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By modulating the definitions of m-convex functions and sub-b-convex func-
tions, the authors introduce a new class of generalized convex functions called sub-(b,m)-

convex functions and derive some basic properties for the newly introduced functions.
Furthermore, The sufficient conditions of optimality for both unconstrained and inequal-
ity constrained sub-(b,m)-convex programming are presented. Also some optimality con-
ditions of nonlinear multi-objective sub-(b,m)-convex programming are established.
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1. Introduction

Owing to the importance of the convexity and generalized convexity in the study of
optimality to solve the mathematical programming, researchers worked a lot on the gen-
eralized convex functions. For example, in earlier papers, Toader(1984) [22] introduced a
class of functions called m-convex functions. Bector and Singh(1991) [3] introduced a class
b-vex functions. Yang et al.(2002) [24] established some properties of explicitly B-preinvex
functions.

Recently, Long et al.(2006) [13] discussed a class of functions called semi-b-preinvex
functions, which is a generalization of the semi preinvex functions and the b-vex functions.
Mishra et al.(2011) [15] studied a class of E-b-vex functions, observed some of its basic
properties, and discussed certain interrelations with other functions. Emam(2012) [9] re-
searched a new class of functions called roughly b-invex functions, discussed their properties,
and obtained sufficient optimality criteria for nonlinear programming involving these func-
tions. Alimohammady et al.(2011) [1] have solved some basic notions of convex analysis and
convex optimization via convex semi-closed functions. Wang et al.(2012) [23] introduced
and investigated a certain subclass of meromorphic close-to-convex functions and discussed
some results as coefficient inequalities, convolution property, distortion property and radius
of meromorphic convexity. These scholars’s research promoted the development of the gen-
eralized convex functions like b-vex functions. Meanwhile, these extensions of convexity such
as sub-b-convexity and m-convexity sparking our research interest, so we turn our attention
to this new research.

More recently, some significant results involving the properties of generalized convex
function are optimality conditions for nonlinear generalized convex programming were cre-
ated in, for instance, see the papers [5, 7, 14, 16, 25] and closely related references therein.
Estimating a possible impact to applied sciences, Pitea et al. studied multiobjective op-
timization problems by means of several classes of generalized convexity in a geometric
framework; please, see [2], and [16, 18, 19, 20].
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Inspired by the research works [9, 10, 21, 26] and based on our work [12], we present
a new class of generalized convex functions which is called sub-(b,m)-convex functions and
discuss some properties of the class of functions satisfying the sub-(b,m)-convexity. We also
give the sufficient conditions of optimality for both unconstrained and inequality constrained
sub-(b,m)-convex programming.

The remainder of this paper is organized as follows. In Section 2, we recall the defini-
tions of b-convex, sub-b-convex and m-convex functions. Section 3 develops some properties
of sub-(b,m)-convex function and sub-(b,m)-convex sets. In Section 4, we introduce a new
sub-(b,m)-convex programming and establish the sufficient optimality conditions under the
b-(E,m)-convexity. Some optimality conditions for the nonlinear multi-objective sub-(b,m)-
convex programming by using weighting approach and ε-constraint approach are presented
in Section 5. Finally conclusions are given in Section 6.

2. Preliminaries

From now on, let Rn denote the n-dimensional Euclidean space and M be a nonempty
convex subset in Rn. In the following, several definitions about b-vex, m-convex and sub-b-
convex functions, which will be needed in sequel, from Bector and Singh [3], Chao and Jian
[6] and Toader [22] are summarized below.

Definition 2.1. Let M be a nonempty convex subset in Rn. The function f : M → R is
said to be:

(1): b-vex function on M with respect to mapping b : M ×M × [0, 1] → R, if
f
(
λx+ (1− λ)y

)
≤ λb(x, y, λ)f(x) +

(
1− λb(x, y, λ)

)
f(y)

holds for all x, y ∈ M and λ ∈ [0, 1];
(2): b-linear function on M with respect to mapping b : M ×M × [0, 1] → R, if

f
(
λx+ (1− λ)y

)
= λb(x, y, λ)f(x) +

(
1− λb(x, y, λ)

)
f(y)

holds for all x, y ∈ M and λ ∈ [0, 1].

Definition 2.2. The function f : [0, b] → R is said to be m-convex if

f
(
λx+m(1− λ)y

)
≤ λf(x) +m(1− λ)f(y)

holds for all x, y ∈ [0, b], λ ∈ [0, 1] and fixed m ∈ (0, 1].

Definition 2.3. The function f : M → R is said to be a sub-b-convex function on M with
respect to mapping b : M ×M × [0, 1] → R, if

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y) + b(x, y, λ)

holds for all x, y ∈ M and λ ∈ [0, 1].

3. Sub-(b,m)-convex functions

Before we introduce the concept of sub-(b,m)-convex functions, we give the definition
of m-convex set as follows.

Definition 3.1. A set S ⊂ Rn is said to be m-convex set, if there exists a fixed constant
m ∈ (0, 1] such that

λx+m(1− λ)y ∈ S (3.1)

for every x, y ∈ S and λ ∈ [0, 1].

Remark 3.1. By Definition 3.1, we can easily check that mx ∈ S for all x ∈ S and fixed
m ∈ (0, 1]. In addition, every convex set S ⊂ Rn is an m-convex set by taking m = 1.

The following result is obvious.
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Proposition 3.1. If Si(i ∈ I = {1, 2, · · · , n}) is a family of m-convex sets, then
∩

i∈I Si is
an m-convex set.

As one can see, the definitions of m-convex, b-vex and sub-b-convex functions have
similar forms. This observation leads us to generalize these varieties of convexity. Now,
we introduce the so-called ‘sub-(b,m)-convex function’ by combining Definition 2.2 and
Definition 2.3.

Definition 3.2. The function f : S → R is said to be sub-(b,m)-convex function on S with
respect to mapping b: S× S× [0, 1] → R, if there exists a fixed constant m ∈ (0, 1] such that
S is an m-convex set and

f
(
λx+m(1− λ)y

)
≤ λf(x) +m(1− λ)f(y) + b(x, y, λ) (3.2)

holds for all x, y ∈ S, λ ∈ [0, 1]. On the other hand, if

f
(
λx+m(1− λ)y

)
≥ λf(x) +m(1− λ)f(y) + b(x, y, λ) (3.3)

holds for all x, y ∈ S, λ ∈ [0, 1] and for some fixed m ∈ (0, 1], then the function f is said
to be sub-(b,m)-concave function. If the inequality signs in the previous two inequalities are
strict, then f is called strictly sub-(b,m)-convex or sub-(b,m)-concave function.

Proposition 3.2. Every convex function f on the convex set S is a sub-(b,m)-convex func-
tion with respect to the mapping b(x, y, λ) ≡ 0 and m = 1, but the converse is not necessarily
true.

Remark 3.2. If m = 1 in Definition 3.2, then the sub-(b,m)-convex function reduces to the
sub-b-convex function. When b(x, y, λ) ≤ 0, the sub-(b,m)-convex function reduces to the
m-convex function.

In the following, we are going to point out, whether or not, the sub-(b,m)-convex
function shares some similar properties with the sub-b-convex function. Some basic results
of sub-(b,m)-convex functions are established without proof.

Proposition 3.3. If fi: S → R, i ∈ I are sub-(b,m)-convex functions on m-convex set S
with respect to bi: S × S × [0, 1] → R, i ∈ I for the same fixed m ∈ (0, 1], respectively, then
the function

f =
∑
i∈I

aifi, ai ≥ 0, (i = 1, 2, · · · , n)

is sub-(b,m)-convex on m-convex set S with respect to b =
∑

i∈I aibi for the same fixed
m ∈ (0, 1].

Proposition 3.4. If fi: S → R, i ∈ I are sub-(b,m)-convex functions on m-convex set
S with respect to bi: S × S × [0, 1] → R, i ∈ I for the same fixed m ∈ (0, 1], respectively,
then the function f = max{fi, i ∈ I} is a sub-(b,m)-convex function on m-convex set S with
respect to b = max{bi, i ∈ I}.
Proposition 3.5. Assume f : S → R is a sub-(b,m)-convex function on m-convex set S
with respect to b: S × S × [0, 1] → R for the same fixed m ∈ (0, 1] and g: R → R is an
increasing linear function. Then f ′ = g ◦ f is a sub-(b,m)-convex function on m-convex set
S with respect to b′ = g ◦ b for fixed m ∈ (0, 1].

Next, we define the concept “sub-(b,m)-convex sets” and study some interrelationship
involving the sub-(b,m)-convex function and the sub-(b,m)-convex sets.

Definition 3.3. Let X ⊆ Rn+1 be a nonempty set. X is said to be sub-(b,m)-convex set
with respect to b: Rn × Rn × [0, 1] → R for some fixed m ∈ (0, 1], if(

λx+m(1− λ)y, λα+m(1− λ)β + b(x, y, λ)
)
∈ X (3.4)

holds for λ ∈ [0, 1], where (x, α), (y, β) ∈ X and x, y ∈ Rn.
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Here, we give a characterization of sub-(b,m)-convex function f : S → R in terms of
their epigraph E(f), which is given by

E(f) = {(x, α)|x ∈ S, α ∈ R, f(x) ≤ α}. (3.5)

Theorem 3.1. A function f : S → R is a sub-(b,m)-convex function on m-convex set S
with respect to b: S × S × [0, 1] → R for some fixed m ∈ (0, 1], if and only if E(f) is a
sub-(b,m)-convex set with respect to b.

Proof Suppose that f is a sub-(b,m)-convex function with respect to b. Let (x1, α1),
(x2, α2) ∈ E(f). Then, f(x1) ≤ α1, f(x2) ≤ α2. It follows that

f
(
λx1 +m(1− λ)x2

)
≤ λf(x1) +m(1− λ)f(x2) + b(x1, x2, λ)

≤ λα1 +m(1− λ)α2 + b(x1, x2, λ)

holds for all x1, x2 ∈ S, λ ∈ [0, 1]. Hence, we have that(
λx1 +m(1− λ)x2, λα1 +m(1− λ)α2 + b(x1, x2, λ)

)
∈ E(f).

Thus, by Definition 3.3, E(f) is a sub-(b,m)-convex set with respect to b.

Conversely, let’s assume that E(f) is a sub-(b,m)-convex set with respect to b. Let
x1, x2 ∈ S, then

(
x1, f(x1)

)
,
(
x2, f(x2)

)
∈ E(f). Thus, for λ ∈ [0, 1] and some fixed m ∈

(0, 1], it yields that(
λx1 +m(1− λ)x2, λf(x1) +m(1− λ)f(x2) + b(x1, x2, λ)

)
∈ E(f).

This implies that

f
(
λx1 +m(1− λ)x2

)
≤ λf(x1) +m(1− λ)f(x2) + b(x1, x2, λ).

That is, f is a sub-(b,m)-convex function with respect to b and the proof of Theorem 3.1 is
completed.

Theorem 3.2. If Xi, i ∈ I is a family of sub-(b,m)-convex sets with respect to the same
b(x, y, λ) for the same fixed m ∈ (0, 1], then

∩
i∈I Xi is a sub-(b,m)-convex set with respect

to b(x, y, λ).

Theorem 3.3. If {fi|i ∈ I} is a family of numerical functions, and each fi is a sub-(b,m)-
convex function with respect to the same b(x, y, λ) for the same fixed m ∈ (0, 1], then the
numerical function f = supi∈I fi(x) is a sub-(b,m)-convex function with respect to b(x, y, λ).

The proofs of Theorem 3.2 and Theorem 3.3 are not particularly difficult, so no proofs
will be given here.

4. Sub-(b,m)-convex Programming

Here the mapping b : S× S× [0, 1] → R, where S is an m-convex set.
We make

Assumption 1: The limit limλ→0+
b(x,y,λ)

λ exists for fixed x, y ∈ S.

Assumption 2: The function f(x) satisfies that f
(
my + λ(x−my)

)
≥ mf

(
y + λ

m (x−
my)

)
holds for any x, y ∈ S, λ ∈ (0, 1] and some fixed m ∈ (0, 1]. For fixed x, y ∈ S,

when λ → 0+, f
(
my + λ(x−my)

)
→ mf(y).

We present
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Theorem 4.1. Suppose that f : S → R is a differentiable sub-(b,m)-convex function on
m-convex set S with respect to mapping b(x, y, λ) for some fixed m ∈ (0, 1], the mapping b
satisfies Assumption 1 and the function f satisfies Assumption 2, then

∇f(y)T (x−my) ≤
(
f(x)− f(my)

)
+ lim

λ→0+

b(x, y, λ)

λ
.

Proof By the Taylor expansion and the assumption of f , we have that

f
(
λx+m(1− λ)y

)
= f

(
my + λ(x−my)

)
≥ m

(
f
(
y +

λ

m
(x−my)

))
= m

(
f(y) +

λ

m
∇f(y)T (x−my) + o

( λ
m

))
= mf(y) + λ∇f(y)T (x−my) + o(λ).

(4.1)

Since f is a sub-(b,m)-convex function on m-convex set, it follows that

f
(
λx+m(1− λ)y

)
≤ λf(x) +m(1− λ)f(y) + b(x, y, λ). (4.2)

Combining the inequality (4.1) and (4.2), it yields that

λ∇f(y)T (x−my) + o(λ) ≤ λ
(
f(x)−mf(y)

)
+ b(x, y, λ). (4.3)

From Assumption 1, dividing the inequality (4.3) by λ and taking λ → 0+, it follows that

∇f(y)T (x−my) ≤
(
f(x)−mf(y)

)
+ lim

λ→0+

b(x, y, λ)

λ

=
(
f(x)− f(my)

)
+ lim

λ→0+

b(x, y, λ)

λ

holds for all x, y ∈ X and fixed m ∈ (0, 1]. The statement in Theorem 4.1 is completed.
We can easily get the following

Corollary 4.1. Suppose that f : S → R is a differentiable strictly sub-(b,m)-convex function
on m-convex set S with respect to mapping b(x, y, λ) for some fixed m ∈ (0, 1], the mapping
b satisfies Assumption 1 and the function f satisfies Assumption 2, Then for any x, y ∈ X

∇f(y)T (x−my) <
(
f(x)− f(my)

)
+ lim

λ→0+

b(x, y, λ)

λ
.

Proof Using the similar way in Theorem 4.1, we have that

f
(
λx+m(1− λ)y

)
≥ mf(y) + λ∇f(y)T (x−my) + o(λ). (4.4)

Since f is a strictly sub-(b,m)-convex function on m-convex set, it follows that

f
(
λx+m(1− λ)y

)
< λf(x) +m(1− λ)f(y) + b(x, y, λ). (4.5)

Combining the inequality (4.4) and (4.5), it yields that

λ∇f(y)T (x−my) + o(λ) < λ
(
f(x)−mf(y)

)
+ b(x, y, λ). (4.6)

From Assumption 1, dividing the inequality (4.6) by λ and taking λ → 0+, it follows that

∇f(y)T (x−my) <
(
f(x)−mf(y)

)
+ lim

λ→0+

b(x, y, λ)

λ

=
(
f(x)− f(my)

)
+ lim

λ→0+

b(x, y, λ)

λ

holds for all x, y ∈ X and fixed m ∈ (0, 1]. This ends the proof.
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By using the associated results above, we consider the nonlinear unconstraint problem
(P ).

(P ) : min{f(x), x ∈ S}
We prove the following result.

Theorem 4.2. Let f : S → R be a differentiable sub-(b,m)-convex function on m-convex
set S with respect to b for some fixed m ∈ (0, 1], the mapping b satisfies Assumption 1 and
the function f satisfies Assumption 2. If x̄ ∈ S and the inequality

∇f(x̄)T (x−mx̄) ≥ lim
λ→0+

b(x, x̄, λ)

λ

holds for each x ∈ S, λ ∈ [0, 1] and some fixed m ∈ (0, 1], then mx̄ is the optimal solution
to the problem (P ) with respect to f on m-convex set S.

Proof For any x ∈ S, since f is a differentiable sub-(b,m)-convex function, by Theorem 4.1,
it follows that

∇f(x̄)T (x−mx̄)− lim
λ→0+

b(x, x̄, λ)

λ
≤

(
f(x)− f(mx̄)

)
holds for λ ∈ [0, 1], some fixed m ∈ (0, 1]. On the other hand, since

∇f(x̄)T (x−mx̄) ≥ lim
λ→0+

b(x, x̄, λ)

λ
,

we have f(x)− f(mx̄) ≥ 0. Therefore, mx̄ is the optimal solution to the problem (P ). This
completes the proof.

Similary, we get the claim below.

Corollary 4.2. Let f : S → R be a differentiable strictly sub-(b,m)-convex function on m-
convex set S with respect to b for some fixed m ∈ (0, 1], the mapping b satisfies Assumption
1 and the function f satisfies Assumption 2. If x̄ ∈ S and the inequality

∇f(x̄)T (x−mx̄) ≥ lim
λ→0+

b(x, x̄, λ)

λ

holds for each x ∈ S, λ ∈ [0, 1] and some fixed m ∈ (0, 1], then mx̄ is the unique optimal
solution to the problem (P ).

Proof Using Corollary 4.1 and the strictly sub-(b,m)-convexity of f on m-convex set S with
respect to b, we have for x̄ ∈ S with each x ∈ S the following inequality

∇f(x̄)T (x−mx̄) <
(
f(x)− f(mx̄)

)
+ lim

λ→0+

b(x, x̄, λ)

λ
.

So, when the inequality

∇f(x̄)T (x−mx̄) ≥ lim
λ→0+

b(x, x̄, λ)

λ

holds for each x ∈ S, any λ ∈ [0, 1] and m ∈ (0, 1], it follows that f(x) − f(mx̄) > 0 for
every x ∈ S. Therefore, mx̄ ∈ X is the unique optimal solution to the problem (P ), which
ends the proof.

Next, we are going to apply the associated results to the nonlinear programming with
inequality constraints as follows:

(Ps) : min
{
f(x)|x ∈ Rn, gi(x) ≤ 0, i ∈ I

}
, I = {1, 2, · · · , n}.

Denote the feasible set of (Ps) by F = {x ∈ Rn|gi(x) ≤ 0, i ∈ I}. For the convenience of
discussion, we assume that f and gi are all differentiable and F is a nonempty set in Rn.

We present
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Theorem 4.3. (Karush-Kuhn-Tucker Sufficient Conditions) Suppose that the func-
tion f : Rn → R is differentiable sub-(b,m)-convex function with respect to b for some fixed
m ∈ (0, 1], gi: Rn → R, i ∈ I are differentiable sub-(b,m)-convex functions with respect to
bi, i ∈ I for some fixed m ∈ (0, 1], the mapping b satisfies Assumption 1 and f, gi satisfy
Assumption 2. Assume that x∗ ∈ F is a KKT point of (Ps), i.e., there exist multipliers
ui ≥ 0, i ∈ I such that

∇f(x∗) +
∑
i∈I

ui∇gi(x
∗) = 0, uigi(x

∗) = 0. (4.7)

If

lim
λ→0+

b(x, x∗, λ)

λ
≤ −

∑
i∈I

ui lim
λ→0+

bi(x, x
∗, λ)

λ
, (4.8)

then mx∗ is an optimal solution to the problem (Ps).

Proof For any x ∈ F , we have that

gi(x) ≤ 0 = gi(x
∗), i ∈ I(x∗) = {i ∈ I|gi(x∗) = 0}.

Therefore, by the sub-(b,m)-convexity of gi and Theorem 4.1, for i ∈ I(x∗), we obtain

∇gi(x
∗)T (x−mx∗)− lim

λ→0+

bi(x, x
∗, λ)

λ
≤

(
gi(x)−mgi(x

∗)
)
≤ 0. (4.9)

From (4.7), it follows that

∇f(x∗)T (x−mx∗) = −
∑
i∈I

ui∇gi(x
∗)T (x−mx∗).

Using the condition (4.8), it yields that

∇f(x∗)T (x−mx∗)− lim
λ→0+

b(x, x∗, λ)

λ

≥ −
∑
i∈I

ui∇gi(x
∗)T (x−mx∗) +

∑
i∈I

ui lim
λ→0+

bi(x, x
∗, λ)

λ

= −
∑

i∈I(x∗)

ui

(
∇gi(x

∗)T (x−mx∗)− lim
λ→0+

bi(x, x
∗, λ)

λ

)
.

(4.10)

Combining the inequality (4.9) and (4.10), we can deduce that

∇f(x∗)T (x−mx∗)− lim
λ→0+

b(x, x∗, λ)

λ
≥ 0.

From Theorem 4.2, we can get that f(x) − f(mx∗) ≥ 0 for each x ∈ F . Therefore mx∗ is
an optimal solution to the problem (Ps). This ends the proof.

5. Multi-Objective Sub-(b,m)-convex Programming

Consider the following nonlinear multi-objective sub-(b,m)-convex programming (MP ):

(MP ) min f(x) =
(
f1(x), f2(x), · · · , fp(x)

)
s.t. x ∈ M = {x ∈ Rn|gj(x) ≤ 0, j = 1, 2, · · · , q},

where fi(x) : Rn → R, i ∈ P = {1, 2, · · · , p} and gj(x) : Rn → R, j ∈ Q = {1, 2, · · · , q} are
sub-(b,m)-convex functions.

Let us recall three necessary definitions which are used for further discussion.

Definition 5.1. A feasible point x∗ ∈ M of problem (MP ) is said to be an efficient solution
if and only if there does not exist another x ∈ M such that fi(x) ≤ fi(x

∗) for every i ∈ P
with strict inequality holding for at least one i0 ∈ P .
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Definition 5.2. A feasible point x∗ ∈ M of problem (MP ) is said to be a weakly efficient
solution if and only if there does not exist another x ∈ M such that fi(x) < fi(x

∗) for every
i ∈ P .

Definition 5.3. A feasible point x∗ ∈ M of problem (MP ) is said to be a properly efficient
solution if there exists a scalar µ > 0 such that for each i ∈ P and each x ∈ M satisfying
fi(x) < fi(x

∗), there exists at least one j ̸= i with fi(x) > fi(x
∗) and

fi(x)− fi(x
∗)

fj(x∗)− fj(x)
≤ µ.

We prove the following

Theorem 5.1. Let b : S × S × [0, 1] → (−∞, 0], If f(x) is sub-(b,m)-convex function with
respect to the mapping b(x, y, λ) for some fixed m ∈ (0, 1], then the set

A =
∪

x∈M

A(x)

is a convex set, where A(x) = {z|z ∈ RP , z > f(x)− f(x∗), x ∈ M}.

Proof Let z1, z2 ∈ A(x), and b : S × S × [0, 1] → (−∞, 0], then for any λ ∈ [0, 1], fixed
m ∈ (0, 1], x1, x2 ∈ M and f(x) is sub-(b,m)-convex function, we have that

λz1 + (1− λ)z2 > λ[f(x1)− f(x∗)] + (1− λ)[f(x2)− f(x∗)]

= λf(x1) + (1− λ)f(x2)− f(x∗)

≥ λf(x1) +m(1− λ)f(x2) + b(x, y, λ)− f(x∗)

≥ f(λx1 +m(1− λ)x2)− f(x∗),

which implies λz1 + (1− λ)z2 ∈ A. Hence A is a convex set.

5.1. Weighting approach

To characterize an efficient solution for problem (MP ) by weighting approach [8], let
us scalarize problem (MP ) to become in the following form.

(MPω) min

p∑
i

ωifi(x)

s.t. x ∈ M = {x ∈ Rn|gj(x) ≤ 0, j = 1, 2, · · · , q},
We prove the following result.

Theorem 5.2. If x∗ ∈ M is an efficient solution for problem (MP ), then there exists
ωi > 0, i ∈ P ,

∑p
i ωi = 1, such that x∗ is an optimal solution for problem (MPω).

Proof Let x∗ ∈ M be an efficient solution for problem (MP ), then the system fi(x)−fi(x
∗) <

0, i ∈ P has no solution x ∈ M , combining Theorem 4.1 and applying the generalized Gordan
theorem [4], there exists νi, i ∈ P such that

νi[fi(x)− fi(x
∗)] > 0

and
νi∑
i∈P νi

[fi(x)− fi(x
∗)] > 0.

We denote
νi∑
i∈P νi

= ωi,

then ωi > 0, i ∈ P and
∑p

i ωi = 1. Hence

ωifi(x
∗) < ωifi(x).
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That is, x∗ is an optimal solution for problem (MPω).
We also have

Theorem 5.3. If x̄ ∈ M is an optimal solution for problem (MPω̄) with ω̄i, i ∈ P , then x̄
is an efficient solution for problem (MP ), if one of the following two conditions holds:

(1), ω̄i > 0 for any i ∈ P ;
(2), x̄ is the unique solution to the problem (MPω̄).

The proof of Theorem 5.3 is similar to the Theorem 5.2.

5.2. ε-constraint approach

The ε-constraint approach is one of the common approaches for characterizing efficient
solutions to multi-objective programming. In the following we shall characterize an efficient
solution for the multi-objective programming (MP ) in terms of an optimal solution to the
following scalar problem:

(MPε) min fk(x)

s.t. x ∈ M = {x ∈ Rn|gj(x) ≤ 0, j = 1, 2, · · · , q},
fi(x) ≤ εi, i ∈ P, i ̸= k.

We prove the following

Theorem 5.4. If x∗ ∈ M is an efficient solution for problem (MP ), then x∗ is an optimal
solution for problem (MPε) with εi = fi(x

∗).

Proof Let x∗ ∈ M be not an optimal solution for (MPε) with εi = fi(x
∗), i ∈ P, i ̸= k, so

there exists x ∈ M such that

fk(x) < fk(x
∗)

and

fi(x) ≤ εi = fi(x
∗), i ∈ P, i ̸= k.

Therefore, x∗ ∈ M is not an efficient solution for problem (MP ) which is a contradiction.
Hence, x∗ is an optimal solution for problem (MPε) with εi = fi(x

∗).
We continue with

Theorem 5.5. If x̄ ∈ M is an optimal solution to the problem (MPε) with ε̄i = fi(x̄) for
all i = 1, 2, · · · , p, then x̄ is an efficient solution for problem (MP ).

Proof Since x̄ ∈ M is an optimal solution to the problem (MPε) for all k = 1, 2, · · · , p, for
each x ∈ M , we have that

fk(x̄) ≤ fk(x),

fi(x) ≤ ε̄i = fi(x̄), i = 1, 2, · · · , p, i ̸= k

This implies that the system fi(x)− fi(x̄) < 0, i ∈ P has no solution x ∈ M . Hence, x̄ is an
efficient solution for problem (MP ).

Next we discuss the sufficient conditions for a feasible solution x∗ to be efficient or
properly efficient for problem (MP ) in the following theorems.

Theorem 5.6. Let fi(x), i ∈ P and gj(x), j ∈ Q be differentiable sub-(b,m)-convex functions
with respect to bi, i ∈ P and bj , j ∈ Q, respectively. Suppose that there exist a feasible x∗ ∈ M
to the problem (MP ) and multipliers λ̄i > 0, i ∈ P , uj ≥ 0, j ∈ Q such that∑

i∈P

λ̄i∇fi(x
∗) +

∑
j∈Q

uj∇gj(x
∗) = 0, (5.1)

uigi(x
∗) = 0. (5.2)
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If ∑
i∈P

λ̄i lim
λ→0+

bi(x, x
∗, λ)

λ
≤ −

∑
j∈Q

uj lim
λ→0+

bj(x, x
∗, λ)

λ
, (5.3)

then x∗ is a properly efficient solution to the problem (MP ).

Proof For any x ∈ M , we have that

gj(x) ≤ 0 = gj(x
∗), j ∈ Q(x∗) = {j ∈ Q : gj(x

∗) = 0}.
Through the equality (5.2), we deduce that uj = 0 for j /∈ Q(x∗). Then, it follows that∑

j∈Q

uj∇gj(x
∗) =

∑
j∈Q(x∗)

uj∇gj(x
∗). (5.4)

According to Theorem 4.1 and by the sub-(b,m)-convexity of gj (j ∈ Q(x∗)), it is easy to
show that

∇gj(x
∗)T (x−mx∗)− lim

λ→0+

bj(x, x
∗, λ)

λ
≤

(
gj(x)−mgj(x

∗)
)
≤ 0. (5.5)

On account of λ̄i > 0, i ∈ P , uj ≥ 0, j ∈ Q and combining the equality (5.4), inequality
(5.3), (5.5), and the sub-(b,m)-convexity of fi(x), i ∈ P , it yields∑

i∈P

λ̄i(fi(x)− fi(mx∗)) ≥
∑
i∈P

λ̄i∇fi(x
∗)T (x−mx∗)−

∑
i∈P

λ̄i lim
λ→0+

bi(x, y, λ)

λ

= −
∑

j∈Q(x∗)

uj∇gj(x
∗)T (x−mx∗)−

∑
i∈P

λ̄i lim
λ→0+

bi(x, y, λ)

λ

≥ −
∑

j∈Q(x∗)

uj∇gj(x
∗)T (x−mx∗) +

∑
j∈Q(x∗)

uj lim
λ→0+

bj(x, x
∗, λ)

λ

≥ −
∑

j∈Q(x∗)

uj(gj(x)−mgj(x
∗))

≥ 0.

That is ∑
i∈P

λ̄ifi(x)−
∑
i∈P

λ̄ifi(mx∗) ≥ 0

holds for all x ∈ M . It follows thatmx∗ minimizes
∑

i∈P λ̄ifi(x) subject to gj(x) ≤ 0, j ∈ Q.
Therefore, from Theorem 1 in [11], mx∗ is a proper efficient solution to the problem (MP )
which ends the proof.

Finally, we prove the following

Theorem 5.7. Let fi(x), i ∈ P and gj(x), j ∈ Q be differentiable sub-(b,m)-convex functions
with respect to bi, i ∈ P and bj , j ∈ Q, respectively. Suppose that there exist a feasible x∗ ∈ M
to the problem (MP ) and scalars ωi ≥ 0, i ∈ P ,

∑
i∈P ωi = 1 such that the triplet (x∗, ωi, uj)

satisfies ∑
i∈P

ωi∇fi(x
∗) +

∑
j∈Q

uj∇gj(x
∗) = 0, (5.6)

uigi(x
∗) = 0. (5.7)

If ∑
i∈P

ωi lim
λ→0+

bi(x, x
∗, λ)

λ
≤ −

∑
j∈Q

uj lim
λ→0+

bj(x, x
∗, λ)

λ
, (5.8)

and
∑

i∈P ωifi(x) is a strictly sub-(b,m)-convex functions. Then x∗ is an efficient solution
to the problem (MP ).
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Proof Suppose that x∗ is not an efficient solution for (MP ), then there exist a feasible
x ∈ M and an index κ such that

fκ(x) < fκ(x
∗)

and

fi(x) ≤ fi(x
∗), for i ̸= κ.

Since
∑

i∈P ωifi(x) is a strictly sub-(b,m)-convex functions, we have that∑
i∈P

ωifi(x)−
∑
i∈P

ωifi(x
∗) < 0.

Combining Theorem 4.1, it yields that∑
i∈P

ωi∇fi(x
∗)T (x−mx∗)−

∑
i∈P

ωi lim
λ→0+

bi(x, x
∗, λ)

λ
< 0, (5.9)

and for uj ≥ 0, j ∈ Q(x∗), combining the equality (5.7), it follows that∑
j∈Q

uj∇gj(x
∗)T (x−mx∗)−

∑
j∈Q

uj lim
λ→0+

bj(x, x
∗, λ)

λ
≤ 0. (5.10)

According to the inequality (5.8), Adding (5.9) and (5.10) that contradicts (5.6). Then, we
conclude that x∗ is an efficient solution to the problem (MP ).

6. Conclusion

In this paper, we have introduced sub-(b,m)-convex sets and sub-(b,m)-convex func-
tions. It is observed that sub-(b,m)-convex functions can be simplified into m-convex func-
tion on the conditions that b(x, y, λ) ≤ 0 and can be simplified into sub-b-convex function
on the conditions that m = 1. Therefore, the sub-(b,m)-convex function is a generaliza-
tion of m-convex and sub-b-convex function. Also we have studied optimality conditions for
obtaining an optimal solution to sub-(b,m)-convex programming.
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