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OPTIMALITY CONDITIONS IN SUB-(b,m)-CONVEX PROGRAMMING
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By modulating the definitions of m-convex functions and sub-b-convexr func-
tions, the authors introduce a new class of generalized convez functions called sub-(b,m)-
convex functions and derive some basic properties for the newly introduced functions.
Furthermore, The sufficient conditions of optimality for both unconstrained and inequal-
ity constrained sub-(b, m)-convex programming are presented. Also some optimality con-
ditions of nonlinear multi-objective sub-(b, m)-convexr programming are established.
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1. Introduction

Owing to the importance of the convexity and generalized convexity in the study of
optimality to solve the mathematical programming, researchers worked a lot on the gen-
eralized convex functions. For example, in earlier papers, Toader(1984) [22] introduced a
class of functions called m-convex functions. Bector and Singh(1991) [3] introduced a class
b-vex functions. Yang et al.(2002) [24] established some properties of explicitly B-preinvex
functions.

Recently, Long et al.(2006) [13] discussed a class of functions called semi-b-preinvex
functions, which is a generalization of the semi preinvex functions and the b-vex functions.
Mishra et al.(2011) [15] studied a class of E-b-vex functions, observed some of its basic
properties, and discussed certain interrelations with other functions. Emam(2012) [9] re-
searched a new class of functions called roughly b-invex functions, discussed their properties,
and obtained sufficient optimality criteria for nonlinear programming involving these func-
tions. Alimohammady et al.(2011) [1] have solved some basic notions of convex analysis and
convex optimization via convex semi-closed functions. Wang et al.(2012) [23] introduced
and investigated a certain subclass of meromorphic close-to-convex functions and discussed
some results as coefficient inequalities, convolution property, distortion property and radius
of meromorphic convexity. These scholars’s research promoted the development of the gen-
eralized convex functions like b-vex functions. Meanwhile, these extensions of convexity such
as sub-b-convexity and m-convexity sparking our research interest, so we turn our attention
to this new research.

More recently, some significant results involving the properties of generalized convex
function are optimality conditions for nonlinear generalized convex programming were cre-
ated in, for instance, see the papers [5, 7, 14, 16, 25] and closely related references therein.
Estimating a possible impact to applied sciences, Pitea et al. studied multiobjective op-
timization problems by means of several classes of generalized convexity in a geometric
framework; please, see [2], and [16, 18, 19, 20].
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Inspired by the research works [9, 10, 21, 26] and based on our work [12], we present
a new class of generalized convex functions which is called sub-(b, m)-convex functions and
discuss some properties of the class of functions satisfying the sub-(b, m)-convexity. We also
give the sufficient conditions of optimality for both unconstrained and inequality constrained
sub-(b, m)-convex programming.

The remainder of this paper is organized as follows. In Section 2, we recall the defini-
tions of b-convex, sub-b-convex and m-convex functions. Section 3 develops some properties
of sub-(b, m)-convex function and sub-(b, m)-convex sets. In Section 4, we introduce a new
sub-(b, m)-convex programming and establish the sufficient optimality conditions under the
b-(E, m)-convexity. Some optimality conditions for the nonlinear multi-objective sub-(b, m)-
convex programming by using weighting approach and e-constraint approach are presented
in Section 5. Finally conclusions are given in Section 6.

2. Preliminaries

From now on, let R™ denote the n-dimensional Euclidean space and M be a nonempty
convex subset in R™. In the following, several definitions about b-vex, m-convex and sub-b-
convex functions, which will be needed in sequel, from Bector and Singh [3], Chao and Jian
[6] and Toader [22] are summarized below.

Definition 2.1. Let M be a nonempty convexr subset in R™. The function f: M — R is
said to be:

(1): b-vex function on M with respect to mapping b: M x M x [0,1] = R, if
Fz+ (1= Ny) < Ab(z,y,A) f(2) + (1= Ab(z, 5, M) £ (y)
holds for all x,y € M and X € [0,1];
(2): b-linear function on M with respect to mapping b: M x M x [0,1] — R, if
holds for all x,y € M and A € [0,1].
Definition 2.2. The function f: [0,b] — R is said to be m-convex if
Fx+m(1 = Ny) < Af(2) +m(l—A)f(y)
holds for all x,y € [0,b], X € [0,1] and fized m € (0, 1].

Definition 2.3. The function f : M — R is said to be a sub-b-convex function on M with
respect to mapping b: M x M x [0,1] = R, if

FAz+ 1= Ny) <Af(@)+ (1= NF(y) + bz, y,\)
holds for all x,y € M and X € [0, 1].

3. Sub-(b,m)-convex functions

Before we introduce the concept of sub-(b, m)-convex functions, we give the definition
of m-convex set as follows.

Definition 3.1. A set S C R" is said to be m-conver set, if there exists a fixed constant
m € (0, 1] such that

A+m(l—NyesS (3.1)
for every x,y € S and X € [0, 1].

Remark 3.1. By Definition 3.1, we can easily check that max € S for all x € S and fized
m € (0,1]. In addition, every convex set S C R™ is an m-convex set by taking m = 1.

The following result is obvious.
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Proposition 3.1. If S;(i € I = {1,2,--- ,n}) is a family of m-convex sets, then (;c; S; is
an m-convex set.

As one can see, the definitions of m-convex, b-vex and sub-b-convex functions have
similar forms. This observation leads us to generalize these varieties of convexity. Now,
we introduce the so-called ‘sub-(b,m)-convex function’ by combining Definition 2.2 and
Definition 2.3.

Definition 3.2. The function f: S — R is said to be sub-(b, m)-convez function on S with
respect to mapping b: S x S x [0,1] = R, if there exists a fized constant m € (0,1] such that
S is an m-conver set and

Az +m(1 = Ny) < Af(z) +m(l =) f(y) + bz, y,)) (3.2)
holds for all z,y € S, A € [0,1]. On the other hand, if
fQz +m(1 = Ny) > M) +m(l =N f(y) +blz,y, \) (3.3)

holds for all z,y € S, A € [0,1] and for some fized m € (0,1], then the function f is said
to be sub-(b, m)-concave function. If the inequality signs in the previous two inequalities are
strict, then f is called strictly sub-(b, m)-convezx or sub-(b,m)-concave function.

Proposition 3.2. Fvery convex function f on the convez set S is a sub-(b, m)-convez func-
tion with respect to the mapping b(x,y, \) = 0 and m = 1, but the converse is not necessarily
true.

Remark 3.2. If m = 1 in Definition 3.2, then the sub-(b, m)-convex function reduces to the
sub-b-convex function. When b(x,y,\) < 0, the sub-(b,m)-convex function reduces to the
m-convex function.

In the following, we are going to point out, whether or not, the sub-(b, m)-convex
function shares some similar properties with the sub-b-convex function. Some basic results
of sub-(b, m)-convex functions are established without proof.

Proposition 3.3. If f;: S — R, i € I are sub-(b, m)-convexr functions on m-convez set S
with respect to b;: S x S x [0,1] = R, ¢ € I for the same fixzed m € (0, 1], respectively, then
the function

f=Y aifia;>0,(i=12--n)

icl

is sub-(b, m)-conver on m-convexr set S with respect to b =
m € (0,1].
Proposition 3.4. If f;: S = R, i € I are sub-(b,m)-convex functions on m-convex set
S with respect to b;: S x S x [0,1] = R, i € I for the same fized m € (0,1], respectively,
then the function f = max{f;,i € I} is a sub-(b,m)-convex function on m-convez set S with
respect to b = max{b;,i € I}.

se1 aibi for the same fived

Proposition 3.5. Assume f: S — R is a sub-(b,m)-convex function on m-convex set S
with respect to b: S x S x [0,1] = R for the same fixed m € (0,1] and g: R — R is an
increasing linear function. Then f' = go f is a sub-(b, m)-convex function on m-convex set
S with respect to b = g o b for fized m € (0,1].

Next, we define the concept “sub-(b, m)-convex sets” and study some interrelationship
involving the sub-(b, m)-convex function and the sub-(b, m)-convex sets.

Definition 3.3. Let X C R"*! be a nonempty set. X is said to be sub-(b,m)-convexr set
with respect to b: R™ x R™ x [0,1] — R for some fized m € (0,1], if

()\x +m(l =Ny, da+m(l— NS+ b(z,y, A)) eX (3.4)
holds for A € [0,1], where (z,), (y,8) € X and z,y € R™.
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Here, we give a characterization of sub-(b, m)-convex function f: S — R in terms of
their epigraph E(f), which is given by

E(f) ={(z,a)|lz € S,a e R, f(z) < a}. (3.5)

Theorem 3.1. A function f: S — R is a sub-(b,m)-convex function on m-convex set S
with respect to b: S x S x [0,1] = R for some fized m € (0,1], if and only if E(f) is a
sub-(b, m)-convex set with respect to b.

Proof Suppose that f is a sub-(b,m)-convex function with respect to b. Let (z1,aq),
(z2,2) € E(f). Then, f(z1) < a1, f(z2) < as. It follows that

f()\acl +m(l— )\)xg) < Af(x1) +m(l = ) f(z2) + b(z1, T2, A)
< Aoy +m(l — Nag + b(zy1, 2, \)

holds for all z1,z5 € S, A € [0,1]. Hence, we have that
(x\xl + m(1 = Nzxa, Aag + m(1 — Nag + b(x1, x2, )\)) e E(f).
Thus, by Definition 3.3, E(f) is a sub-(b, m)-convex set with respect to b.

Conversely, let’s assume that E(f) is a sub-(b, m)-convex set with respect to b. Let
x1,To € S, then (:Ul,f(xl)), (J:Q,f(xg)) € E(f). Thus, for A € [0,1] and some fixed m €
(0, 1], it yields that

(A (1= X, A )+ m(L = X)f () + b1, 2,3)) € B
This implies that
f(Az1 +m(1 = Naa) < Af(z1) + m(l = N)f(z2) + b(z1, 22, N).

That is, f is a sub-(b, m)-convex function with respect to b and the proof of Theorem 3.1 is
completed.

Theorem 3.2. If X;, i € I is a family of sub-(b, m)-conver sets with respect to the same
b(z,y,A) for the same fized m € (0,1], then (;c; X is a sub-(b,m)-convex set with respect
to b(xz,y, \).

Theorem 3.3. If {f;|i € I} is a family of numerical functions, and each f; is a sub-(b,m)-
convex function with respect to the same b(x,y,\) for the same fized m € (0,1], then the
numerical function f = sup;c; fi(z) is a sub-(b, m)-convex function with respect to b(z,y, A).

The proofs of Theorem 3.2 and Theorem 3.3 are not particularly difficult, so no proofs
will be given here.

4. Sub-(b,m)-convex Programming
Here the mapping b : S x §x [0,1] — R, where S is an m-convex set.
We make

Assumption 1: The limit limy o4 M exists for fized x,y € S.

Assumption 2: The function f(x) satisfies that f(my + Az — my)) >mf (y + %(m —
my)) holds for any z,y € S, A € (0,1] and some fized m € (0,1]. For fized x,y € S,
when X — 0+, f(my + Az — my)) — mf(y).

We present
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Theorem 4.1. Suppose that f : S — R is a differentiable sub-(b,m)-convezr function on
m-convex set S with respect to mapping b(xz,y,\) for some fized m € (0,1], the mapping b
satisfies Assumption 1 and the function f satisfies Assumption 2, then

Vi) (@ —my) < (f@) = flmy)) + lim L}%ﬂ\)

Proof By the Taylor expansion and the assumption of f, we have that
fAz+m(1 = Ny) = f(my + Mz —my))

s (10 X))

\ \ (4.1)
_ - Ty _ -
= m(f(y) +—Vf(y)" (@ —my) +0(m))
=mf(y) + AVf(y)" (x — my) +o(N).
Since f is a sub-(b, m)-convex function on m-convex set, it follows that
fAz +m(1 = Ny) < Mf() +m(l =N f(y) +blz,y, ). (4.2)
Combining the inequality (4.1) and (4.2), it yields that
AVF(y)T (x —my) + o(A) < A(f(x) = mf(y)) + bz, y,A). (4.3)
From Assumption 1, dividing the inequality (4.3) by A and taking A — 0+, it follows that
. b(w,y, M)
T _ _ ph o R0vA
Vi) @ —my) < (f(z) =mf(y)) + lim ==
_ by, A)
= (&) ~ flmy)) + Jim A2

holds for all z,y € X and fixed m € (0, 1]. The statement in Theorem 4.1 is completed.
We can easily get the following

Corollary 4.1. Suppose that f: S — R is a differentiable strictly sub-(b, m)-convex function
on m-convex set S with respect to mapping b(xz,y,\) for some fired m € (0, 1], the mapping
b satisfies Assumption 1 and the function f satisfies Assumption 2, Then for any x,y € X

- b(z,y,\)
T(p _ _ et A RA7A
Vi)' (@ —my) < (f(z) = f(my)) + lim ====.
Proof Using the similar way in Theorem 4.1, we have that
Fz +m(1=Ny) >mf(y) + AV f(y)" (@ —my) + o(N). (4.4)
Since f is a strictly sub-(b, m)-convex function on m-convex set, it follows that
Oz +m(1 = \)y) < Af(@) +m(1 = N (y) + bz, y, \). (4.5)
Combining the inequality (4.4) and (4.5), it yields that
AVF(y)T (x —my) +o(A) < A(f(x) —mf(y)) + bz, y,A). (4.6)
From Assumption 1, dividing the inequality (4.6) by A and taking A — 0+, it follows that
. b(zyy,A)
T(p _ _ pA a2 R0v4
Vi) (@ —my) < (f(z) —mf(y) + lim ==
_ o b(z,y, )
= (f(2) — flmy)) + lim 220

holds for all z,y € X and fixed m € (0,1]. This ends the proof.
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By using the associated results above, we consider the nonlinear unconstraint problem
(P).
(P) : min{f(z),z € S}

We prove the following result.

Theorem 4.2. Let f: S — R be a differentiable sub-(b,m)-convex function on m-convex
set S with respect to b for some fized m € (0,1], the mapping b satisfies Assumption 1 and
the function f satisfies Assumption 2. If T € S and the inequality
b(x, T, A
VIE) (@ —ma) > lim S DN
A—=04

holds for each x € S, A € [0,1] and some fized m € (0, 1], then mZ is the optimal solution
to the problem (P) with respect to f on m-convex set S.

Proof For any = € S, since f is a differentiable sub-(b, m)-convex function, by Theorem 4.1,

it follows that b
V@) (@ - mz) — lim & DN

A*}0+

< (f(z) = f(mz))
holds for A € [0, 1], some fixed m € (0, 1]. On the other hand, since
b(x, T, \)

)

V@) (x —mz) > lim
A—=04
we have f(xz) — f(mZ) > 0. Therefore, mZ is the optimal solution to the problem (P). This
completes the proof.
Similary, we get the claim below.

Corollary 4.2. Let f: S — R be a differentiable strictly sub-(b,m)-convex function on m-
convez set S with respect to b for some fized m € (0,1], the mapping b satisfies Assumption
1 and the function f satisfies Assumption 2. If T € S and the inequality

_ _ . b(x,z,N)

T _ S oL, L A)
V@) (@~ ma) > lm S

holds for each x € S, A € [0,1] and some fized m € (0,1], then mZT is the unique optimal
solution to the problem (P).

Proof Using Corollary 4.1 and the strictly sub-(b, m)-convexity of f on m-convex set S with
respect to b, we have for Z € S with each x € S the following inequality

Vi@ (@ —m#) < (f() - f(mz)) + lim w
—04
So, when the inequality

V(@) " (z—mz) > lim
A—=04
holds for each = € S, any A € [0,1] and m € (0, 1], it follows that f(z) — f(mz) > 0 for
every « € S. Therefore, mz € X is the unique optimal solution to the problem (P), which
ends the proof.
Next, we are going to apply the associated results to the nonlinear programming with
inequality constraints as follows:

(Ps) : min{f(:v)|:r e R" gi(z) <0,i € I},I ={1,2,--- ,n}.
Denote the feasible set of (Ps) by F = {z € R"|g;(z) < 0,7 € I}. For the convenience of

discussion, we assume that f and g; are all differentiable and F' is a nonempty set in R”™.
We present
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Theorem 4.3. (Karush-Kuhn-Tucker Sufficient Conditions) Suppose that the func-
tion f: R™ — R is differentiable sub-(b, m)-convexr function with respect to b for some fized
m € (0,1], gi: R™ —» R, i € I are differentiable sub-(b,m)-convex functions with respect to
bi, 1 € I for some fized m € (0,1], the mapping b satisfies Assumption 1 and f,g; satisfy
Assumption 2. Assume that ©* € F is a KKT point of (Ps), i.e., there exist multipliers
u; > 0, 1 € I such that

V@) + > uiVgi(z®) = 0,ug:(x*) = 0. (4.7)
i€l
If
. b(x,xN) . bi(x, 2t N)
S A G . AN s .
o s e ;“ dm == (48)

then ma™ is an optimal solution to the problem (Ps).

Proof For any x € F, we have that
gi(z) <0 =g;(z%),i € I(z*) = {i € I|g;(=*) = 0}.
Therefore, by the sub-(b, m)-convexity of g; and Theorem 4.1, for ¢ € I(x*), we obtain
bi ) *a)‘ *
Vgi(z*)" (x — ma*) — lim bz, A) < (gi(z) — mg;(z*)) <0. (4.9)
>\—>0+ )\
From (4.7), it follows that
Vi) (x —ma*) = — Zungi(x*)T(x — ma™).
iel
Using the condition (4.8), it yields that

« * . bz x,x*,)\
> =Y V() (@ —ma*) + ) u, A % (4.10)

i€l (x*)
Combining the inequality (4.9) and (4.10), we can deduce that
b A
Vi)t (xz —mz*) — lim ba, ", A)

)\—>0+

From Theorem 4.2, we can get that f(r) — f(ma*) > 0 for each © € F. Therefore ma™ is
an optimal solution to the problem (Ps). This ends the proof.

5. Multi-Objective Sub-(b,m)-convex Programming

Consider the following nonlinear multi-objective sub-(b, m)-convex programming (M P):

(MP) min f(ZC): (fl(x)an(x)a 7fp(x))
s.t. zeM={zxeR"gx)<0, 7=1,2,--- ,q},
where fi(z) :R" - R, i€ P={1,2,--- ,p} and gj(z) : R" = R, j € Q ={1,2,--- ,q} are
sub-(b, m)-convex functions.
Let us recall three necessary definitions which are used for further discussion.

Definition 5.1. A feasible point x* € M of problem (M P) is said to be an efficient solution
if and only if there does not exist another x € M such that f;(x) < fi(z*) for every i € P
with strict inequality holding for at least one ig € P.
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Definition 5.2. A feasible point * € M of problem (MP) is said to be a weakly efficient
solution if and only if there does not exist another x € M such that f;(x) < f;(x*) for every
i€ P.

Definition 5.3. A feasible point x* € M of problem (M P) is said to be a properly efficient
solution if there exists a scalar p > 0 such that for each ¢ € P and each x € M satisfying
fi(z) < fi(z*), there exists at least one j # i with fi(z) > fi(z*) and

filz) — fi(z")
£ — i) =P
We prove the following

Theorem 5.1. Let b: S x S x [0,1] = (—00,0], If f(x) is sub-(b,m)-convex function with
respect to the mapping b(z,y, \) for some fized m € (0, 1], then the set

A= | A()
zeM
is a convex set, where A(x) = {z|z € RY 2z > f(z) — f(a*),x € M}.
Proof Let z1,29 € A(z), and b : S x S x [0,1] — (—00,0], then for any A € [0,1], fixed
m € (0,1], x1,22 € M and f(x) is sub-(b, m)-convex function, we have that
Azp+ (1= Nze > A[f(z1) — f(2")] + (1 = N)[f(z2) — f(z7)]

= Af(z1) + (1 = A)f(z2) — f(z7)

= M (@1) +m(1 = A) f(z2) + bz, y, A) — f(z")

> fAzy +m(1 = A)x2) — f(z¥),

which implies Az; + (1 — X)z2 € A. Hence A is a convex set.

5.1. Weighting approach

To characterize an efficient solution for problem (M P) by weighting approach [8], let
us scalarize problem (M P) to become in the following form.

P
(MP,)  min > wfi(x)
s.t. zeM={xeR"|gjx)<0, j=1,2,---,q},
We prove the following result.

Theorem 5.2. If 2* € M 1is an efficient solution for problem (MP), then there exists
w; >0,i€ P, Y Pw; =1, such that z* is an optimal solution for problem (MP,).

Proof Let * € M be an efficient solution for problem (M P), then the system f;(z)— f;(z*) <
0,7 € P has no solution z € M, combining Theorem 4.1 and applying the generalized Gordan
theorem [4], there exists v;,7 € P such that

vilfi(z) — fi(z")] > 0

and
Vi

S [fi(z) — fi(x™)] > 0.

We denote
1)

Diep Vi
then w; > 0,7 € P and ) ¥ w; = 1. Hence
wi fi(x") < wifi(w).

= Wi,
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That is, z* is an optimal solution for problem (MP,,).
We also have

Theorem 5.3. If & € M is an optimal solution for problem (M Py) with w;,i € P, then T
is an efficient solution for problem (M P), if one of the following two conditions holds:

(1), @i >0 for any i € P;

(2), T is the unique solution to the problem (M Pg).

The proof of Theorem 5.3 is similar to the Theorem 5.2.

5.2. e-constraint approach

The e-constraint approach is one of the common approaches for characterizing efficient
solutions to multi-objective programming. In the following we shall characterize an efficient
solution for the multi-objective programming (M P) in terms of an optimal solution to the
following scalar problem:

(MPF;) min Ji(zx)
s.t. zeM={xzeR"|gj(x)<0, j=1,2,--- ,q},
fl(x) < Eivi S Pvl 7é k.
We prove the following

Theorem 5.4. If z* € M is an efficient solution for problem (MP), then x* is an optimal
solution for problem (M P.) with ¢; = f;(x*).

Proof Let z* € M be not an optimal solution for (M P.) with ¢; = f;i(z*),i € P,i # k, so
there exists « € M such that
fr(@) < fi(z)
and
filz) <ei = fi(z"),i € Pyi #k.
Therefore, * € M is not an efficient solution for problem (M P) which is a contradiction.
Hence, z* is an optimal solution for problem (M P.) with ¢; = f;(z*).
We continue with

Theorem 5.5. If & € M is an optimal solution to the problem (MP.) with & = f;(Z) for
alli=1,2,--- ,p, then T is an efficient solution for problem (M P).

Proof Since T € M is an optimal solution to the problem (MP;) for all k =1,2,--- ,p, for
each x € M, we have that

fr(Z) < frl(2),
fl(x) <& = f7(9_3),7, =12 ,pi 7£ k

This implies that the system f;(x) — f;(Z) < 0,7 € P has no solution z € M. Hence, T is an
efficient solution for problem (M P).

Next we discuss the sufficient conditions for a feasible solution z* to be efficient or
properly efficient for problem (M P) in the following theorems.

Theorem 5.6. Let fi(z),i € P and gj(x),j € Q be differentiable sub-(b, m)-convex functions
with respect to b;, 1 € P and by, j € Q, respectively. Suppose that there exist a feasible x* € M
to the problem (M P) and multipliers X\; > 0,i € P, u; > 0,j € Q such that

D AVfila) + Y uVgi(a*) =0, (5.1)
i€EP jEQ
wigi(a®) = 0. (5.2)
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If

< .. bi(z,xtN) . bi(z, 2t N)

. RSt Rl ROV G ) At Redn RAVA .

4 i AEI& \ < Zu] lim (5.3)
ieP JjEQ

then x* is a properly efficient solution to the problem (M P).

Proof For any x € M, we have that
9i(x) <0 =g;(x"),j € Qz") ={j € Q:g;(z") =0}
Through the equality (5.2), we deduce that u; =0 for j ¢ Q(«*). Then, it follows that
> uiVgi@) = > u;Vg(a). (5.4)
JEQ JEQ(az*)
According to Theorem 4.1 and by the sub-(b, m)-convexity of g; (j € Q(z*)), it is easy to
show that

Vg;(x*)T (x — mz*) — lim bj(@, 2%, A)

Jim =2 < (g5(e) —my; (7)) < 0. (5.5)

On account of \; > 0,i € P, u; > 0,7 € @ and combining the equality (5.4), inequality
(5.3), (5.5), and the sub-(b, m)-convexity of f;(z),i € P, it yields

— * X . bz T, a/\
Z)\1(f,( — fi(ma* >Z)\sz x—m:c)f. )\iAlg&_M
i€P i€EP i€EP
N bz 9 7)‘
=— Z u;Vg;(x*) (x — ma*) — Z)\i )\lim bilz,y, )
< —0+ A
JEQ(x*) i€P
. bi(x,at )
EAVA * 7] ) )
2= > V) @omat)+ Yo lim S
JEQ(z™) JEQ(z™)
>— > ulg(x) — mg;(a")
JEQ(z*)
>0.
That is

Z )\lfz(x) - Z Alfl(maj*) >0
ieP i€EP
holds for all z € M. It follows that maz* minimizes Y, p A; f;(2) subject to g; () < 0, j € Q.
Therefore, from Theorem 1 in [11], ma* is a proper efficient solution to the problem (M P)
which ends the proof.
Finally, we prove the following

Theorem 5.7. Let fi(z),i € P and gj(x),j € Q be differentiable sub-(b, m)-convex functions
with respect to b;,i € P and bj, j € Q, respectively. Suppose that there exist a feasible x* € M
to the problem (M P) and scalars w; > 0,4 € P, ), pw; = 1 such that the triplet (z*, w;, u;)
satisfies

> wiVi(a®) + > u;Vg(a*) =0, (5.6)

iep JjeQ
If
) A
sz lim ————* (z,2” < - Zuj lim by(@,a7, 3) ), (5.8)
A—=04 A—=04 A
ieP JEQ

and ). pwifi(x) is a strictly sub-(b,m)-convex functions. Then x* is an efficient solution
to the problem (M P).
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Proof Suppose that z* is not an efficient solution for (M P), then there exist a feasible
x € M and an index x such that

frlz) < fe(z®)
and
filz) < fi(z¥), for i # k.
Since ) ;¢ pwifi(z) is a strictly sub-(b, m)-convex functions, we have that
> wifi(w) =Y wifi(z*) <0,
icP i€P
Combining Theorem 4.1, it yields that

Zinfi(x*)T(x —mz*) — Zwi lim

A—0
i€EP i€EP +

bi(w, 2", A) <0, (5.9)

and for u; > 0, j € Q(z*), combining the equality (5.7), it follows that
bj(z,x*,\)
. . *\ T _ *) . . ] ) )
Z u;Vg;(z*)" (x — ma®) Z uj /\1_1>%1+ b\
JjEQ JEQ

According to the inequality (5.8), Adding (5.9) and (5.10) that contradicts (5.6). Then, we
conclude that z* is an efficient solution to the problem (M P).

<0. (5.10)

6. Conclusion

In this paper, we have introduced sub-(b, m)-convex sets and sub-(b, m)-convex func-
tions. It is observed that sub-(b, m)-convex functions can be simplified into m-convex func-
tion on the conditions that b(x,y,A) < 0 and can be simplified into sub-b-convex function
on the conditions that m = 1. Therefore, the sub-(b, m)-convex function is a generaliza-
tion of m-convex and sub-b-convex function. Also we have studied optimality conditions for
obtaining an optimal solution to sub-(b, m)-convex programming.
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