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1. Introduction

An interval-valued optimization problem is introduced to tackle uncertainty in the
optimization problems. In recent years, interval-valued optimization has become an active
field of research in applied mathematics. This is due to the fact that the theory about
the parameters of a physical world system is uncertain in many cases and these parameters
cannot evaluate with accuracy. The applications of interval based models are in financial,
corporate planning healthcare, production planning and hospital planning and other diverse
fields. For basic aspects that relate to theory and a large area of applications of interval-
valued optimization programming, we refer the reader to the books [5, 6, 11, 12, 17] and to
some recent papers [1, 2, 7, 8, 9, 13, 15, 18, 19].

Nonsmooth calculus refers to differential calculus in the nonappearance of differentia-
bility and can be considered as a sub field of the nonlinear analysis has developed rapidly
over the past decades. It is to be observed that, not all experimental problems, formulated as
an interval-valued optimization problems, meet the requirements of differentiability. Since
many experimental problems come across in management science, economics and engineering
can be formulated only by nonsmooth functions and modelled as an interval-valued opti-
mization problem. Therefore, the field of nonsmooth interval-valued optimization problems,
in which every involved function is locally Lipchitz, has attracted the researchers to discuss
the optimality results, see, for example [7, 9, 18, 19] and references therein.

Li et al. [9] studied the relation between interval-valued invex and interval-valued
weakly invex functions. Further, they derived sufficient optimality conditions for an interval-
valued optimization problem under proposed invexity assumptions. Chuong [3] proposed the
notion of L-invex-infine functions on the lines of Sach et al. [16] and also discussed that
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the class of L-invex-infine functions is significantly higher than the one of invex-infine func-
tions. Moreover, Choung [3] applied these functions to examine the Gordan type alternative
theorem, and Geoffrion’s properly efficient solutions of a multiple objective programming
problem with reference to the Lagrange multiplier rules and limiting/Mordukhovich subdif-
ferential of real-valued functions.

In this study, our attention is focused to provide the sufficient optimality conditions
for LU optimal solution of an interval-valued optimization problem by taking L-invex-infine
functions defined with reference to the limiting subdifferential. Moreover, we propose the
Wolfe type dual problem, and examine duality relations under L-invexity-infineness.

We now moving forward to discuss the contents of this paper. Section 2 consists of
some basic definitions and background material. Section 3 represents the necessary and
sufficient optimality conditions for an interval-valued optimization problem under L-invex-
infine functions defined with reference to the limiting subdifferential. In Section 4, Wolfe
type dual is presented and appropriate duality results are also discussed. Finally, the paper
is concluded in Section 5.

2. Preliminaries

The aim of this section is to provide some basic concepts and auxiliary results that
will be used often throughout the paper. We denote by I the class of all bounded closed
intervals in R. Suppose I1 = [αL, αU ], I2 = [βL, βU ] ∈ I, then we write

(i) I1 + I2 = {α+ β | α ∈ I1 and β ∈ I2} = [αL + βL, αU + βU ],
(ii) −I1 = {−α | α ∈ I1} = [−αU ,−αL],

(iii) I1 − I2 = I1 + (−I2) = [αL − βU , αU − βL],
(iv) k + I1 = {k + α | α ∈ I1} = [k + αL, k + αU ],

(v) kI1 = {kα | α ∈ I1} =

{
[kαL, kαU ], if k ≥ 0,

[kαU , kαL], if k < 0,

where k is a real number.
For I1 = [αL, αU ] and I2 = [βL, βU ], the partial ordering ≤LU on I is defined as

I1 ≤LU I2 if and only if αL ≤ βL and αU ≤ βU . Moreover, we write I1 <LU I2 if and only
if I1 ≤LU I2 and I1 6= I2. In the other words, I1 <LU I2 if and only if

αL < βL, αU < βU ,

or, αL ≤ βL, αU < βU ,

or, αL < βL, αU ≤ βU .
Let Rn be the n-dimensional Euclidean space and Rn+ be its non-negative orthant.

Unless otherwise specified, all the spaces considered in the paper are Banach whose norms
are always denoted by ‖.‖ and T ∗ is dual of a given space T . The canonical pairing between
T and its dual T ∗ is denoted by 〈., .〉, and S◦ = {a∗ ∈ T ∗ | 〈a∗, a〉 ≤ 0, ∀a ∈ S} is the polar
cone of a set S ⊂ T . As usual, the symbol clS stand for the closure of S and N denotes the set
of all natural numbers. Now, we recall the following Definitions 2.1-2.5 from Mordukhovich
[10].

Definition 2.1. Let ` : T ⇒ T ∗ be a multifunction. Then the sequential Painlevé-
Kuratowski upper/outer limit with respect to the norm topology of T and the weak∗ topology
of T ∗ is given by

Lim sup
a→ā

`(a) = {a∗ ∈ T ∗ | ∃ sequences an → ā and a∗n
w∗→ a∗

with a∗n ∈ `(an) for all n ∈ N},
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where the symbol
w∗→ represents the convergence in the weak∗ topology of T ∗.

Definition 2.2. For a given ε ≥ 0 and S, the collection of ε-normals to S at ā ∈ S defined
by

N̂ε(ā,S) = {a∗ ∈ T ∗ | Lim sup
a

S→ā

〈a∗, a− ā〉
‖a− ā‖

≤ ε}, (1)

where a
S→ ā means that a→ ā with a ∈ S.

In the above definition, for all ε ≥ 0, if ā /∈ S, we write N̂ε(ā,S) = ∅. For suppose

ε = 0 in (1), then the set N̂0(ā,S) is called the Fréchet normal cone to S at ā.

Definition 2.3. The limiting/Mordukhovich normal cone N(ā,S) to S at ā ∈ S is obtained

from N̂ε(a,S) by taking the sequential Painlevé-Kuratowski upper limits as

N(ā,S) = Lim sup
a

S→ā
ε↓0

N̂ε(a,S) (2)

If ā /∈ S, we put N(ā,S) = ∅. Note that, if S is (locally) closed around ā, i.e., there
is a neighborhood U of ā such that S ∩ clU is closed then one can put ε = 0 in (2) (see
Mordukhovich [10], Theorem 1.6).

Definition 2.4. Let f : T → R̄ = [−∞,∞] be an extended real-valued function. Then the
limiting/Mordukhovich subdifferential of f at ā ∈ T with |f(ā)| <∞ is defined by

∂f(ā) = {a∗ ∈ T ∗ : (a∗,−1) ∈ N((ā, f(ā)), epif)},
where epif = {(a, ρ) ∈ T ×R : ρ ≥ f(a)}.

If |f(ā)| = ∞, then one puts ∂f(ā) = ∅. It is clear from Mordukhovich [10] that, if
f is a convex function, then above-defined limiting/Mordukhovich subdifferential coincides
with the subdifferential in the sense of convex analysis (cf. Rockafellar [14]).

Definition 2.5. A set S ⊂ T is sequentially normally compact at ā ∈ S if for any sequence

(εn, an, a
∗
n) ∈ [0,∞) × S × T ∗ satisfying εn ↓ 0, an

S→ ā and a∗n
w∗→ 0 with a∗n ∈ N̂εn(an,S),

one has ‖a∗n‖ → 0 as n→∞.

When S is closed around ā in the above definition then εn can be neglected. We refer
[10] for more results, discussions and various sufficient conditions ensuring the fulfillment of
the sequentially normally compact property.

Let S be a nonempty locally closed subset of T , and let J = {1, 2, ..., q} and K =
{1, 2, ..., r} be index sets. In what follows, S is always assumed to be sequentially normally
compact at the point under consideration.

Let us consider an Optimization Problem with interval-valued objective function of
the form:

(IVP) min
x∈F

Ψ(x) = [ΨL(x),ΨU (x)]

subject to

Gu(x) ≤ 0, u ∈ J, Hv(x) = 0, v ∈ K,

where Ψ : S→ I is an interval-valued function satisfying the condition ΨL(x) ≤ ΨU (x) and
ΨL, ΨU , Gu, u ∈ J and Hv, v ∈ K are locally Lipschitz on S. The feasible set of (IVP) is
given by F = {x ∈ S|Gu(x) ≤ 0, u ∈ J, Hv(x) = 0, v ∈ K}.

Definition 2.6 (Sun and Wang[18]). We say that x∗ ∈ F is a LU optimal solution of (IVP),
if there exists no x0 ∈ F such that Ψ(x0) <LU Ψ(x∗).
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For ā ∈ S, we define

J(ā) = {u ∈ J : Gu(ā) = 0}, K(ā) = {v ∈ K : Hv(ā) = 0}.

Definition 2.7 (Mordukhovich [10]). The Constraint Qualification (CQ) is said to hold at
ā ∈ S if there do not exist µu ≥ 0, u ∈ J(ā) and γv ≥ 0, v ∈ K(ā), such that

∑
u∈J(ā)

µu +∑
v∈K(ā)

γv 6= 0 and

0 ∈
∑
u∈J(ā)

µu∂Gu(ā) +
∑

v∈K(ā)

γv(∂Hv(ā) ∪ ∂(Hv)(ā)) +N(ā,S).

We now turn our attention to define the concept of L-invexity-infineness for locally
Lipschitz functions on the lines of Chuong [3]. Suppose that G = (G1, G2, ..., Gq) and
H = (H1, H2, ...,Hr).

Definition 2.8. For any x ∈ S, (Ψ, G;H) is said to be L-(strictly) invex-infine at ā ∈ S on S,

if for all x∗L ∈ ∂ΨL(ā), x∗U ∈ ∂ΨU (ā), y∗u ∈ ∂(Gu)(ā), u ∈ J, and z∗v ∈ ∂Hv(ā)∪∂(−Hv)(ā),
v ∈ K, there exists η ∈ N(ā,S)◦ such that

ΨL(x)−ΨL(ā)(>) ≥
〈
x∗L, η

〉
, (x 6= ā),

ΨU (x)−ΨU (ā)(>) ≥
〈
x∗U , η

〉
, (x 6= ā),

Gu(x)−Gu(ā) ≥ 〈y∗u, η〉 , u ∈ J,

Hv(x)−Hv(ā) = ζv 〈z∗v , η〉 , v ∈ K,
where ζv = 1 (respectively, ζv = −1) whenever z∗v ∈ ∂Hv(ā) (respectively, z∗v ∈ ∂(−Hv)(ā)).

Hereafter, we assume that ζv = 1 (respectively, ζv = −1) whenever z∗v ∈ ∂Hv(ā)
(respectively, z∗v ∈ ∂(−Hv)(ā)) and ā ∈ S .

3. Optimality conditions

Chuong and Kim ([4] Theorem 3.3) established the necessary optimality conditions
for (weakly) efficient solutions of a multiobjective optimization problem with equality and
inequality constraints. In the view point of Chuong and Kim ([4] Theorem 3.3), if we
consider m = 2, then we obtain the following Karush-Kuhn-Tucker type necessary optimality
conditions for an interval-valued problem (IVP) as follow:

Theorem 3.1 (Karush-Kuhn-Tucker Type Necessary Conditions). Let the constraints qual-
ification (CQ) be satisfied at x̃. If x̃ is a LU optimal solution of problem (IVP), then there
exist 0 < λL, λU ∈ R, µ̄ ∈ Rq+, and γ̄ ∈ Rr+ such that

0 ∈ λL∂ΨL(x̃) + λU∂ΨU (x̃) +
∑
u∈J

µ̄u∂Gu(x̃)

+
∑
v∈K

γ̄v (∂Hv(x̃) ∪ ∂(−Hv)(x̃)) +N(x̃,S), (3)

µ̄uGu(x̃) = 0, u ∈ J. (4)

We now prove that above necessary conditions are sufficient under L-invex-infine
functions.

Theorem 3.2 (Karush-Kuhn-Tucker Type Sufficient Optimality Conditions). Let x̃ ∈ F
and assume that there exist 0 < λL, λU ∈ R, µ̄ ∈ Rq+, γ̄ ∈ Rr+ such that
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(i) 0 ∈ λL∂ΨL(x̃) + λU∂ΨU (x̃) +
∑
u∈J

µ̄u∂Gu(x̃)

+
∑
v∈K

γ̄v (∂Hv(x̃) ∪ ∂(−Hv)(x̃)) +N(x̃, S),

(ii) µ̄uGu(x̃) = 0, u ∈ J,
(iii) (Ψ, G;H) is L-invex-infine on S at x̃.

Then x̃ is a LU optimal solution of problem (IVP).

Proof. By hypothesis (i), it is obvious that there exist x∗L ∈ ∂ΨL(x̃), x∗U ∈ ∂ΨU (x̃),
y∗u ∈ ∂Gu(x̃), u ∈ J and z∗v ∈ ∂Hv(x̃) ∪ ∂(−Hv)(x̃), v ∈ K such that

−

λLx∗L + λUx∗U +
∑
u∈J

µ̄uy
∗
u +

∑
v∈K

γ̄vz
∗
v

 ∈ N(x̃, S). (5)

Suppose on the contrary, x̃ is not a LU optimal solution for the considered optimization
problem with interval valued objective function (IVP). Then, by Definition (2.6) there exists
a feasible solution x0 ∈ F such that

Ψ(x0) <LU Ψ(x̃).

That is, {
ΨL(x0) < ΨL(x̃)

ΨU (x0) < ΨU (x̃)
, or

{
ΨL(x0) ≤ ΨL(x̃)

ΨU (x0) < ΨU (x̃)
, or

{
ΨL(x0) < ΨL(x̃)

ΨU (x0) ≤ ΨU (x̃)
.

Since λL > 0, λU > 0, then above inequalities together yield

λLΨL(x0) + λUΨU (x0) < λLΨL(x̃) + λUΨU (x̃). (6)

On the other hand, (Ψ, G;H) is a L-invex-infine on S at x̃, then by Definition (2.8), there
exists η ∈ N(x̃, S)◦ such that the following inequalities

ΨL(x0)−ΨL(x̃) ≥
〈
x∗L, η

〉
, (7)

ΨU (x0)−ΨU (x̃) ≥
〈
x∗U , η

〉
, (8)

Gu(x0)−Gu(x̃) ≥ 〈y∗u, η〉 , u ∈ J, (9)

Hv(x0)−Hv(x̃) = ζv 〈z∗v , η〉 , v ∈ K, (10)

hold for any x0 ∈ F, x∗L ∈ ∂ΨL(x̃), x∗U ∈ ∂ΨU (x̃), y∗u ∈ ∂(Gu)(x̃), u ∈ J and z∗v ∈
∂Hv(x̃) ∪ ∂(−Hv)(x̃), v ∈ K.
The inequalities (7) and (8) together with the positivity of λL and λU , gives

[λLΨL(x0) + λUΨU (x0)]− [λLΨL(x̃) + λUΨU (x̃)] ≥
〈
λLx∗L + λUx∗U , η

〉
. (11)

Multiplying (9) by µ̄u, u ∈ J and (10) by γ̄v, v ∈ K, then adding the resultant inequalities,
we get ∑

u∈J
µ̄u [Gu(x0)−Gu(x̃)] +

∑
v∈K

γ̄v

ζv
[Hv(x0)−Hv(x̃)]

≥
∑
u∈J

µ̄u 〈y∗u, η〉+
∑
v∈K

γ̄v 〈z∗v , η〉 . (12)

On adding (11) and (12), we get

[λLΨL(x0) + λUΨU (x0)]− [λLΨL(x̃) + λUΨU (x̃)]

+
∑
u∈J

µ̄u [Gu(x0)−Gu(x̃)] +
∑
v∈K

γ̄v

ζv
[Hv(x0)−Hv(x̃)]
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≥
〈
λLx∗L + λUx∗U , η

〉
+
∑
u∈J

µ̄u 〈y∗u, η〉+
∑
v∈K

γ̄v 〈z∗v , η〉 . (13)

Now by the meaning of polar cone, we have from (5) and η ∈ N(x̃, S)◦ that〈
λLx∗L + λUx∗U , η

〉
+
∑
u∈J

µ̄u 〈y∗u, η〉+
∑
v∈K

γ̄v 〈z∗v , η〉 ≥ 0. (14)

By the hypothesis (ii), (13), (14) and the fact x0 ∈ F, x̃ ∈ F, we see that

[λLΨL(x0) + λUΨU (x0)]− [λLΨL(x̃) + λUΨU (x̃)] ≥ 0,

which contradicts (6). Thus, the theorem is proved. �

The following simple example expose that the L-invex-infine property of (Ψ, G;H) on
S invoked in the above Sufficient Optimality Conditions is essential.

Example 3.1. Consider the optimization problem of the form

(IVP-1) min
x∈F

Ψ(x) = [ΨL(x),ΨU (x)]

subject to G1(x) ≤ 0, H1(x) = 0,

where

ΨL(x) =

{
x3, x ≥ 0

x5, otherwise
, ΨU (x) =

{
x
2 , x ≥ 0

x, otherwise
,

G1(x) = − |x| , x ∈ R and H1(x) = x2 − x, x ∈ R.
Let us consider S = R. Then the feasible region to (IVP-1) is F = {1, 0}. Taking x̃ = 0 ∈ F,
we posses N(x̃, S) = {0} and N(x̃, S)◦ = R. It is easy to observe that the hypotheses (i)
and (ii) of Theorem 3.2 hold at x̃ = 0. Even though, x̃ = 0 is not a LU optimal solution of
problem (IVP-1). This means that the conclusion of Theorem 3.2 fails to holds. The reason
is that (Ψ, G1;H1) is not a L-invex-infine at x̃ = 0 on S.

4. Wolfe type duality

We consider the following Wolfe type dual for (IVP):

(IWD) max

[
Ψ(y) +

∑
u∈J

µuGu(y) +
∑
v∈K

γvHv(y)

]
subject to

0 ∈ λL∂ΨL(y)+λU∂ΨU (y)+
∑
u∈J

µu∂Gu(y)+
∑
v∈K

γv (∂Hv(y) ∪ ∂(−Hv)(y))+N(y,S), (15)

y ∈ S, 0 < λL, λU ∈ R, λL + λU = 1, µ ∈ Rq+, γ ∈ Rr+, H(y) ∈ (γ − Ω(0, ‖γ‖))◦ , (16)

where Ω(0, ‖γ‖) = {τ ∈ Rr : ‖τ‖ = ‖γ‖} and Ψ(y) +
∑
u∈J

µuGu(y) +
∑
v∈K

γvHv(y) =[
ΨL(y) +

∑
u∈J

µuGu(y) +
∑
v∈K

γvHv(y), ΨU (y) +
∑
u∈J

µuGu(y) +
∑
v∈K

γvHv(y)

]
is an interval-

valued function. We denote by W1 the set of all feasible solutions (y, λL, λU , µ, γ) ∈
S×R+ \ {0} ×R+ \ {0} ×Rq+ ×Rr+ of problem (IWD).

Definition 4.1. We say that (ỹ, λ̃L, λ̃U , µ̃, γ̃) ∈ W1 is a LU optimal solution of (IWD), if

there exists no feasible solution (y, λ̃L, λ̃U , µ̃, γ̃) to (IWD), such that Ψ(ỹ) +
∑
u∈J

µ̃uGu(ỹ) +∑
v∈K

γ̃vHv(ỹ) <LU Ψ(y) +
∑
u∈J

µ̃uGu(y) +
∑
v∈K

γ̃vHv(y).
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Now, we discuss the relationships between (IWD) and (IVP).

Theorem 4.1 (Weak Duality). Let x ∈ F and (y, λL, λU , µ, γ) ∈W1. Assume that (Ψ, G;H)
is L-invex-infine on S at y, then Ψ(x) ≥LU Ψ(y) +

∑
u∈J

µuGu(y) +
∑
v∈K

γvHv(y).

Proof. Since (y, λL, λU , µ, γ) ∈W1 satisfy the relations (15)-(16), there exist x∗L ∈ ∂ΨL(y),

x∗U ∈ ∂ΨU (y), y∗u ∈ ∂Gu(y), u ∈ J and z∗v ∈ ∂Hv(y) ∪ ∂(−Hv)(y), v ∈ K such that

−

λLx∗L + λUx∗U +
∑
u∈J

µuy
∗
u +

∑
v∈K

γvz
∗
v

 ∈ N(y,S), (17)

〈γ − τ,H(y)〉 ≤ 0, ∀τ ∈ Rr with ‖τ‖ = ‖γ‖ . (18)

Suppose on the contrary to the result that

Ψ(x) <LU Ψ(y) +
∑
u∈J

µuGu(y) +
∑
v∈K

γvHv(y).

That is, 
ΨL(x) < ΨL(y) +

∑
u∈J

µuGu(y) +
∑
v∈K

γvHv(y)

ΨU (x) < ΨU (y) +
∑
u∈J

µuGu(y) +
∑
v∈K

γvHv(y),

or


ΨL(x) ≤ ΨL(y) +

∑
u∈J

µuGu(y) +
∑
v∈K

γvHv(y)

ΨU (x) < ΨU (y) +
∑
u∈J

µuGu(y) +
∑
v∈K

γvHv(y),

or


ΨL(x) < ΨL(y) +

∑
u∈J

µuGu(y) +
∑
v∈K

γvHv(y)

ΨU (x) ≤ ΨU (y) +
∑
u∈J

µuGu(y) +
∑
v∈K

γvHv(y)
.

Since λL > 0, λU > 0 and λL + λU = 1, then above inequalities together yield

λLΨL(x) + λUΨU (x)

< λLΨL(y) + λUΨU (y) +
∑
u∈J

µuGu(y) +
∑
v∈K

γvHv(y). (19)

On the other hand, (Ψ, G;H) is a L-invex-infine on S at y, then by Definition (2.8), there
exists η ∈ N(y,S)◦ such that the following inequalities

ΨL(x)−ΨL(y) ≥
〈
x∗L, η

〉
, (20)

ΨU (x)−ΨU (y) ≥
〈
x∗U , η

〉
, (21)

Gu(x)−Gu(y) ≥ 〈y∗u, η〉 , u ∈ J, (22)

Hv(x)−Hv(y) = ζv 〈z∗v , η〉 , v ∈ K, (23)

hold for any x ∈ F, x∗L ∈ ∂ΨL(y), x∗U ∈ ∂ΨU (y), y∗u ∈ ∂(Gu)(y), u ∈ J and z∗v ∈
∂Hv(y) ∪ ∂(−Hv)(y), v ∈ K.
Now, proceeding in exactly the same manner as in the proof of Theorem 3.2, it follows from
the relations (20)-(23) that

[λLΨL(x) + λUΨU (x)]− [λLΨL(y) + λUΨU (y)] +
∑
u∈J

µu [Gu(x)−Gu(y)]

+
∑
v∈K

γv

ζv
[Hv(x)−Hv(y)] ≥ 0.
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Thus, by taking τv =
γv

ζv
, v ∈ K, we have

[λLΨL(x) + λUΨU (x)]− [λLΨL(y) + λUΨU (y)] +
∑
u∈J

µu [Gu(x)−Gu(y)]

+
∑
v∈K

τv [Hv(x)−Hv(y)] ≥ 0.

On the basis of x ∈ F, above inequality yields

[λLΨL(x) + λUΨU (x)]− [λLΨL(y) + λUΨU (y)]−
∑
u∈J

µu [Gu(y)]

−
∑
v∈K

τv [Hv(y)] ≥ 0,

equivalently,

[λLΨL(x) + λUΨU (x)]− [λLΨL(y) + λUΨU (y)]−
∑
u∈J

µu [Gu(y)]

−
∑
v∈K

γvHv(y) + 〈γ − τ,H(y)〉 ≥ 0, (24)

where τ = (τ1, τ2, ..., τr) ∈ Rr. It is to be observed that ‖τ‖ = ‖γ‖ and thus, by (18) and
(24), we get

[λLΨL(x) + λUΨU (x)]− [λLΨL(y) + λUΨU (y)]−
∑
u∈J

µuGu(y)−
∑
v∈K

γvHv(y) ≥ 0,

which contradicts (19). Thus, the theorem is proved. �

Theorem 4.2 (Strong Duality). Let x̃ be a LU optimal solution of (IVP) and the constraint

qualification (CQ) be satisfied at x̃. Then there exist λ̃L > 0, λ̃U > 0, µ̃ ≥ 0, and γ̃ ≥ 0 such

that (x̃, λ̃L, λ̃U , µ̃, γ̃) is a feasible solution to the problem (IWD) and the objective values of
(IVP) and (IWD) are same. Furthermore, if all the conditions of weak duality Theorem 4.1

are satisfied, then (x̃, λ̃L, λ̃U , µ̃, γ̃) is a LU optimal solution of (IWD).

Proof. By assumption x̃ is a LU optimal solution of (IVP), and the constraint qualification

(CQ) is satisfied at x̃. Then by Theorem 3.1 there exist λ̃L > 0, λ̃U > 0, µ̃ ∈ Rq+, and
γ̃ ∈ Rr+ such that

0 ∈ λ̃L∂ΨL(x̃) + λ̃U∂ΨU (x̃) +
∑
u∈J

µ̃u∂Gu(x̃) +
∑
v∈K

γ̃v (∂Hv(x̃) ∪ ∂(−Hv)(x̃)) +N(x̃, S),

µ̃uGu(x̃) = 0, u ∈ J.
In addition, since Hv(x̃) = 0, v ∈ K for x̃ ∈ F. This implies that 〈γ̃ − τ,H(x̃)〉 = 0, for

all τ ∈ Rr with ‖τ‖ = ‖γ̃‖. That is H(x̃) ∈ (γ̃ − Ω(0, ‖γ̃‖))◦ and so (x̃, λ̃L, λ̃U , µ̃, γ̃) is
a feasible solution of (IWD), moreover, the two objective values of (IVP) and (IWD) are

equal. Further, if (x̃, λ̃L, λ̃U , µ̃, γ̃) is not a LU optimal solution of (IWD), then there exists

a feasible solution (ỹ, λ̃L, λ̃U , µ̃, γ̃) of (IWD) such that

Ψ(x̃) <LU Ψ(ỹ) +
∑
u∈J

µ̃uGu(ỹ) +
∑
v∈K

γ̃vHv(ỹ),

which contradicts Theorem 4.1. Hence (x̃, λ̃L, λ̃U , µ̃, γ̃) is a LU optimal solution of (IWD).
�
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Theorem 4.3 (Strict Converse Duality). Let x̃ and (ỹ, λ̃L, λ̃U , µ̃, γ̃) be the feasible solutions
of (IVP) and (IWD), respectively. Assume that (Ψ, G;H) is L-strictly invex-infine on S at
ỹ and

λ̃LΨL(x̃) + λ̃UΨU (x̃) ≤ λ̃LΨL(ỹ) + λ̃UΨU (ỹ) +
∑
u∈J

µ̃uGu(ỹ) +
∑
v∈K

γ̃vHv(ỹ), (25)

then x̃ = ỹ.

Proof. Suppose on the contrary, x̃ 6= ỹ. Since (ỹ, λ̃L, λ̃U , µ̃, γ̃) ∈ W1 satisfy the relations

(15)-(16), there exist x∗L ∈ ∂ΨL(ỹ), x∗U ∈ ∂ΨU (ỹ), y∗u ∈ ∂Gu(ỹ), u ∈ J and z∗v ∈ ∂Hv(ỹ) ∪
∂(−Hv)(ỹ), v ∈ K such that

−

λ̃Lx∗L + λ̃Ux∗U +
∑
u∈J

µ̃uy
∗
u +

∑
v∈K

γ̃vz
∗
v

 ∈ N(ỹ,S). (26)

〈γ̃ − τ,H(ỹ)〉 ≤ 0, ∀τ ∈ Rr with ‖τ‖ = ‖γ̃‖ . (27)

Now, proceeding in exactly the same manner as shown in the proof of Theorem 4.1, it follows
immediately from L-strictly invex-infine of (Ψ, G;H) at ỹ on S, that

[λ̃LΨL(x̃) + λ̃UΨU (x̃)]− [λ̃LΨL(ỹ) + λ̃UΨU (ỹ)]−
∑
u∈J

µ̃uGu(ỹ)−
∑
v∈K

γ̃vHv(ỹ) > 0,

which contradicts (25). Thus, the theorem is proved. �

5. Conclusions

In this study, we have obtained Karush-Kuhn-Tucker type sufficient optimality con-
ditions for an interval-valued optimization problem under L-invex-infine functions defined
with reference to the limiting subdifferential of locally Lipschitz functions. Usual duality
theorems are discussed for a Wolfe type dual model. It may be enjoyable to investigate
that the second and higher order duality results for an interval-valued optimization problem
hold or not in terms of the limiting/ Mordukhovich subdifferential. This will reflect the
forthcoming research of the authors.
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