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STABILITY OF G-FRAMES, APPROXIMATE DUALS AND
RESOLUTIONS OF THE IDENTITY IN HILBERT C*-MODULES

M. Mirzaee Azandaryani', M. Rostami>

In this paper, we consider the stability of g-frames and some concepts related to g-
frames on Hilbert C*-modules, such as approzimate duals and (a, m)-approzimate duals,
under different kinds of perturbations. We also obtain some results for the perturbations
of fusion frames and resolutions of the identity in Hilbert C*-modules. Moreover, some
new resolutions of the identity are constructed using morphisms of Hilbert C*-modules.
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1. Introduction and preliminaries

A Hilbert C*-module is a generalization of a Hilbert space by allowing the inner

product to take values in a C*-algebra rather than in the field of complex numbers. Frank
and Larson in [10] presented a general approach to the frame theory in Hilbert C*-modules.
Also fusion frames and g-frames in Hilbert C*-modules were introduced in [13].
Different kinds of perturbations for frames, g-frames and fusion frames in Hilbert spaces
have been introduced (see [4, 5, 7, 6, 25, 24, 16, 14]). After generalizing the frame theory to
Hilbert C*-modules, some authors studied perturbations of frames and g-frames in Hilbert
C*-modules (see [11, 23, 19]). In this paper, we get some new results in perturbations of
frames, g-frames and fusion frames in Hilbert C*-modules.

Suppose that 2 is a unital C'*-algebra and X is a left 2-module such that the linear
structures of 2 and X are compatible. X is a pre-Hilbert 2-module if X is equipped with an
A-valued inner product (-,-): X x X — 2, that is sesquilinear, positive definite and respects
the module action. In other words

(i) (azx + By, z) = alz, z) + By, 2), for each o, B € C and z,y, z € X;

(ii) (ax,y) = a{x,y), for each a € A and z,y € X;

(iii) (z,y) = (y, z)*, for each z,y € X;

(iv) {(x,x) >0, for each z € X and if (z,z) = 0, then x = 0.
For each z € X, we define ||z = ||(z, z)||2. If X is complete with the norm || - ||, it is called
a Hilbert 2A-module or a Hilbert C*-module over 2.
Some typical examples of Hilbert C*-modules are as follows.
e Every Hilbert space is a left Hilbert C-module.
e Every C*-algebra 2l is a Hilber 2-module with the inner product {(a,b) = ab* for a,b € 2.
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e For a Hilber space H, the space B(H) of all bounded linear operators on H is a Hilbert
B(H)-module via (S, T) = ST*.

For each a in a C*-algebra 21, we have |a| = (a*a)? and we define |z| = (z,2)2, for
each x € X. The center of 2 is denoted by Z(2) and is defined by

Z(2A) = {a € A: ab = ba,Vb € A}.

We note that Z(2() is a commutative C*-subalgebra of 2. Let X and Y be Hilbert 2-modules.
The operator T: X — Y is called adjointable if there exists an operator T*: Y — X such
that (T'(x),y) = (x,T*(y)), for each x € X and y € Y. Every adjointable operator T is
automatically bounded and -linear (that is, T(ax) = aT'(z) for each z € X and a € ).
We denote the set of all adjointable operators from X into Y by £(X,Y). Note that £(X,X)
is a C*-algebra and we denote it by £(X), for more details see [17].

In this paper, we focus on finitely and countably generated Hilbert C*-modules over uni-
tal C*-algebras. A Hilbert 2-module X is finitely generated if there exists a finite set
{z1,...,2,} C X such that every element € X can be expressed as an 2-linear combina-
tion z = 31" | a;x;,a; € A. A Hilbert 2-module X is countably generated if there exists a
countable set {z;};e1 C X such that X equals the norm-closure of 2-linear hull of {z; };er.
Let X be a Hilbert 2-module. A family {f;}ie1 C X is a frame for X, if there exist real
constants 0 < A < B < 00, such that for each x € X,

Alw,z) < 3@, fi)finw) < Bla,a), 1)
iel

The numbers A and B are called the lower and upper bound of the frame, respectively. In
this case, we call it an (A, B) frame. If only the second inequality is required, we call it a
Bessel sequence. If the sum in (1) converges in norm, the frame is called standard.
Let F = {fi}ier and G = {g;}ic1 be standard Bessel sequences in X. Then we say that G
(resp. ¥F) is an alternate dual or a dual of F (resp. G), if x = >, ((x, fi)g; or equivalently
=) 1(x,9:) fi, for each v € X.
For more results about frames in Hilbert C*-modules, see [10, 2].
Let {X;}ier be a sequence of Hilbert 2-modules. A sequence A = {A; € L(X,X;): ¢ € T} is
called a g-frame for X with respect to {X;: i € I} if there exist real constants Ax, Bn > 0
such that for each x € X,

i€l

Ap(z,z) < Z(Aﬂ;,/\ix) < Ba(z, z).
iel
Ap and By are g-frame bounds of A. In this case, we call it an (Ax, Bp) g-frame. The
g-frame is standard if for each z € X, the sum converges in norm. If only the second-hand
inequality is required, A is called a g-Bessel sequence. If Ay = By, the g-frame is called
tight and if Ay = By = 1, the g-frame is called Parseval.
If {X;: i € I} is a sequence of Hilbert 2A-modules, then

Pic1X; = {x ={x;}ier: x; € X; and Z(axl,a:l) is norm convergent in 91},
i€l
is a Hilbert 2-module with pointwise operations and 2(-valued inner product
<£C, y> = Z<xm yz>7
iel

where & = {z;}ic1 and y = {y:}ic1-

For a standard g-Bessel sequence A, the operator Th: @;cr X; — X which is defined by
Ta({gi}ier) = > ;1 Afgi is called the synthesis operator of A. T} is adjointable and Ty (v) =
{Aiz}ier. The operator Sy : X — X which is defined by Sax = TATx(x) = >, cp AjAi(w), is
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called the operator of A. If A is a standard (Aa, By) g-frame, then Ay -Idy < Sy < By -Idy.
Recall that if A = {A;}ier and T = {T';};e1 are standard g-Bessel sequences such that
Y ici i Aix = or equivalently >, ; AjTx = =, for each x € X, then I' (resp. A) is called
a g-dual of A (resp. T').

For more results about g-frames in Hilbert C*-modules, see [13, 26].
In this paper, all C*-algebras are unital and all Hilbert C*-modules are finitely or countably
generated.

i€l

2. (a,m)-approximate duals, perturbations and adjointable operators

In this section, we consider the stability of (a, m)-approximate duals under perturba-
tions and the construction of new (a, m)-approximate duals using adjointable operators.
Recall that £>°(I, ) is the set

{{ai}ia C 9+ [{assetlloe = sup{llas] 6 € T} < oo}.

throughout this paper, m is always a sequence {m;};cr € €>°(I, ) with m; € Z(2), for each
i € I. Each sequence with these properties is called a symbol. We recall the following two
definitions from [15].

Definition 2.1. Let X and Y be Hilbert A-modules, and let F = {fi}ier € X and § =
{9i}ic1 C Y be standard Bessel sequences. It was proved in [15] that the operator My, g 5: X —
Y which is defined by My, g 5(x) = > ,cpmi(z, fi)gi, is adjointable. My, g 5 is called the
Bessel multiplier for the Bessel sequences F and G with symbol m. If m; = 1y, for each

i € I, then we denote M, 5.5 by Mg 5.

In this paper, F = {f; }ier and G = {g; }sc1 are standard Bessel sequences in a Hilbert
C*-module X, so M,,, g5 € L(X).

Definition 2.2. Let A = {A;}ier and T' = {T;}ier be standard g-Bessel sequences for X
with respect to {X;}ier. Then it was shown in [15] that the operator My, r a: X — X which
is defined by My, ra(x) = > ,cpmilfAi(x) is adjointable. My, r A is called the g-Bessel
multiplier for the g-Bessel sequences A and T' with symbol m. If m; = 1y, for each i € 1,
then M, r.a is denoted by Mr .

We recall the definitions of approximate duals and approximate g-duals in Hilbert C*-
modules from [18] (we mention that approximate duals for Hilbert spaces were introduced
in [9]).

Definition 2.3. (i) Two standard g-Bessel sequences A and T' are approximately dual
g-frames if | Idx — Mpra|| < 1. In this case, we say that I' is an approzimate g-dual
of A.

(ii) Two standard Bessel sequences F and G are approzimately dual frames if ||Idy —
Mg 5| < 1. In this case, we say that G is an approzimate dual of F.

Note that if a € Z(2) and T' € L£(X), then the operator aT": X — X which is defined
by (aT)(z) = aT(x) is adjointable with (aT)* = a*T™*.
Now we state the definition of (a, m)-approximate duals from [20].
Definition 2.4. Let m be a symbol and a € Z(2A).
(i) Let A and T be standard g-Bessel sequences. Then we say that T' is an (a,m)-

approzimate g-dual (resp. (a,m)-g-dual) of A if || Idx — aM,y,pal <1 (resp. Idx =
aMm7p7A).
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(ii) LetJF and G be standard Bessel sequences. Then we say that G is an (a, m)-approzimate
dual (resp. (a,m)-dual) of F if || Idx — aMpy, g5 <1 (resp. Idx = aMy, g,5).

Note that if a = 1g, m; = 1g, for each ¢ € I, then (a, m)-approximate duality
coincides with the concept of approximate duality stated in Definition 2.3.
If T is an (a, m)-approximate g-dual of A, then using Newmann series, we get M;lr A=
a Zzozo(ldx —aMp,r.A)", and for each € X, we have the following reconstruction formula:

I:MmFAMnLFAI’—aZMmFA(Idx7(1Mm1"A) T.
n=0

The following result is a generalization of Proposition 3.7 in [18] to (a, m)-approximate
duals.

Proposition 2.1. Let A be a standard g-Bessel sequence and U = {1;};c1 be an (a,m)-
approximate g-dual (resp. an (a,m)-g-dual) of A with upper bound C. IfT is a sequence
such that T' — A := {T'; — A;}ier is a standard g-Bessel sequence with upper bound K and
lall?|m|%CK < (1 —||Idx — aMy, wal)? (resp. |la||*|m|2,CK < 1), then ¥ is an (a,m)-
approzimate g-dual of T' and T is a standard g-frame.

Proof. Similar to the proof of Proposition 3.7 in [18], we get I' is a standard g-Bessel se-
quence. Now using the Cauchy-Schwarz inequality in Hilbert C*-modules, for each = € X,
we have

(0 — by wr)al] < [0 — My )] + Ja(Myw n — Mo )]
< [(dx = aMp v )z
+ lellimle s, {Hz = | S o]}
= i€l
<

(||Idx aMpaa] + |a||||m||ooﬂ) Jall.

Hence
VCOK < 1.

Also, if U is an (a,m)-g-dual of A, then aM,, v o = Idx and we have

IIdx — aMp e r| < ||ldx — aM,, v,

[Tdx — aMp v r|| < |lall[m]lee VOK < 1.
Now Theorem 3.5 in [20] implies that T is a standard g-frame. O

Proposition 2.2. Suppose that A = {A; € B(H): i €I} and T = {[; € B(H): i € I} are
two g-Bessel sequences such that A;’s and T';’s are normal operators. Then
(i) A=T :={A; = Ti;}icr and A* —T* := {A} — T }ic1 are g-Bessel sequences with the
same upper bound. If BA_p = € = Bp«_r~, then

D INTRA; = TET5) f117 < (VBa + V/Br)’e| f11%,
jel
for each f € H.
(ii) Let A and T be Parseval g-frames. Suppose that a € C, m € £°(I), By_.r = ¢ =
Bp_r+ and ® = {¢; € B(H): i € I} is an (a,m)-g-dual for A*. If 4e|a|?||m||%, Bs <
1, then {TX¢;}ier is an (a, m)-approzimate g-dual of {T7T }ier.
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Proof. (i) Since A;’s and T';’s are normal operators, A* = {Af};cp and I'* = {I'} },¢1 are two
g-Bessel sequences with upper bounds B, and Br, respectively. Also it is easy to see that

SO =TI < (VBa+VBr)?lIf]>-

i€l
Hence A* —T'* is a g-Bessel sequence with upper bound (v/Ba ++/Br)?. The result for A—T
is obtained similarly. Now for each f € H, we have

DOINTRA; = TEE)FIP =D > IAdjf = TiL5 f |

Jel jel del
< Y IAA TP+ S A - T
jel iel ]e]I icl
n 2(ZZ|Ai< f?) (ZZH T f||2>
jel el jel el

< BABA* - ||fII* + Ba—rBr || f||* + 2/ BaBrBa_r|| f|I?
= Ba + v/ Br)%e| f|*.

(ii) Because A and T are Parseval, By = 1 = Br, T\Ty = Idy and Bg is an upper bound
for {TX¢;}ier. Now for each f € 3, we get

> amigi TATAAf = amigi AL f = f.
i€l i€l
Thus {TX¢;}ier is an (a, m)-g-dual of {TXA}ier. Also
la]?||m||%, (/Ba + v/ Br)*cBs = 4¢lal?||m|* Bs < 1.
Now the result follows from part (i) and Proposition 2.1. ]

Here, we introduce (a, m,T')-duals in Hilbert C*-modules.

Definition 2.5. Let {f;}:c1 be a standard Bessel sequence for X and let T be an invertible
operator in L(X). A standard Bessel sequence {g;}ic1 is called an (a,m,T)-dual of {f;}ic1
if

= Z ami(T f, fi)g:,

i€l

for each f € X.
Definition 2.6. Let T be an invertible operator in L(X) and let A = {A;}ier, T = {Ti Lier
be standard g-Bessel sequences. We say that T is an (a,m,T)-g-dual of A if {T';}ier and
{am;A;T}ier are g-duals, equivalently

ZamiFinTf =f= Za*m?T*AIFiﬁ
il iel
for each f € X.

Remark 2.1. Let {f;}ier, {9 }ier be standard Bessel sequences for X and let T be an in-
vertible opertor on X. Assume that A; and T'; are functionals defined by A;(x) = (x, f;) and
Ti(z) = (x,9:), respectively. Since

Z amZ'F;kAiTiI? = Z ams; <T937 fi>gi’
i€l i€l

{g:}ier is an (a,m,T)-dual of {fi}ic1 if and only if T is an (a,m,T)-g-dual of A.
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The next theorem and corollary are generalizations of Proposition 4.1 in [8] to (a, m)-
approximate duals in Hilbert C*-modules.

Theorem 2.1. IfT is an (a,m)-approzimate g-dual of A, then T is an (a,m, (aMy, r.a)"")-
g-dual of A.

Proof. Since ||Idx — aMy, Al < 1, by Neumann algorithm, aM,, r s is invertible. Now for
each f € X, we have

f = aMm,F,A(aMm,F,A)_lf = ZamiF?Ai(aMm’F,A)_lf,
icl
This means that {I';};er and {am;A;(aMpy,ra) " }ier are g-duals, equivalently, T' is an
(0’7 m, (aMm,F,A)_l)'g'dual of A. 0

Corollary 2.1. If G is an (a, m)-approzimate dual of F, then G is an (a,m, (aMy, g.5)71)-
dual of F.

In [22], using special bounded operators on Hilbert spaces, new approximate duals
are constructed. Here, we obtain analogous results for (a, m)-approximate duals in Hilbert
C*-modules. First, we recall the following definition from [17].

Definition 2.7. An element T in L(X,Y) is called a partial isometry if Yo = ran(T) is
complemented in F (i.e., Y =Yo ® Hé) and there exists a complemented submodule Xy of X
such that T is isometric from Xo onto Yo and T(Xg) = {0}.

Proposition 2.3. (i) Assume thatT' and A are two standard g-Bessel sequences such that
T; is a partial isometric operator, for each i € 1. Then T' is an (a,m)-approximate
g-dual (resp. (a,m)-g-dual) of A if and only if {TiT;}ier is an (a, m)-approzimate
g-dual (resp. (a,m)-g-dual) of {TFA;}ier.

(ii) Let T be an isometric operator on X. If T is an (a, m)-approzimate g-dual (resp.
(a,m)-g-dual) of A, then {T';T}icr is an (a, m)-approzimate g-dual (resp. (a,m)-g-
dual) of {A;T}ier.

(iii) Let T be a co-isometric operator on X. If T is an (a,m)-approximate g-dual (resp.
an (a,m)-g-dual) of A, then {T';T*}icr is an (a,m)-approximate g-dual (resp. an
(a,m)-g-dual) of {A;T*}icr.

Proof. (i) It is easy to see that ¥ = {I'/T";};e1 and ® = {I'fA;}ier are standard g-Bessel
sequences. Since I';’s are partial isometry, using the explanation stated after [17, Proposition
3.8], we have I'/T';I'; =T}, so

G;Mqu@f =a Z sz;FzF:Azf =a Z szjAlf = aMmpAf.
i€l i€l
Hence T is an (a, m)-approximate g-dual (resp. (a, m)-g-dual) of A if and only if {I';T'; }ier
is an (@, m)-approximate g-dual (resp. (a,m)-g-dual) of {I'fA;}icr.
(ii) Tt is easy to see that ® = {A;T}ier and ¥ = {T';T};e1 are standard g-Bessel sequences
with upper bounds B,||T||? and Br||T||?, respectively. Then for each f € X, we have

laMmv0f — Il = HT (@Y mriAT)f -7/
i€l
= | T"(aMprn = 1dx)Tf|| < [[aMi,r,x —Tdac[] ]

Since ||aMy,ra — Idx| < 1 (vesp. aMy,r.a = Idx), we get |[aMp, w0 — Idx| < 1 (resp.
alM,, v o = Idx) and the result follows.
(iii) The result follows from part (ii) by considering T* instead of T'. O
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Corollary 2.2. (i) LetT be an isometric operator on X. If{g; }ie1 is an (a, m)-approximate
dual (resp. an (a,m)-dual) of {fi}ic1, then {T*g;}ic1 is an (a, m)-approximate dual
(resp. (a,m)-dual) of {T* f;}icr-

(ii) Let T be a co-isometric operator on X. If {g;}ic1 is an (a, m)-approzimate dual (resp.
(a,m)-dual) of {fi}ic1, then {Tg;}ic1 is an (a,m)-approximate dual (resp. (a,m)-
dual) Of {Tfi}ie]l-

Note that if A is an (A, B) standard g-frame, then A = {X;}ie]] is an (4, &) standard
g-frame, where A = AiSXI and we have . ; Af;\:x =x=) E*Aix, for each x € X.
A is called the canonical g-dual of A.

The following proposition is a generalization of [24, Theorem 4.1] to Hilbert C*-modules

which is also stated in Theorem 3.4 in [23] and we recall it since it is used in the sequel.

Proposition 2.4. Let A and T be (A1, By) and (As, Bs) standard g-frames, respectwely If
A—T = {A; —=T;}ier is a standard g-Bessel sequence with upper bound C, then A-T =

2
{A; —T';}ier is a standard g-Bessel sequence with upper bound ( Blc(\/ 1+VBa)+ %> ) .

i€l

If F = {fi}ier is a standard frame for X, then the operator Sg: X — X de-
fined by Sy(x) = > ,ci{z, fi)fi is an invertible operator. It is easy to see that if F
is an (A, B) standard frame, then F = {S5" fitier is an (4, %) standard frame with
T =3z, Sy N = Y el fi)S5' fi, for each x € X. F is called the canonical dual of
g.

Corollary 2.3. Let F = {fi}ic1 and G = {g:}icn be (A1, B1) and (As, Ba) standard frames
for E, respectively. If F — G = {fi — ¢i }ie1 is a standard Bessel sequence with upper bound

C, then F-G= {ﬁ — Gi tien 18 a standard Bessel sequence with upper bound ( VBLC (/B +

A1As
2
VB3) + f) .

Proof. Let A={A; € L(X,2) :i €1} and T' = {T; € L(X, ) : i € I}, where A;(z) = (z, f;)
and T';(z) = (z,g;). Since F and G are (A1, B1) and (A, Bs) standard frames, it is easy to
see that A and T" are (Al, Bl) and (Ag, By) standard g-frames, respectively. Also, it is i easy
to obtain that ¥ — G and F_ 9 are standard Bessel sequences if and only if A —T" and A-T
are standard g-Bessel sequences with the same upper bounds, respectively. Now the result
follows from Proposition 2.4. O

We recall the following definition from [19].

Definition 2.8. Let A = {A; € L(X,X;) : i € [}, a1,a2 € A with |jay|, |laz]] < 1 and
{a;}ier € C(LA). We say that T = {I; € L(X,X;) : i € I} is an (a1, a2, {a;}ier)-
perturbation of A if

2 2

‘(Ai =Tz < |ar|Aix| + az|Diz| + |xla;| (2)

for each x € X and i € 1.

Proposition 2.5. Let Ay and B; be positive real numbers and let ||[{a;}ierll2 < (1 —

2 2
||al||) /Al, Ay = <(1|U«1“)\1/§a2|”{ai}i61|2> By = ((1+|a1|)\1/_BTlan||{ai}iellz) .C = (”aln /B +
2
laslV/Bs + {as}serll2)? and K = ( JEC /By + V) + )
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(i) Let A be an (Ay, By) standard g-frame. If T is an (a1, as, {a; }ien)-perturbation of A,
then T is an (A2, By) standard g-frame and A —T is a standard g-Bessel sequence with

upper bound K.
(ii) Let F = {fi}ic1 € X be an (A1, B1) standard frame. If G = {g; }ie1 is a sequence in X
2

such that |{x, f; — gi)|* < |ai|{x, fi)| + as|(w, g;)| + a;|z|| , for each x € X, then G is

an (Az, Ba) standard frame and F — G is a standard Bessel sequence with upper bound
K.

Proof. (i) It follows from the proof of Theorem 4.1 in [19] that T" is an

— [la1])VAr — Q; yic 2 a1|])v/By A yie 2
(((1 I ||)1f1a2||||{ } 11||2) 7((1+|| 1||)1_B”a4g|{ } nlIz))

standard g-frame. Also the inequality

[{(Ai =Ti)ztierllz < [{ar|Aiz] + a2|Tix| + |z]a; fier|l2
< Nlaal[[{Aiz}tierlle + llall[{Tiz}icrll2 + [ lll[{ai}icrll2,

which is obtained from (2) for each finite subset F of I and € X implies that A —T' is a
standard g-Bessel sequence with upper bound (||a1|v/Bi + |laz||[v/Bs + ||[{a;}ic1ll2)?>. The
remainder is obtained from Proposition 2.4.

(ii) Let A = {A; € L(X, ) : i €[} and T = {I'; € L(X, Q) : ¢ € I}, where A;(x) = (x, f;)
and T';(x) = (x,¢g;). It is easy to see that A is an (Ay, By) standard g-frame and T is an
(a1, az2,{a;}ier)-perturbation of A. Now the result follows from part (i), Corollary 2.3 and
using the fact that F (resp. §) is a standard frame if and only if A (resp. T') is a standard
g-frame. ]

Let ®; = {A;; € £(X;,X;;) : ¢ € I} be an (A;, B;) standard g-frame for X;, j € J,
such that A = inf{A; : j € J} > 0 and B = sup{B; : j € J} < oo. Then we say that
{®,}jer is an (A, B)-bounded family of standard g-frames or shortly (A, B)-BFSGF.

It was proved in [19, Theorem 4.2] that {®,} ey is an (A, B)-BFSGF if and only if ®;c;®; =
{®;ey\ijtier is an (A, B) standard g-frame. Now we have the following result:

Corollary 2.4. Let A; and By be positive numbers and let ||{a;}icill2 < (1 — [la1]])v A1,
2 2
Ay — <<1—||a1|>m—|{ai}ieu|2> By (<1+|a1wBT+|l{ai}ienlz> , C = (Jar||v/Bi+az||vVBa+

I+[lazl 1—{laz
2
||{ai}i€]1||2)2 and K = (A?}A(;(\/ B1 + \/BQ) + f) . Let {(I)j}jGJ be an (Al,Bl)—BFSGF
If O; ={T;; € L(X;,X;;) : i € I} is an (a1, ag, {ai}ieﬂ)-pertWOn of/f_}ij;for each j € J,
then @®;cyV; is an (Ag, By) standard g-frame. In this case ®,c3®; — ®;ec1¥; is a standard
g-Bessel sequence with upper bound K.

Proof. The result follows from Theorem 4.2 in [19] and the above proposition. O

Proposition 2.6. [18] Let A be a standard g-frame with upper bound B and let ® be a
g-dual of A with upper bound D. IfT is a sequence such that T — A = {T; — A; }ier is a
standard g-Bessel sequence with upper bound C and CD < 1, then T is a standard g-frame.
Moreover, I' and ® are approximately g-duals.

Corollary 2.5. Suppose that A is an (A1, B1) standard g-frame and I is a sequence such
that A —T" is a standard g-Bessel sequence with upper bound C. If one of the followings
holds, then I is a standard g-frame and A —T' is a standard g-Bessel sequence with upper
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2
bound <AV ]132(;(\/31 +vB2) + f) , where Ay and By are lower and upper bounds of T,

respectively:

(i) A admits a dual with upper bound D and CD < 1.

Proof. If (i) holds, then using Proposition 2.6 and the condition C'D < 1, we obtain that T’
is a standard g-frame. Now the result follows from Proposition 2.4.

Now let C' < A;. Since A is a g-dual of A with upper bound D := A% and CD = A% <1,
condition (i) is satisfied and the result is obtained. O

3. Stability of fusion frames and resolutions of the identity

In this section, we study perturbations of fusion frames and resolutions of the identity
in Hilbert C*-modules. The following definition is a generalization of Definitions 3.24 and
3.29 in [6] to Hilbert C*-modules (see also [13]).

Definition 3.1. Let T; be an adjointable operator on X, for each i € 1.

(i) {Ti}ier is called a resolution of the identity on X if x = ), Tix and the series
converges in norm for each x € X.

(ii) Assume that {v;: i € I} C A is a family of weights, i.e., each v; is a positive, invertible
element from the center of A. Then {(T},v;)}ier is called an (*-resolution of the
identity if {T;}ic1 is a resolution of the identity and there exists a real number B > 0
such that

> v *|Tixf* < Blaf?,
i€l
and the series converges in norm for each x € X.

A closed submodule M of X is orthogonally complemented if X = M @ M=+. In this
case, myt € L(X, M), where ma¢: X — M is the projection onto M.
Now we recall the definition of fusion frames in Hilbert C*-modules from [13] (see also [1]).
Suppose that {w;: ¢ € I} C A is a family of weights and {W;: i € I} is a family of orthog-
onally complemented submodules of X. Then {(W;,w;)}ier is a fusion frame if there exist
real constants 0 < A < B < oo such that

Alw,z) < 3wl (mw, (@), 7w, (0)) < Bla,a) (@ € ).
i€l

We call A and B the lower and upper bounds of the fusion frame, respectively. In this case,
we call it an (A, B) fusion frame. If the sum converges in norm, it is called a standard fusion
frame and if we only require to have the upper bound, then {(W;,w;)}cr is called a Bessel
fusion sequence with upper bound B.
If W = {(W;,w;) }ie1 is a standard Bessel fusion sequence, then the operator Syy: X — X
defined by Sw(z) = 3, wimw,z is adjointable. Sy is called the operator of W and if W
is a standard fusion frame, then Syy is invertible.
Note that if a € Z() and T € £(X), then the operator aT: X — X which is defined by
(aT)(z) = aT () is adjointable with (aT)* = a*T*. Hence v2T; is an adjointable operator
on X.
It was proved (in Hilbert spaces) in Lemma 3.27, Proposition 3.28 and Theorem 3.30 in
[6] that ¢2-resolutions of the identity and resolutions of the identity of the form {v2T;}:cr
are useful in applications. Now we have the following two results for this kind of operator
sequences:
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Proposition 3.1. Suppose that T; is an adjointable operator on X and W; = T;(X) is
orthogonally complemented, for each i € 1.

(i) Suppose that the sequence {(vV?T;,v;)}icr satisfies the second condition of €2-resolution
of the identity (the inequality of {?-resolution of the identity) and T = {I'; € £L(X): i €
I} is a standard g-Bessel sequence with upper bound C such that ), vil'; Tz = .
If R is a positive number with Y, vZ|mw, () — Ty(x)[* < R|z|* and CR < 1, then
{(W;,vi) yier is a standard fusion frame and {v;mw, }icr and T are approzimately g-
duals.

(ii) If {(v2T;,v;) }ier is an €-resolution of the identity and there exists a positive number
R such that Y-,y vZ|mw, (x) — Ti(x)]* < R|z|?, for each x € X, then {(W;,v;)}ier is a
standard fusion frame for X.

Proof. (i) Suppose that {(v2T;, v;)}ier satisfies the inequality of £2-resolution of the identity.
We have
YTl =Y v wiTal* < Blaf, (3)
i€l iel
so {viTi}ier is a standard g-Bessel sequence. The equality ), v;['; Tz = x implies that T’
is a g-dual of {v;T;};c1. Now the result follows from Proposition 2.6.
(ii) For each z € X, we have

+ {viTiz}icill2 < (VR +VB)|z],

2

{vi(mw, (z) — Ti(x)) bie

[{vimw, (z) }ietll2 < ‘

S0 H > ier VZlmw, (;v)|2H < (VR+VB)?|z||? and Theorem 3.1 in [26] yields that {v;mw, }ier
is a standard g-Bessel sequence and consequently {(W;,v;)}ier is a standard Bessel fusion
sequence. The lower bound for {(W;, v;)}ier is obtained similar to the proof of Proposition
4.1 in [19] using Cauchy-Schwarz inequality in Hilbert C*-modules, the inequalities

2 2

foll = | (S ettt = || Site),vimwe @)
i€l i€l
< DTl vllrw, (@)
i€l i€l
< Blal?|| Y vflmw, (2) ],
i€l
H Y icl v12|7rw(:r)\2H > 1||z||* and Theorem 3.1 in [26]. O

In the next theorem, we show that for each x € X the family {v;mw, S5 ()}ier has
a certain minimum property. This result is a generalization of Theorem 2.2 and Corollary
2.1 in [12] to Hilbert C*-modules.
Theorem 3.1. Let W = {(W;, v;) }ier be a standard fusion frame for X.
(i) If {(v¥Ti,v;:) Yier s an €%-resolution of the identity, where T;: X — 'W;, then
S 2, St @) < 3 2T,
iel i€l

for each x € X and {v;T;}ic1 is a standard g-frame.
(i) If k € T with Wy, = X, then Sy, < v, 2Idy.
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Proof. (i) For each = € X, we have

S e St @)F = (3 vime,Sye, Syle) = (2, S e)

i€l iel
2 -1 2 —1
= < g vy Ty, Shy x> = E v (Tix, mw, Sty ).
iel i€l

Now we have

> vil(mw, Sy = Tl

i€l
= Z Vi mw, Sy x|® + Z V2| Tix|? — Z vF (T, Sy, Tyz) — Z VH(Tyz, mw, Syo' )
i€l i€l iel i€l
= ZU?|TZ96|2 - va(wwiS;\}m,Tix)
iel i€l
Also, we get

Z v (mw, Sy w, Tiz) = (Shy' Z vy, Ti(x))

i€l i€l

= <s o,y 0T (x > (Sy'w,z) = (@, Spyle) = Y v |mw, Sy (@)

i€l i€l

This yields that

0= Y Bl 30~ T = (ol - 5t il ) ).
i€l i€l i€l

50 e V2| mw, Syol (2)[2 < 3 v2| Tiz|2. If A is a lower bound of {(W;,v;)}ier, then
Allzll* < AllSwl?[185' =]

3 2l Sy

i€l

IN

1Swll® < [1Swl®

v

i€l

Hence ﬁ is a lower bound for {v;T;};er and the upper bound is obtained from (3).
(ii) Define T;: X — W, by T}, = Uk_271'wk and T; = 0 for each ¢ # k. Since Wy = X, we
have T} = Ul;zldx, SO
vaTix = U,rf.v,;QIdxx =z,
icl
also
> i Tl = il < o]«
icl

Hence {(v?T;,vi)}ier is an £2-resolution of the identity. Then using part (i), we have

(z, S x) = <va7rwi5\7\71x,5\7\71x>

i€l
= ZU?‘WWiS\X}JZF < Zvﬂﬂm\z = viv tzf? = (v, 2ldyw, ),
i€l i€l

so (v *Idx — Sy )z, ) > 0. Now Lemma 4.1 in [17] implies that Sy, < vy, 2Idy. O
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w-morphisms are important operators on Hilbert C*-modules with great applications
in operator theory. It recently has been shown in [21] that they are also nice operators in
frame theory, especially it was shown that they preserve most of the properties of a frame.
Now we state the definition of ¢-morphisms and refer to [3] for more details about the
properties of these operators.

Definition 3.2. Let X and Y be Hilbert C*-modules over C*-algebras A and B, respectively.
Let ¢ : A — B be a morphism of C*-algebras. A map ® : X — Y is said to be a
w-morphism of Hilbert C*-modules if

(@(z), 2(y)) = v((z,9)),
for each x,y € X.

It is easy to see that each p-morphism is a linear operator and ®(azx) = ¢(a)®(x),
for each a € A and z € X. Also, since ¢ is a morphism of C*-algebras, we have ||¢|| <1, so
the relation

1B (@)] = (@ (@), ®@)|* = lo((z,2))]? < =]

yields that ® is bounded with ||®| < 1.
We recall the following definition from [3].

Definition 3.3. A map ® : X — Y is called a unitary if there exists an injective morphism
of C*-algebras ¢ : A — B such that @ is a surjective @-morphism.

Note that if @ is a unitary ¢-morphism, then it is surjective and since ¢ is an injection,
then ® is isometric and so it is invertible (for more details, see [3]).

Proposition 3.2. Assume that {(T;,v;)}ier is an €2-resolution of the identity on X with
upper bound B.
(i) If @ is a p-morphism, then for each x € X, Y, o(vi) 2| ®(Tix)|* converges in norm
and

< Bz

S o(v) 2 @(Tia)?

i€l

ii) If ¢ is an isomorphism and ® is a unitary, adjointable p-morphism, then the sequence
¥ 2
{(@oT; 0 ® 1 p(v;)) bier is an £2-resolution of the identity on Y.

Proof. (i) For each x € X, we have

Y wl)*e(Tiw)P = @(Zvi2ITixlz>

i€l i€l
Be(|a]*) = Bl ().

IN

The above relation shows that Y., ¢(v;) "2|®(T;2)[* converges in norm and

Y wlw)*[@(Tia) || < Bl|@(2)]’|| < Bllz|*.

i€l

(ii) Since each v; is an invertible and positive element in the center of 2 and ¢ is a surjective
morphism of C*-algebras, it is easy to see that ¢(v;) is also an invertible and positive element
in the center of B. Let y;,y2 € Y and x1,75 € X with z; = ® (y;) and x5 = @ (y2).
Then o((z1,22)) = (P(x1), ®(x2)), s0 (P (y1), P (y2))) = (y1,92) and consequently
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((y1,92)) = (@7 1(y1),® 1 (y2)). Thus ®~! is a unitary ¢~ '-morphism. Now, for each

y €Y, we have

D (@oTiod =2 T(27'y) | =2(@ 'y) =vy.

i€l i€l
Also,
Yoe)P@oTiod () = o Y v T ()
i€l i€l
< By((27ly,7y))
= By(p~'lyI*) = Blyl*.
([l
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