})x\| + \|a(M_{m, \Psi, \Lambda} - M_{m, \Psi, \Gamma})x\| \\ &\leq \|(\text{Id}_{\mathcal{X}} - aM_{m, \Psi, \Lambda})x\| \\ &+ \|a\| \|m\|_{\infty} \sup_{\|y\|=1} \left\{ \left\| \sum_{i \in \mathbb{I}} |(\Lambda_i - \Gamma_i)x|^2 \right\|^{\frac{1}{2}} \left\| \sum_{i \in \mathbb{I}} |\psi_i y|^2 \right\|^{\frac{1}{2}} \right\} \\ &\leq \left(\|\text{Id}_{\mathcal{X}} - aM_{m, \Psi, \Lambda}\| + \|a\| \|m\|_{\infty} \sqrt{CK} \right) \|x\|. \end{aligned}$$

Hence

$$\|\text{Id}_{\mathcal{X}} - aM_{m, \Psi, \Gamma}\| \leq \|\text{Id}_{\mathcal{X}} - aM_{m, \Psi, \Lambda}\| + \|a\| \|m\|_{\infty} \sqrt{CK} < 1.$$

Also, if Ψ is an (a, m) - g -dual of Λ , then $aM_{m, \Psi, \Lambda} = \text{Id}_{\mathcal{X}}$ and we have

$$\|\text{Id}_{\mathcal{X}} - aM_{m, \Psi, \Gamma}\| \leq \|a\| \|m\|_{\infty} \sqrt{CK} < 1.$$

Now Theorem 3.5 in [20] implies that Γ is a standard g -frame. \square

Proposition 2.2. *Suppose that $\Lambda = \{\Lambda_i \in \mathcal{B}(\mathcal{H}) : i \in \mathbb{I}\}$ and $\Gamma = \{\Gamma_i \in \mathcal{B}(\mathcal{H}) : i \in \mathbb{I}\}$ are two g -Bessel sequences such that Λ_i 's and Γ_i 's are normal operators. Then*

(i) $\Lambda - \Gamma := \{\Lambda_i - \Gamma_i\}_{i \in \mathbb{I}}$ and $\Lambda^* - \Gamma^* := \{\Lambda_i^* - \Gamma_i^*\}_{i \in \mathbb{I}}$ are g -Bessel sequences with the same upper bound. If $B_{\Lambda - \Gamma} = \varepsilon = B_{\Lambda^* - \Gamma^*}$, then

$$\sum_{j \in \mathbb{I}} \|(T_{\Lambda}^* \Lambda_j^* - T_{\Gamma}^* \Gamma_j^*)f\|^2 \leq (\sqrt{B_{\Lambda}} + \sqrt{B_{\Gamma}})^2 \varepsilon \|f\|^2,$$

for each $f \in \mathcal{H}$.

(ii) Let Λ and Γ be Parseval g -frames. Suppose that $a \in \mathbb{C}$, $m \in \ell^{\infty}(\mathbb{I})$, $B_{\Lambda - \Gamma} = \varepsilon = B_{\Lambda^* - \Gamma^*}$ and $\Phi = \{\phi_i \in \mathcal{B}(\mathcal{H}) : i \in \mathbb{I}\}$ is an (a, m) - g -dual for Λ^* . If $4\varepsilon |a|^2 \|m\|_{\infty}^2 B_{\Phi} < 1$, then $\{T_{\Lambda}^* \phi_i\}_{i \in \mathbb{I}}$ is an (a, m) -approximate g -dual of $\{T_{\Gamma}^* \Gamma_i^*\}_{i \in \mathbb{I}}$.

Proof. (i) Since Λ_i 's and Γ_i 's are normal operators, $\Lambda^* = \{\Lambda_i^*\}_{i \in \mathbb{I}}$ and $\Gamma^* = \{\Gamma_i^*\}_{i \in \mathbb{I}}$ are two g-Bessel sequences with upper bounds B_Λ and B_Γ , respectively. Also it is easy to see that

$$\sum_{i \in \mathbb{I}} \|(\Lambda_i^* - \Gamma_i^*)f\|^2 \leq (\sqrt{B_\Lambda} + \sqrt{B_\Gamma})^2 \|f\|^2.$$

Hence $\Lambda^* - \Gamma^*$ is a g-Bessel sequence with upper bound $(\sqrt{B_\Lambda} + \sqrt{B_\Gamma})^2$. The result for $\Lambda - \Gamma$ is obtained similarly. Now for each $f \in \mathcal{H}$, we have

$$\begin{aligned} & \sum_{j \in \mathbb{I}} \|(T_\Lambda^* \Lambda_j^* - T_\Gamma^* \Gamma_j^*)f\|^2 = \sum_{j \in \mathbb{I}} \sum_{i \in \mathbb{I}} \|\Lambda_i \Lambda_j^* f - \Gamma_i \Gamma_j^* f\|^2 \\ & \leq \sum_{j \in \mathbb{I}} \sum_{i \in \mathbb{I}} \|\Lambda_i (\Lambda_j^* - \Gamma_j^*)f\|^2 + \sum_{j \in \mathbb{I}} \sum_{i \in \mathbb{I}} \|(\Lambda_i - \Gamma_i) \Gamma_j^* f\|^2 \\ & + 2 \left(\sum_{j \in \mathbb{I}} \sum_{i \in \mathbb{I}} \|\Lambda_i (\Lambda_j^* - \Gamma_j^*)f\|^2 \right)^{\frac{1}{2}} \left(\sum_{j \in \mathbb{I}} \sum_{i \in \mathbb{I}} \|(\Lambda_i - \Gamma_i) \Gamma_j^* f\|^2 \right)^{\frac{1}{2}} \\ & \leq B_\Lambda B_{\Lambda^* - \Gamma^*} \|f\|^2 + B_{\Lambda - \Gamma} B_\Gamma \|f\|^2 + 2\sqrt{B_\Lambda B_\Gamma} B_{\Lambda - \Gamma} \|f\|^2 \\ & = (\sqrt{B_\Lambda} + \sqrt{B_\Gamma})^2 \varepsilon \|f\|^2. \end{aligned}$$

(ii) Because Λ and Γ are Parseval, $B_\Lambda = 1 = B_\Gamma$, $T_\Lambda T_\Lambda^* = \text{Id}_{\mathcal{H}}$ and B_Φ is an upper bound for $\{T_\Lambda^* \phi_i\}_{i \in \mathbb{I}}$. Now for each $f \in \mathcal{H}$, we get

$$\sum_{i \in \mathbb{I}} a m_i \phi_i^* T_\Lambda T_\Lambda^* \Lambda_i^* f = \sum_{i \in \mathbb{I}} a m_i \phi_i^* \Lambda_i^* f = f.$$

Thus $\{T_\Lambda^* \phi_i\}_{i \in \mathbb{I}}$ is an (a, m) -g-dual of $\{T_\Lambda^* \Lambda_i^*\}_{i \in \mathbb{I}}$. Also

$$|a|^2 \|m\|_\infty^2 (\sqrt{B_\Lambda} + \sqrt{B_\Gamma})^2 \varepsilon B_\Phi = 4\varepsilon |a|^2 \|m\|_\infty^2 B_\Phi < 1.$$

Now the result follows from part (i) and Proposition 2.1. \square

Here, we introduce (a, m, T) -duals in Hilbert C^* -modules.

Definition 2.5. Let $\{f_i\}_{i \in \mathbb{I}}$ be a standard Bessel sequence for \mathcal{X} and let T be an invertible operator in $\mathcal{L}(\mathcal{X})$. A standard Bessel sequence $\{g_i\}_{i \in \mathbb{I}}$ is called an (a, m, T) -dual of $\{f_i\}_{i \in \mathbb{I}}$ if

$$f = \sum_{i \in \mathbb{I}} a m_i \langle Tf, f_i \rangle g_i,$$

for each $f \in \mathcal{X}$.

Definition 2.6. Let T be an invertible operator in $\mathcal{L}(\mathcal{X})$ and let $\Lambda = \{\Lambda_i\}_{i \in \mathbb{I}}$, $\Gamma = \{\Gamma_i\}_{i \in \mathbb{I}}$ be standard g-Bessel sequences. We say that Γ is an (a, m, T) -g-dual of Λ if $\{\Gamma_i\}_{i \in \mathbb{I}}$ and $\{am_i \Lambda_i T\}_{i \in \mathbb{I}}$ are g-duals, equivalently

$$\sum_{i \in \mathbb{I}} a m_i \Gamma_i^* \Lambda_i T f = f = \sum_{i \in \mathbb{I}} a^* m_i^* T^* \Lambda_i^* \Gamma_i f,$$

for each $f \in \mathcal{X}$.

Remark 2.1. Let $\{f_i\}_{i \in \mathbb{I}}$, $\{g_i\}_{i \in \mathbb{I}}$ be standard Bessel sequences for \mathcal{X} and let T be an invertible operator on \mathcal{X} . Assume that Λ_i and Γ_i are functionals defined by $\Lambda_i(x) = \langle x, f_i \rangle$ and $\Gamma_i(x) = \langle x, g_i \rangle$, respectively. Since

$$\sum_{i \in \mathbb{I}} a m_i \Gamma_i^* \Lambda_i T x = \sum_{i \in \mathbb{I}} a m_i \langle T x, f_i \rangle g_i,$$

$\{g_i\}_{i \in \mathbb{I}}$ is an (a, m, T) -dual of $\{f_i\}_{i \in \mathbb{I}}$ if and only if Γ is an (a, m, T) -g-dual of Λ .

The next theorem and corollary are generalizations of Proposition 4.1 in [8] to (a, m) -approximate duals in Hilbert C^* -modules.

Theorem 2.1. *If Γ is an (a, m) -approximate g-dual of Λ , then Γ is an $(a, m, (aM_{m,\Gamma,\Lambda})^{-1})$ -g-dual of Λ .*

Proof. Since $\|\text{Id}_{\mathcal{X}} - aM_{m,\Gamma,\Lambda}\| < 1$, by Neumann algorithm, $aM_{m,\Gamma,\Lambda}$ is invertible. Now for each $f \in \mathcal{X}$, we have

$$f = aM_{m,\Gamma,\Lambda}(aM_{m,\Gamma,\Lambda})^{-1}f = \sum_{i \in \mathbb{I}} am_i \Gamma_i^* \Lambda_i (aM_{m,\Gamma,\Lambda})^{-1}f.$$

This means that $\{\Gamma_i\}_{i \in \mathbb{I}}$ and $\{am_i \Lambda_i (aM_{m,\Gamma,\Lambda})^{-1}\}_{i \in \mathbb{I}}$ are g-duals, equivalently, Γ is an $(a, m, (aM_{m,\Gamma,\Lambda})^{-1})$ -g-dual of Λ . \square

Corollary 2.1. *If \mathcal{G} is an (a, m) -approximate dual of \mathcal{F} , then \mathcal{G} is an $(a, m, (aM_{m,\mathcal{G},\mathcal{F}})^{-1})$ -dual of \mathcal{F} .*

In [22], using special bounded operators on Hilbert spaces, new approximate duals are constructed. Here, we obtain analogous results for (a, m) -approximate duals in Hilbert C^* -modules. First, we recall the following definition from [17].

Definition 2.7. *An element T in $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ is called a partial isometry if $\mathcal{Y}_0 = \text{ran}(T)$ is complemented in \mathcal{F} (i.e., $\mathcal{Y} = \mathcal{Y}_0 \oplus \mathcal{Y}_0^\perp$) and there exists a complemented submodule \mathcal{X}_0 of \mathcal{X} such that T is isometric from \mathcal{X}_0 onto \mathcal{Y}_0 and $T(\mathcal{X}_0^\perp) = \{0\}$.*

Proposition 2.3. (i) *Assume that Γ and Λ are two standard g-Bessel sequences such that*

Γ_i is a partial isometric operator, for each $i \in \mathbb{I}$. Then Γ is an (a, m) -approximate g-dual (resp. (a, m) -g-dual) of Λ if and only if $\{\Gamma_i^ \Gamma_i\}_{i \in \mathbb{I}}$ is an (a, m) -approximate g-dual (resp. (a, m) -g-dual) of $\{\Gamma_i^* \Lambda_i\}_{i \in \mathbb{I}}$.*

(ii) *Let T be an isometric operator on \mathcal{X} . If Γ is an (a, m) -approximate g-dual (resp. (a, m) -g-dual) of Λ , then $\{\Gamma_i T\}_{i \in \mathbb{I}}$ is an (a, m) -approximate g-dual (resp. (a, m) -g-dual) of $\{\Lambda_i T\}_{i \in \mathbb{I}}$.*

(iii) *Let T be a co-isometric operator on \mathcal{X} . If Γ is an (a, m) -approximate g-dual (resp. an (a, m) -g-dual) of Λ , then $\{\Gamma_i T^*\}_{i \in \mathbb{I}}$ is an (a, m) -approximate g-dual (resp. an (a, m) -g-dual) of $\{\Lambda_i T^*\}_{i \in \mathbb{I}}$.*

Proof. (i) It is easy to see that $\Psi = \{\Gamma_i^* \Gamma_i\}_{i \in \mathbb{I}}$ and $\Phi = \{\Gamma_i^* \Lambda_i\}_{i \in \mathbb{I}}$ are standard g-Bessel sequences. Since Γ_i 's are partial isometry, using the explanation stated after [17, Proposition 3.8], we have $\Gamma_i^* \Gamma_i \Gamma_i^* = \Gamma_i^*$, so

$$aM_{m,\Psi,\Phi}f = a \sum_{i \in \mathbb{I}} m_i \Gamma_i^* \Gamma_i \Gamma_i^* \Lambda_i f = a \sum_{i \in \mathbb{I}} m_i \Gamma_i^* \Lambda_i f = aM_{m,\Gamma,\Lambda}f.$$

Hence Γ is an (a, m) -approximate g-dual (resp. (a, m) -g-dual) of Λ if and only if $\{\Gamma_i^* \Gamma_i\}_{i \in \mathbb{I}}$ is an (a, m) -approximate g-dual (resp. (a, m) -g-dual) of $\{\Gamma_i^* \Lambda_i\}_{i \in \mathbb{I}}$.

(ii) It is easy to see that $\Phi = \{\Lambda_i T\}_{i \in \mathbb{I}}$ and $\Psi = \{\Gamma_i T\}_{i \in \mathbb{I}}$ are standard g-Bessel sequences with upper bounds $B_\Lambda \|T\|^2$ and $B_T \|T\|^2$, respectively. Then for each $f \in \mathcal{X}$, we have

$$\begin{aligned} \|aM_{m,\Psi,\Phi}f - f\| &= \left\| T^* \left[(a \sum_{i \in \mathbb{I}} m_i \Gamma_i^* \Lambda_i T) f - Tf \right] \right\| \\ &= \|T^* (aM_{m,\Gamma,\Lambda} - \text{Id}_{\mathcal{X}}) Tf\| \leq \|aM_{m,\Gamma,\Lambda} - \text{Id}_{\mathcal{X}}\| \|f\|. \end{aligned}$$

Since $\|aM_{m,\Gamma,\Lambda} - \text{Id}_{\mathcal{X}}\| < 1$ (resp. $aM_{m,\Gamma,\Lambda} = \text{Id}_{\mathcal{X}}$), we get $\|aM_{m,\Psi,\Phi} - \text{Id}_{\mathcal{X}}\| < 1$ (resp. $aM_{m,\Psi,\Phi} = \text{Id}_{\mathcal{X}}$) and the result follows.

(iii) The result follows from part (ii) by considering T^* instead of T . \square

Corollary 2.2. (i) Let T be an isometric operator on \mathcal{X} . If $\{g_i\}_{i \in \mathbb{I}}$ is an (a, m) -approximate dual (resp. an (a, m) -dual) of $\{f_i\}_{i \in \mathbb{I}}$, then $\{T^*g_i\}_{i \in \mathbb{I}}$ is an (a, m) -approximate dual (resp. (a, m) -dual) of $\{T^*f_i\}_{i \in \mathbb{I}}$.
(ii) Let T be a co-isometric operator on \mathcal{X} . If $\{g_i\}_{i \in \mathbb{I}}$ is an (a, m) -approximate dual (resp. (a, m) -dual) of $\{f_i\}_{i \in \mathbb{I}}$, then $\{Tg_i\}_{i \in \mathbb{I}}$ is an (a, m) -approximate dual (resp. (a, m) -dual) of $\{Tf_i\}_{i \in \mathbb{I}}$.

Note that if Λ is an (A, B) standard g-frame, then $\widetilde{\Lambda} = \{\widetilde{\Lambda}_i\}_{i \in \mathbb{I}}$ is an $(\frac{1}{B}, \frac{1}{A})$ standard g-frame, where $\widetilde{\Lambda}_i = \Lambda_i S_{\Lambda}^{-1}$ and we have $\sum_{i \in \mathbb{I}} \Lambda_i^* \widetilde{\Lambda}_i x = x = \sum_{i \in \mathbb{I}} \widetilde{\Lambda}_i^* \Lambda_i x$, for each $x \in \mathcal{X}$. $\widetilde{\Lambda}$ is called the *canonical g-dual* of Λ .

The following proposition is a generalization of [24, Theorem 4.1] to Hilbert C^* -modules which is also stated in Theorem 3.4 in [23] and we recall it since it is used in the sequel.

Proposition 2.4. Let Λ and Γ be (A_1, B_1) and (A_2, B_2) standard g-frames, respectively. If $\Lambda - \Gamma = \{\Lambda_i - \Gamma_i\}_{i \in \mathbb{I}}$ is a standard g-Bessel sequence with upper bound C , then $\widetilde{\Lambda} - \widetilde{\Gamma} = \{\widetilde{\Lambda}_i - \widetilde{\Gamma}_i\}_{i \in \mathbb{I}}$ is a standard g-Bessel sequence with upper bound $\left(\frac{\sqrt{B_1 C}}{A_1 A_2} (\sqrt{B_1} + \sqrt{B_2}) + \frac{\sqrt{C}}{A_2}\right)^2$.

If $\mathcal{F} = \{f_i\}_{i \in \mathbb{I}}$ is a standard frame for \mathcal{X} , then the operator $S_{\mathcal{F}}: \mathcal{X} \rightarrow \mathcal{X}$ defined by $S_{\mathcal{F}}(x) = \sum_{i \in \mathbb{I}} \langle x, f_i \rangle f_i$ is an invertible operator. It is easy to see that if \mathcal{F} is an (A, B) standard frame, then $\widetilde{\mathcal{F}} = \{S_{\mathcal{F}}^{-1} f_i\}_{i \in \mathbb{I}}$ is an $(\frac{1}{B}, \frac{1}{A})$ standard frame with $x = \sum_{i \in \mathbb{I}} \langle x, S_{\mathcal{F}}^{-1} f_i \rangle f_i = \sum_{i \in \mathbb{I}} \langle x, f_i \rangle S_{\mathcal{F}}^{-1} f_i$, for each $x \in \mathcal{X}$. $\widetilde{\mathcal{F}}$ is called the *canonical dual* of \mathcal{F} .

Corollary 2.3. Let $\mathcal{F} = \{f_i\}_{i \in \mathbb{I}}$ and $\mathcal{G} = \{g_i\}_{i \in \mathbb{I}}$ be (A_1, B_1) and (A_2, B_2) standard frames for E , respectively. If $\mathcal{F} - \mathcal{G} = \{f_i - g_i\}_{i \in \mathbb{I}}$ is a standard Bessel sequence with upper bound C , then $\widetilde{\mathcal{F}} - \widetilde{\mathcal{G}} = \{\widetilde{f}_i - \widetilde{g}_i\}_{i \in \mathbb{I}}$ is a standard Bessel sequence with upper bound $\left(\frac{\sqrt{B_1 C}}{A_1 A_2} (\sqrt{B_1} + \sqrt{B_2}) + \frac{\sqrt{C}}{A_2}\right)^2$.

Proof. Let $\Lambda = \{\Lambda_i \in \mathcal{L}(\mathcal{X}, \mathfrak{A}) : i \in \mathbb{I}\}$ and $\Gamma = \{\Gamma_i \in \mathcal{L}(\mathcal{X}, \mathfrak{A}) : i \in \mathbb{I}\}$, where $\Lambda_i(x) = \langle x, f_i \rangle$ and $\Gamma_i(x) = \langle x, g_i \rangle$. Since \mathcal{F} and \mathcal{G} are (A_1, B_1) and (A_2, B_2) standard frames, it is easy to see that Λ and Γ are (A_1, B_1) and (A_2, B_2) standard g-frames, respectively. Also, it is easy to obtain that $\mathcal{F} - \mathcal{G}$ and $\widetilde{\mathcal{F}} - \widetilde{\mathcal{G}}$ are standard Bessel sequences if and only if $\Lambda - \Gamma$ and $\widetilde{\Lambda} - \widetilde{\Gamma}$ are standard g-Bessel sequences with the same upper bounds, respectively. Now the result follows from Proposition 2.4. \square

We recall the following definition from [19].

Definition 2.8. Let $\Lambda = \{\Lambda_i \in \mathcal{L}(\mathcal{X}, \mathfrak{A}) : i \in \mathbb{I}\}$, $a_1, a_2 \in \mathfrak{A}$ with $\|a_1\|, \|a_2\| < 1$ and $\{a_i\}_{i \in \mathbb{I}} \in \ell^2(\mathbb{I}, \mathfrak{A})$. We say that $\Gamma = \{\Gamma_i \in \mathcal{L}(\mathcal{X}, \mathfrak{X}_i) : i \in \mathbb{I}\}$ is an $(a_1, a_2, \{a_i\}_{i \in \mathbb{I}})$ -perturbation of Λ if

$$\left|(\Lambda_i - \Gamma_i)x\right|^2 \leq \left|a_1|\Lambda_i x| + a_2|\Gamma_i x| + |x|a_i\right|^2, \quad (2)$$

for each $x \in \mathcal{X}$ and $i \in \mathbb{I}$.

Proposition 2.5. Let A_1 and B_1 be positive real numbers and let $\|\{a_i\}_{i \in \mathbb{I}}\|_2 < (1 - \|a_1\|)\sqrt{A_1}$, $A_2 = \left(\frac{(1 - \|a_1\|)\sqrt{A_1} - \|\{a_i\}_{i \in \mathbb{I}}\|_2}{1 + \|a_2\|}\right)^2$, $B_2 = \left(\frac{(1 + \|a_1\|)\sqrt{B_1} + \|\{a_i\}_{i \in \mathbb{I}}\|_2}{1 - \|a_2\|}\right)^2$, $C = (\|a_1\| \sqrt{B_1} + \|a_2\| \sqrt{B_2} + \|\{a_i\}_{i \in \mathbb{I}}\|_2)^2$ and $K = \left(\frac{\sqrt{B_1 C}}{A_1 A_2} (\sqrt{B_1} + \sqrt{B_2}) + \frac{\sqrt{C}}{A_2}\right)^2$.

- (i) Let Λ be an (A_1, B_1) standard g-frame. If Γ is an $(a_1, a_2, \{a_i\}_{i \in \mathbb{I}})$ -perturbation of Λ , then Γ is an (A_2, B_2) standard g-frame and $\tilde{\Lambda} - \tilde{\Gamma}$ is a standard g-Bessel sequence with upper bound K .
- (ii) Let $\mathcal{F} = \{f_i\}_{i \in \mathbb{I}} \subseteq \mathcal{X}$ be an (A_1, B_1) standard frame. If $\mathcal{G} = \{g_i\}_{i \in \mathbb{I}}$ is a sequence in \mathcal{X} such that $|\langle x, f_i - g_i \rangle|^2 \leq |a_1|\langle x, f_i \rangle| + a_2|\langle x, g_i \rangle| + a_i|x|^2$, for each $x \in \mathcal{X}$, then \mathcal{G} is an (A_2, B_2) standard frame and $\tilde{\mathcal{F}} - \tilde{\mathcal{G}}$ is a standard Bessel sequence with upper bound K .

Proof. (i) It follows from the proof of Theorem 4.1 in [19] that Γ is an

$$\left(\left(\frac{(1 - \|a_1\|)\sqrt{A_1} - \|\{a_i\}_{i \in \mathbb{I}}\|_2}{1 + \|a_2\|} \right)^2, \left(\frac{(1 + \|a_1\|)\sqrt{B_1} + \|\{a_i\}_{i \in \mathbb{I}}\|_2}{1 - \|a_2\|} \right)^2 \right)$$

standard g-frame. Also the inequality

$$\begin{aligned} \|\{(\Lambda_i - \Gamma_i)x\}_{i \in \mathbb{F}}\|_2 &\leq \|\{a_1|\Lambda_i x| + a_2|\Gamma_i x| + |x|a_i\}_{i \in \mathbb{F}}\|_2 \\ &\leq \|a_1\|\|\{\Lambda_i x\}_{i \in \mathbb{F}}\|_2 + \|a_2\|\|\{\Gamma_i x\}_{i \in \mathbb{F}}\|_2 + \|x\|\|\{a_i\}_{i \in \mathbb{F}}\|_2, \end{aligned}$$

which is obtained from (2) for each finite subset \mathbb{F} of \mathbb{I} and $x \in \mathcal{X}$ implies that $\Lambda - \Gamma$ is a standard g-Bessel sequence with upper bound $(\|a_1\|\sqrt{B_1} + \|a_2\|\sqrt{B_2} + \|\{a_i\}_{i \in \mathbb{I}}\|_2)^2$. The remainder is obtained from Proposition 2.4.

(ii) Let $\Lambda = \{\Lambda_i \in \mathcal{L}(\mathcal{X}, \mathcal{A}) : i \in \mathbb{I}\}$ and $\Gamma = \{\Gamma_i \in \mathcal{L}(\mathcal{X}, \mathcal{A}) : i \in \mathbb{I}\}$, where $\Lambda_i(x) = \langle x, f_i \rangle$ and $\Gamma_i(x) = \langle x, g_i \rangle$. It is easy to see that Λ is an (A_1, B_1) standard g-frame and Γ is an $(a_1, a_2, \{a_i\}_{i \in \mathbb{I}})$ -perturbation of Λ . Now the result follows from part (i), Corollary 2.3 and using the fact that \mathcal{F} (resp. \mathcal{G}) is a standard frame if and only if Λ (resp. Γ) is a standard g-frame. \square

Let $\Phi_j = \{\Phi_{ij} \in \mathcal{L}(\mathcal{X}_j, \mathcal{X}_{ij}) : i \in \mathbb{I}\}$ be an (A_j, B_j) standard g-frame for \mathcal{X}_j , $j \in \mathbb{J}$, such that $A = \inf\{A_j : j \in \mathbb{J}\} > 0$ and $B = \sup\{B_j : j \in \mathbb{J}\} < \infty$. Then we say that $\{\Phi_j\}_{j \in \mathbb{J}}$ is an (A, B) -bounded family of standard g-frames or shortly (A, B) -BFSGF.

It was proved in [19, Theorem 4.2] that $\{\Phi_j\}_{j \in \mathbb{J}}$ is an (A, B) -BFSGF if and only if $\bigoplus_{j \in \mathbb{J}} \Phi_j = \{\bigoplus_{j \in \mathbb{J}} \Phi_{ij}\}_{i \in \mathbb{I}}$ is an (A, B) standard g-frame. Now we have the following result:

Corollary 2.4. *Let A_1 and B_1 be positive numbers and let $\|\{a_i\}_{i \in \mathbb{I}}\|_2 < (1 - \|a_1\|)\sqrt{A_1}$, $A_2 = \left(\frac{(1 - \|a_1\|)\sqrt{A_1} - \|\{a_i\}_{i \in \mathbb{I}}\|_2}{1 + \|a_2\|} \right)^2$, $B_2 = \left(\frac{(1 + \|a_1\|)\sqrt{B_1} + \|\{a_i\}_{i \in \mathbb{I}}\|_2}{1 - \|a_2\|} \right)^2$, $C = (\|a_1\|\sqrt{B_1} + \|a_2\|\sqrt{B_2} + \|\{a_i\}_{i \in \mathbb{I}}\|_2)^2$ and $K = \left(\frac{\sqrt{B_1}C}{A_1 A_2} (\sqrt{B_1} + \sqrt{B_2}) + \frac{\sqrt{C}}{A_2} \right)^2$. Let $\{\Phi_j\}_{j \in \mathbb{J}}$ be an (A_1, B_1) -BFSGF. If $\Psi_j = \{\Psi_{ij} \in \mathcal{L}(\mathcal{X}_j, \mathcal{X}_{ij}) : i \in \mathbb{I}\}$ is an $(a_1, a_2, \{a_i\}_{i \in \mathbb{I}})$ -perturbation of Φ_j , for each $j \in \mathbb{J}$, then $\bigoplus_{j \in \mathbb{J}} \Psi_j$ is an (A_2, B_2) standard g-frame. In this case $\widetilde{\bigoplus_{j \in \mathbb{J}} \Phi_j} - \widetilde{\bigoplus_{j \in \mathbb{J}} \Psi_j}$ is a standard g-Bessel sequence with upper bound K .*

Proof. The result follows from Theorem 4.2 in [19] and the above proposition. \square

Proposition 2.6. [18] *Let Λ be a standard g-frame with upper bound B and let Φ be a g-dual of Λ with upper bound D . If Γ is a sequence such that $\Gamma - \Lambda = \{\Gamma_i - \Lambda_i\}_{i \in \mathbb{I}}$ is a standard g-Bessel sequence with upper bound C and $CD < 1$, then Γ is a standard g-frame. Moreover, Γ and Φ are approximately g-duals.*

Corollary 2.5. *Suppose that Λ is an (A_1, B_1) standard g-frame and Γ is a sequence such that $\Lambda - \Gamma$ is a standard g-Bessel sequence with upper bound C . If one of the followings holds, then Γ is a standard g-frame and $\tilde{\Lambda} - \tilde{\Gamma}$ is a standard g-Bessel sequence with upper*

bound $\left(\frac{\sqrt{B_1}C}{A_1A_2}(\sqrt{B_1} + \sqrt{B_2}) + \frac{\sqrt{C}}{A_2}\right)^2$, where A_2 and B_2 are lower and upper bounds of Γ , respectively:

- (i) Λ admits a dual with upper bound D and $CD < 1$.
- (ii) $C < A_1$.

Proof. If (i) holds, then using Proposition 2.6 and the condition $CD < 1$, we obtain that Γ is a standard g-frame. Now the result follows from Proposition 2.4.

Now let $C < A_1$. Since $\tilde{\Lambda}$ is a g-dual of Λ with upper bound $D := \frac{1}{A_1}$ and $CD = \frac{C}{A_1} < 1$, condition (i) is satisfied and the result is obtained. \square

3. Stability of fusion frames and resolutions of the identity

In this section, we study perturbations of fusion frames and resolutions of the identity in Hilbert C^* -modules. The following definition is a generalization of Definitions 3.24 and 3.29 in [6] to Hilbert C^* -modules (see also [13]).

Definition 3.1. Let T_i be an adjointable operator on \mathcal{X} , for each $i \in \mathbb{I}$.

- (i) $\{T_i\}_{i \in \mathbb{I}}$ is called a resolution of the identity on \mathcal{X} if $x = \sum_{i \in \mathbb{I}} T_i x$ and the series converges in norm for each $x \in \mathcal{X}$.
- (ii) Assume that $\{v_i : i \in \mathbb{I}\} \subseteq \mathfrak{A}$ is a family of weights, i.e., each v_i is a positive, invertible element from the center of \mathfrak{A} . Then $\{(T_i, v_i)\}_{i \in \mathbb{I}}$ is called an ℓ^2 -resolution of the identity if $\{T_i\}_{i \in \mathbb{I}}$ is a resolution of the identity and there exists a real number $B > 0$ such that

$$\sum_{i \in \mathbb{I}} v_i^{-2} |T_i x|^2 \leq B |x|^2,$$

and the series converges in norm for each $x \in \mathcal{X}$.

A closed submodule \mathcal{M} of \mathcal{X} is *orthogonally complemented* if $\mathcal{X} = \mathcal{M} \oplus \mathcal{M}^\perp$. In this case, $\pi_{\mathcal{M}} \in \mathcal{L}(\mathcal{X}, \mathcal{M})$, where $\pi_{\mathcal{M}} : \mathcal{X} \rightarrow \mathcal{M}$ is the projection onto \mathcal{M} .

Now we recall the definition of fusion frames in Hilbert C^* -modules from [13] (see also [1]). Suppose that $\{\omega_i : i \in \mathbb{I}\} \subseteq \mathfrak{A}$ is a family of weights and $\{\mathcal{W}_i : i \in \mathbb{I}\}$ is a family of orthogonally complemented submodules of \mathcal{X} . Then $\{(\mathcal{W}_i, \omega_i)\}_{i \in \mathbb{I}}$ is a *fusion frame* if there exist real constants $0 < A \leq B < \infty$ such that

$$A \langle x, x \rangle \leq \sum_{i \in \mathbb{I}} \omega_i^2 \langle \pi_{\mathcal{W}_i}(x), \pi_{\mathcal{W}_i}(x) \rangle \leq B \langle x, x \rangle \quad (x \in \mathcal{X}).$$

We call A and B the lower and upper bounds of the fusion frame, respectively. In this case, we call it an (A, B) fusion frame. If the sum converges in norm, it is called a *standard* fusion frame and if we only require to have the upper bound, then $\{(\mathcal{W}_i, \omega_i)\}_{i \in \mathbb{I}}$ is called a *Bessel fusion sequence* with upper bound B .

If $\mathcal{W} = \{(\mathcal{W}_i, \omega_i)\}_{i \in \mathbb{I}}$ is a standard Bessel fusion sequence, then the operator $S_{\mathcal{W}} : \mathcal{X} \rightarrow \mathcal{X}$ defined by $S_{\mathcal{W}}(x) = \sum_{i \in \mathbb{I}} \omega_i^2 \pi_{\mathcal{W}_i} x$ is adjointable. $S_{\mathcal{W}}$ is called the *operator* of \mathcal{W} and if \mathcal{W} is a standard fusion frame, then $S_{\mathcal{W}}$ is invertible.

Note that if $a \in \mathcal{Z}(\mathfrak{A})$ and $T \in \mathcal{L}(\mathcal{X})$, then the operator $aT : \mathcal{X} \rightarrow \mathcal{X}$ which is defined by $(aT)(x) = aT(x)$ is adjointable with $(aT)^* = a^* T^*$. Hence $v_i^2 T_i$ is an adjointable operator on \mathcal{X} .

It was proved (in Hilbert spaces) in Lemma 3.27, Proposition 3.28 and Theorem 3.30 in [6] that ℓ^2 -resolutions of the identity and resolutions of the identity of the form $\{v_i^2 T_i\}_{i \in \mathbb{I}}$ are useful in applications. Now we have the following two results for this kind of operator sequences:

Proposition 3.1. Suppose that T_i is an adjointable operator on \mathcal{X} and $\mathcal{W}_i = \overline{T_i(\mathcal{X})}$ is orthogonally complemented, for each $i \in \mathbb{I}$.

- (i) Suppose that the sequence $\{(v_i^2 T_i, v_i)\}_{i \in \mathbb{I}}$ satisfies the second condition of ℓ^2 -resolution of the identity (the inequality of ℓ^2 -resolution of the identity) and $\Gamma = \{\Gamma_i \in \mathcal{L}(\mathcal{X}) : i \in \mathbb{I}\}$ is a standard g-Bessel sequence with upper bound C such that $\sum_{i \in \mathbb{I}} v_i \Gamma_i^* T_i x = x$. If R is a positive number with $\sum_{i \in \mathbb{I}} v_i^2 |\pi_{\mathcal{W}_i}(x) - T_i(x)|^2 \leq R|x|^2$ and $CR < 1$, then $\{(\mathcal{W}_i, v_i)\}_{i \in \mathbb{I}}$ is a standard fusion frame and $\{v_i \pi_{\mathcal{W}_i}\}_{i \in \mathbb{I}}$ and Γ are approximately g-duals.
- (ii) If $\{(v_i^2 T_i, v_i)\}_{i \in \mathbb{I}}$ is an ℓ^2 -resolution of the identity and there exists a positive number R such that $\sum_{i \in \mathbb{I}} v_i^2 |\pi_{\mathcal{W}_i}(x) - T_i(x)|^2 \leq R|x|^2$, for each $x \in \mathcal{X}$, then $\{(\mathcal{W}_i, v_i)\}_{i \in \mathbb{I}}$ is a standard fusion frame for \mathcal{X} .

Proof. (i) Suppose that $\{(v_i^2 T_i, v_i)\}_{i \in \mathbb{I}}$ satisfies the inequality of ℓ^2 -resolution of the identity. We have

$$\sum_{i \in \mathbb{I}} v_i^2 |T_i x|^2 = \sum_{i \in \mathbb{I}} v_i^{-2} |v_i^2 T_i x|^2 \leq B|x|^2, \quad (3)$$

so $\{v_i T_i\}_{i \in \mathbb{I}}$ is a standard g-Bessel sequence. The equality $\sum_{i \in \mathbb{I}} v_i \Gamma_i^* T_i x = x$ implies that Γ is a g-dual of $\{v_i T_i\}_{i \in \mathbb{I}}$. Now the result follows from Proposition 2.6.

(ii) For each $x \in \mathcal{X}$, we have

$$\|\{v_i \pi_{\mathcal{W}_i}(x)\}_{i \in \mathbb{I}}\|_2 \leq \left\| \{v_i(\pi_{\mathcal{W}_i}(x) - T_i(x))\}_{i \in \mathbb{I}} \right\|_2 + \|\{v_i T_i x\}_{i \in \mathbb{I}}\|_2 \leq (\sqrt{R} + \sqrt{B})\|x\|,$$

so $\left\| \sum_{i \in \mathbb{I}} v_i^2 |\pi_{\mathcal{W}_i}(x)|^2 \right\| \leq (\sqrt{R} + \sqrt{B})^2 \|x\|^2$ and Theorem 3.1 in [26] yields that $\{v_i \pi_{\mathcal{W}_i}\}_{i \in \mathbb{I}}$ is a standard g-Bessel sequence and consequently $\{(\mathcal{W}_i, v_i)\}_{i \in \mathbb{I}}$ is a standard Bessel fusion sequence. The lower bound for $\{(\mathcal{W}_i, v_i)\}_{i \in \mathbb{I}}$ is obtained similar to the proof of Proposition 4.1 in [19] using Cauchy-Schwarz inequality in Hilbert C^* -modules, the inequalities

$$\begin{aligned} \|x\|^4 &= \left\| \left\langle \sum_{i \in \mathbb{I}} v_i^2 T_i x, x \right\rangle \right\|^2 = \left\| \sum_{i \in \mathbb{I}} \langle v_i T_i(x), v_i \pi_{\mathcal{W}_i}(x) \rangle \right\|^2 \\ &\leq \left\| \sum_{i \in \mathbb{I}} v_i^2 |T_i x|^2 \right\| \left\| \sum_{i \in \mathbb{I}} v_i^2 |\pi_{\mathcal{W}_i}(x)|^2 \right\| \\ &\leq B\|x\|^2 \left\| \sum_{i \in \mathbb{I}} v_i^2 |\pi_{\mathcal{W}_i}(x)|^2 \right\|, \end{aligned}$$

$$\left\| \sum_{i \in \mathbb{I}} v_i^2 |\pi_{\mathcal{W}_i}(x)|^2 \right\| \geq \frac{1}{B}\|x\|^2 \text{ and Theorem 3.1 in [26].} \quad \square$$

In the next theorem, we show that for each $x \in \mathcal{X}$ the family $\{v_i \pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1}(x)\}_{i \in \mathbb{I}}$ has a certain minimum property. This result is a generalization of Theorem 2.2 and Corollary 2.1 in [12] to Hilbert C^* -modules.

Theorem 3.1. Let $\mathcal{W} = \{(\mathcal{W}_i, v_i)\}_{i \in \mathbb{I}}$ be a standard fusion frame for \mathcal{X} .

- (i) If $\{(v_i^2 T_i, v_i)\}_{i \in \mathbb{I}}$ is an ℓ^2 -resolution of the identity, where $T_i: \mathcal{X} \rightarrow \mathcal{W}_i$, then

$$\sum_{i \in \mathbb{I}} v_i^2 |\pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1}(x)|^2 \leq \sum_{i \in \mathbb{I}} v_i^2 |T_i x|^2,$$

for each $x \in \mathcal{X}$ and $\{v_i T_i\}_{i \in \mathbb{I}}$ is a standard g-frame.

- (ii) If $k \in \mathbb{I}$ with $\mathcal{W}_k = \mathcal{X}$, then $S_{\mathcal{W}}^{-1} \leq v_k^{-2} \text{Id}_{\mathcal{X}}$.

Proof. (i) For each $x \in \mathcal{X}$, we have

$$\begin{aligned} \sum_{i \in \mathbb{I}} v_i^2 |\pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1}(x)|^2 &= \left\langle \sum_{i \in \mathbb{I}} v_i^2 \pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1} x, S_{\mathcal{W}}^{-1} x \right\rangle = \langle x, S_{\mathcal{W}}^{-1} x \rangle \\ &= \left\langle \sum_{i \in \mathbb{I}} v_i^2 T_i x, S_{\mathcal{W}}^{-1} x \right\rangle = \sum_{i \in \mathbb{I}} v_i^2 \langle T_i x, \pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1} x \rangle. \end{aligned}$$

Now we have

$$\begin{aligned} &\sum_{i \in \mathbb{I}} v_i^2 |(\pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1} - T_i)x|^2 \\ &= \sum_{i \in \mathbb{I}} v_i^2 |\pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1} x|^2 + \sum_{i \in \mathbb{I}} v_i^2 |T_i x|^2 - \sum_{i \in \mathbb{I}} v_i^2 \langle \pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1} x, T_i x \rangle - \sum_{i \in \mathbb{I}} v_i^2 \langle T_i x, \pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1} x \rangle \\ &= \sum_{i \in \mathbb{I}} v_i^2 |T_i x|^2 - \sum_{i \in \mathbb{I}} v_i^2 \langle \pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1} x, T_i x \rangle. \end{aligned}$$

Also, we get

$$\begin{aligned} &\sum_{i \in \mathbb{I}} v_i^2 \langle \pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1} x, T_i x \rangle = \langle S_{\mathcal{W}}^{-1} x, \sum_{i \in \mathbb{I}} v_i^2 \pi_{\mathcal{W}_i} T_i(x) \rangle \\ &= \left\langle S_{\mathcal{W}}^{-1} x, \sum_{i \in \mathbb{I}} v_i^2 T_i(x) \right\rangle = \langle S_{\mathcal{W}}^{-1} x, x \rangle = \langle x, S_{\mathcal{W}}^{-1} x \rangle = \sum_{i \in \mathbb{I}} v_i^2 |\pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1}(x)|^2 \end{aligned}$$

This yields that

$$0 \leq \sum_{i \in \mathbb{I}} v_i^2 |(\pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1} - T_i)x|^2 = \left(\sum_{i \in \mathbb{I}} v_i^2 |T_i x|^2 - \sum_{i \in \mathbb{I}} v_i^2 |\pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1}(x)|^2 \right),$$

so $\sum_{i \in \mathbb{I}} v_i^2 |\pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1}(x)|^2 \leq \sum_{i \in \mathbb{I}} v_i^2 |T_i x|^2$. If A is a lower bound of $\{(W_i, v_i)\}_{i \in \mathbb{I}}$, then

$$\begin{aligned} A\|x\|^2 &\leq A\|S_{\mathcal{W}}\|^2 \|S_{\mathcal{W}}^{-1} x\|^2 \\ &\leq \|S_{\mathcal{W}}\|^2 \left\| \sum_{i \in \mathbb{I}} v_i^2 |\pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1} x|^2 \right\| \leq \|S_{\mathcal{W}}\|^2 \left\| \sum_{i \in \mathbb{I}} v_i^2 |T_i x|^2 \right\|. \end{aligned}$$

Hence $\frac{A}{\|S_{\mathcal{W}}\|^2}$ is a lower bound for $\{v_i T_i\}_{i \in \mathbb{I}}$ and the upper bound is obtained from (3).

(ii) Define $T_i: \mathcal{X} \rightarrow \mathcal{W}_i$ by $T_k = v_k^{-2} \pi_{\mathcal{W}_k}$ and $T_i = 0$ for each $i \neq k$. Since $\mathcal{W}_k = \mathcal{X}$, we have $T_k = v_k^{-2} \text{Id}_{\mathcal{X}}$, so

$$\sum_{i \in \mathbb{I}} v_i^2 T_i x = v_k^2 v_k^{-2} \text{Id}_{\mathcal{X}} x = x,$$

also

$$\sum_{i \in \mathbb{I}} v_i^{-2} |v_i^2 T_i x|^2 = v_k^2 |x|^2 \leq \|v_k^2\| |x|^2.$$

Hence $\{(v_i^2 T_i, v_i)\}_{i \in \mathbb{I}}$ is an ℓ^2 -resolution of the identity. Then using part (i), we have

$$\begin{aligned} \langle x, S_{\mathcal{W}}^{-1} x \rangle &= \left\langle \sum_{i \in \mathbb{I}} v_i^2 \pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1} x, S_{\mathcal{W}}^{-1} x \right\rangle \\ &= \sum_{i \in \mathbb{I}} v_i^2 |\pi_{\mathcal{W}_i} S_{\mathcal{W}}^{-1} x|^2 \leq \sum_{i \in \mathbb{I}} v_i^2 |T_i x|^2 = v_k^2 v_k^{-4} |x|^2 = \langle v_k^{-2} \text{Id}_{\mathcal{X}} x, x \rangle, \end{aligned}$$

so $\langle (v_k^{-2} \text{Id}_{\mathcal{X}} - S_{\mathcal{W}}^{-1})x, x \rangle \geq 0$. Now Lemma 4.1 in [17] implies that $S_{\mathcal{W}}^{-1} \leq v_k^{-2} \text{Id}_{\mathcal{X}}$. \square

φ -morphisms are important operators on Hilbert C^* -modules with great applications in operator theory. It recently has been shown in [21] that they are also nice operators in frame theory, especially it was shown that they preserve most of the properties of a frame. Now we state the definition of φ -morphisms and refer to [3] for more details about the properties of these operators.

Definition 3.2. *Let \mathcal{X} and \mathcal{Y} be Hilbert C^* -modules over C^* -algebras \mathfrak{A} and \mathfrak{B} , respectively. Let $\varphi : \mathfrak{A} \rightarrow \mathfrak{B}$ be a morphism of C^* -algebras. A map $\Phi : \mathcal{X} \rightarrow \mathcal{Y}$ is said to be a φ -morphism of Hilbert C^* -modules if*

$$\langle \Phi(x), \Phi(y) \rangle = \varphi(\langle x, y \rangle),$$

for each $x, y \in \mathcal{X}$.

It is easy to see that each φ -morphism is a linear operator and $\Phi(ax) = \varphi(a)\Phi(x)$, for each $a \in \mathfrak{A}$ and $x \in \mathcal{X}$. Also, since φ is a morphism of C^* -algebras, we have $\|\varphi\| \leq 1$, so the relation

$$\|\Phi(x)\| = \|\langle \Phi(x), \Phi(x) \rangle\|^{\frac{1}{2}} = \|\varphi(\langle x, x \rangle)\|^{\frac{1}{2}} \leq \|x\|$$

yields that Φ is bounded with $\|\Phi\| \leq 1$.

We recall the following definition from [3].

Definition 3.3. *A map $\Phi : \mathcal{X} \rightarrow \mathcal{Y}$ is called a unitary if there exists an injective morphism of C^* -algebras $\varphi : \mathfrak{A} \rightarrow \mathfrak{B}$ such that Φ is a surjective φ -morphism.*

Note that if Φ is a unitary φ -morphism, then it is surjective and since φ is an injection, then Φ is isometric and so it is invertible (for more details, see [3]).

Proposition 3.2. *Assume that $\{(T_i, v_i)\}_{i \in \mathbb{I}}$ is an ℓ^2 -resolution of the identity on \mathcal{X} with upper bound B .*

(i) *If Φ is a φ -morphism, then for each $x \in \mathcal{X}$, $\sum_{i \in \mathbb{I}} \varphi(v_i)^{-2} |\Phi(T_i x)|^2$ converges in norm and*

$$\left\| \sum_{i \in \mathbb{I}} \varphi(v_i)^{-2} |\Phi(T_i x)|^2 \right\| \leq B \|x\|^2.$$

(ii) *If φ is an isomorphism and Φ is a unitary, adjointable φ -morphism, then the sequence $\{(\Phi \circ T_i \circ \Phi^{-1}, \varphi(v_i))\}_{i \in \mathbb{I}}$ is an ℓ^2 -resolution of the identity on \mathcal{Y} .*

Proof. (i) For each $x \in \mathcal{X}$, we have

$$\begin{aligned} \sum_{i \in \mathbb{I}} \varphi(v_i)^{-2} |\Phi(T_i x)|^2 &= \varphi \left(\sum_{i \in \mathbb{I}} v_i^{-2} |T_i x|^2 \right) \\ &\leq B \varphi(|x|^2) = B |\Phi(x)|^2. \end{aligned}$$

The above relation shows that $\sum_{i \in \mathbb{I}} \varphi(v_i)^{-2} |\Phi(T_i x)|^2$ converges in norm and

$$\left\| \sum_{i \in \mathbb{I}} \varphi(v_i)^{-2} |\Phi(T_i x)|^2 \right\| \leq B \|\Phi(x)\|^2 \leq B \|x\|^2.$$

(ii) Since each v_i is an invertible and positive element in the center of \mathfrak{A} and φ is a surjective morphism of C^* -algebras, it is easy to see that $\varphi(v_i)$ is also an invertible and positive element in the center of \mathfrak{B} . Let $y_1, y_2 \in \mathcal{Y}$ and $x_1, x_2 \in \mathcal{X}$ with $x_1 = \Phi^{-1}(y_1)$ and $x_2 = \Phi^{-1}(y_2)$. Then $\varphi(\langle x_1, x_2 \rangle) = \langle \Phi(x_1), \Phi(x_2) \rangle$, so $\varphi(\langle \Phi^{-1}(y_1), \Phi^{-1}(y_2) \rangle) = \langle y_1, y_2 \rangle$ and consequently

$\varphi^{-1}(\langle y_1, y_2 \rangle) = \langle \Phi^{-1}(y_1), \Phi^{-1}(y_2) \rangle$. Thus Φ^{-1} is a unitary φ^{-1} -morphism. Now, for each $y \in \mathcal{Y}$, we have

$$\sum_{i \in \mathbb{I}} (\Phi \circ T_i \circ \Phi^{-1}) y = \Phi \left(\sum_{i \in \mathbb{I}} T_i (\Phi^{-1} y) \right) = \Phi(\Phi^{-1} y) = y.$$

Also,

$$\begin{aligned} \sum_{i \in \mathbb{I}} \varphi(v_i)^{-2} |\Phi \circ T_i \circ \Phi^{-1}(y)|^2 &= \varphi \left(\sum_{i \in \mathbb{I}} v_i^{-2} |T_i \Phi^{-1}(y)|^2 \right) \\ &\leq B \varphi(\langle \Phi^{-1} y, \Phi^{-1} y \rangle) \\ &= B \varphi(\varphi^{-1} |y|^2) = B |y|^2. \end{aligned}$$

□

REFERENCES

- [1] L. Arambasic, *Frames of submodules for countably generated Hilbert $K(\mathcal{H})$ -modules*, Glas. Mat. Ser. III. **41** (2006), 317–328.
- [2] L. Arambasic, *On frames for countably generated Hilbert C^* -modules*, Proc. Amer. Math. Soc. **135** (2007), 469–478.
- [3] D. Bakic and B. Guljas, *On a class of module maps of Hilbert C^* -modules*, Mathematical Communications. **7** (2002), 177–192.
- [4] R. Balan, *Stability theorems for Fourier frames and wavelet Riesz bases*, J. Fourier Anal. Appl. **3** (1997), 499–504.
- [5] P. Casazza and O. Christensen, *Perturbation of operators and applications to frame theory*, J. Fourier Anal. Appl. **3** (1997), 543–557.
- [6] P. Casazza and G. Kutyniok, *Frames of subspaces*, Contemp. Math. **345** (2004), 87–113.
- [7] O. Christensen, *Frame perturbations*, Proc. Amer. Math. Soc. **123** (1995), 1217–1220.
- [8] M. A. Dehghan and M. A. Hasankhani Fard, *G-dual frames in Hilbert spaces*, Politehn. Univ. Bucharest Sci. Bull. Ser A. **75** (2013), 129–140.
- [9] O. Christensen and R. S. Laugesen, *Approximate dual frames in Hilbert spaces and applications to Gabor frames*, Sampl. Theory Signal Image Process. **9** (2011), 77–90.
- [10] M. Frank and D. R. Larson, *Frames in Hilbert C^* -modules and C^* -algebras*, J. Operator Theory. **48** (2002), 273–314.
- [11] D. Han, W. Jing and R. Mohapatra, *Perturbations of frames and Riesz bases in Hilbert C^* -modules*, Linear Algebra Appl. **431** (2009), 746–759.
- [12] A. Khosravi and M. S. Asgari, *Frames of subspaces and approximation of the inverse frame operator*, Houston J. Math. **33(3)** (2007), 907–920.
- [13] A. Khosravi and B. Khosravi, *Fusion frames and g-frames in Hilbert C^* -modules*, Int. J. Wavelets Multiresolut. Inf. Process. **6** (2008), 433–446.
- [14] A. Khosravi and M. Mirzaee Azandaryani, *Approximate duality of g-frames in Hilbert spaces*, Acta. Math. Sci. **34** (2014), 639–652.
- [15] A. Khosravi and M. Mirzaee Azandaryani, *Bessel multipliers in Hilbert C^* -modules*, Banach. J. Math. Anal. **9** (2015), 153–163.
- [16] A. Khosravi and K. Musazadeh, *Fusion frames and g-frames*, J. Math. Anal. Appl. **342** (2008), 1068–1083.
- [17] E. C. Lance, *Hilbert C^* -modules- A Toolkit for operator algebraists*, London Math. Soc. Lecture Note Ser., Vol. **210**, Cambridge University Press, Cambridge, England, 1995.

- [18] M. Mirzaee Azandaryani, *Approximate duals and nearly Parseval frames*, Turk. J. Math. **39** (2015), 515–526.
- [19] M. Mirzaee Azandaryani, *Erasures and perturbations of g-frames and fusion frames in Hilbert C^* -modules*, Int. J. Wavelets Multiresolut. Inf. Process. **14** (2016), 1650003-1–1650003-13.
- [20] M. Mirzaee Azandaryani, *Bessel multipliers and approximate duals in Hilbert C^* -modules*, J. Korean Math. Soc. **54** (2017), 1063–1079.
- [21] M. Mirzaee Azandaryani, *Approximate duals and morphisms of Hilbert C^* -modules*, Annal. Funct. Anal. **10** (2019), 525–536.
- [22] M. Mirzaee Azandaryani and A. Khosravi, *Duals and approximate duals of g-frames in Hilbert spaces*, J. Linear Topol. Algebra. **4** (2015), 259–265.
- [23] M. Rashidi-Kouchi, A. Nazari and M. Amini, *On stability of g-frames and g-Riesz bases in Hilbert C^* -modules*, Int. J. Wavelets Multiresolut. Inf. Process. **12**(6) (2014), 1450036 (16 pages).
- [24] W. Sun, *Stability of g-frames*, J. Math. Anal. Appl. **326** (2007), 858–868.
- [25] W. Sun, *G-frames and g-Riesz bases*, J. Math. Anal. Appl. **322** (2006), 437–452.
- [26] X. Xiao and X. Zeng, *Some properties of g-frames in Hilbert C^* -modules*, J. Math. Anal. Appl. **363** (2010), 399–408.