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EXACT ANALYTICAL SOLUTIONS FOR NONLINEAR
SYSTEMS OF CONFORMABLE PARTIAL DIFFERENTIAL
EQUATIONS VIA AN ANALYTICAL APPROACH

Hayman Thabet!*, Subhash Kendre 2, Dumitru Baleanu?, and James Peters *

Many numerical and analytical methods have been developed for
solving Partial Differential Equations (PDEs) and conformable PDEs, most
of which provide approzimate solutions. Ezxact solutions, however, are vi-
tally important in the proper understanding of the qualitative features of
the concerned phenomena and processes. This paper introduces an effective
analytical approach for solving nonlinear systems of conformable space-time
PDFEs. Moreover, the convergence theorem and error analysis of the pro-
posed method are also shown. An essential benefit of this paper is that it
yields exact analytical solutions for some nonlinear dynamical systems of
conformable space-time PDFEs. The Graphical representations of solutions
are shown to confirm the accuracy and efficiency of the suggested method.
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1. Introduction

During the last decades, it has been realized that modeling physical phe-
nomena with fractional derivatives provides a better fit due to their non-local
nature. Fractional derivatives are effective while formulating processes having
memory effects. In the field of mathematical modeling of life-science applica-
tions and the analysis, there are many problems modeled in terms of PDEs
and fractional PDEs. However, fractional PDEs are the generalization of PDEs
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with fractional partial derivatives of arbitrary orders that have been consid-
ered in many ways as a novel topic, and they have been the subjects of several
conferences due to their important applications discovered in various areas of
science, engineering, and finance. Fractional PDEs are useful tools for model-
ing the memory properties of various materials and processes with a nonlinear
relationship to time, such as anomalous diffusion. Moreover, fractional PDEs
are more applicable in the study of fluids flow, chemical physics, dynamics
of protein molecules, population dynamics, biological systems, and intelligent
systems [22, 7, 24, 23, 26, 27, 16, 4, 19, 17]. The conformable PDEs are sim-
ply PDEs with conformable partial derivatives. Several definitions of fractional
derivatives are available in the literature. The researchers in fractional calculus
realize that some nonlinear phenomena cannot be described, and some prop-
erties of fractional derivatives are not satisfied. Therefore, a rather definition
called “the conformable derivative” was introduced [14].

Throughout the new definition of the conformable derivative, several
works were devoted [5, 11, 12, 21, 18, 2, 9, 3, 13, 28]. Further, with the
conformable derivatives, it has been proved the product rule, the mean value
theorem with fractional order, and solved some differential equations of con-
formable derivatives. However, some functions could not be represented, or
its integral transforms could not be calculated, but it is possible to do so with
the help of conformable calculus theory. Therefore, the conformable calculus
theory is still an active area of research.

Recently, Yiicel Cenesiz et al. [6] studied PDEs with conformable de-
rivative using the first integral method, K. Hosseini et al. [11] applied the
Kudryashov method for Klein—-Gordon equations with conformable derivatives,
and Farid Samsami Khodadad et al. [15] proposed the method of Riccati sub
equation for solving Zakharov-Kuznetsov equation with conformable deriva-
tives. This paper aims to demonstrate that an effective analytical approach is
introduced for solving nonlinear systems of conformable PDEs. The rest of the
sections are organized a follows. In Section 2, we introduce some properties of
the conformable calculus theory that are used in this paper. Section 3 intro-
duces an efficient method to solve systems of conformable space-time nonlinear
PDEs. In Section 4, we obtain exact solutions for some nonlinear dynamical
systems of PDEs with conformable space-time derivatives. In Section 5, we
introduce a discussion and graphical representations.

2. Basic Results and Definitions

Various results and definitions of conformable calculus theory are avail-
able in the literature. This section presents some modified properties which
can be found in [8, 10, 20, 29] and among other references.
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Definition 2.1. For ¢ : R X [a,00) — R, the conformable partial derivative

of order v with respect to the time t for ¢ is defined as follows:

pla,t +&(t—0)'7) —p(a,1)
3

Theorem 2.1 ([1, 25]). For a function p(x,t) = 372 Np;(x,t), the operator

N(p(z,t)) satisfies the following property:

a‘J?gp(:E,t):%i_r)% , forVt>b0,0<y<1. (1)

N@@»:N@)@@@F@jﬁgj mextxax<m

=0 j=0
Definition 2.2. For a function u : [xg,00) X R = R, 0 < a < 1. The left
partial integral of conformable order o with respect to the space x for u is given
by

sodou(x,t) = / (7 — 20)* tu(r, t)dr. (3)

xo

Definition 2.3. Let u : R X [tg,00) — R, 0 < 5 < 1. The left integral of
conformable order B with respect to the time t for u is given by

TPl t) = / (7 — to)P " u(z, 7)dr. (@)

to

3. Description of the Proposed Method

This section introduces an efficient extended analytical method that is
called ”"a homotopy conformable integral method” to solve a nonlinear system
of conformable PDEs of the following form:

W T (i, 1) + Li(a(x, 1) + Ny(a(z, 1) = fi(z, 1),

81@ i 0 (5)

$_ﬂk( ), ki =0,1,2,... hi—1,i=1,2,....m,
for hy — 1 < B; < h; € N and u(z,t) = (uj,us,...,uy),t > 0, where
Li(u(x,t)), N;y(u(z,t)) are linear and nonlinear operators respectively of func-
tions w;(z,t) and their conformable partial derivatives which might include
other conformable partial derivatives, and f;(x,t), fix(x) are known analytic
functions and tOTth % are the h;—times conformable partial derivatives of orders

Bi-

Definition 3.1. Let u(z,t) be defined on [rg,00) X R and 0 < o < 1. The
partial integral transform of conformable order o with respect to the space x
for u is given by

Ol 1) = i u(e, 1) = 5 (2 = 20)** Fu(o,0) g e wi= [ oo [
o o

——

k—times
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Definition 3.2. For u: R x [ty,00) — R such that o “(h D is continuous and
B € (h—1,h), the partial integral transform of conformable order 3 with respect
to the time t for u is given by

t t
Ol ) = 8 ) = 3L (8 = 00" )y 0 = [ [
to to

h—times
Definition 3.3. Let a function u(z,t) : [xg,00) X [tg,00) — R. The partial
integral transform of conformable orders o, B with respect to the space and time
for u(x,t) is given by

Uas(k, h) =40 351,80 u(,) = 4088037 (= o)™ 75 (8 — 1) Mu(a, 1)), |
where 4, = / /,tOHt—/ / forallx > xg,t > tyg, k—1<a<
O
k times h times

k, h—1<p<h.
Theorem 3.1. Let p(x,t) : [19,00) X R > R, k < a < k. Then, we have
w0 T2 2 da P (2, 1) = p(z,1). (6)

Proof. By using Theorem ?? and Definition 3.1, we have
onfarogkau<I? t) = IOTI;Q (moglzfc(x - xO)ka_ku(xv t))

— (x - x(])k kaaa—( (@ = 20" Fu(z, 1))
= (z — P ((x = mo)™ Pu(a, b)) = u(z,t).
0
Theorem 3.2. For ¢ : R x [ty,00) = R and § € (h— 1,h), we have
0Tt 0di el t) = el t). (7)

Theorem 3.3. Let u(x,t) : (zg,00) X (tg,00) — R be k, h-differentiable. Then,
for all x > xq,t > ty, we have

( k—1 z i
w00 o TR u(z,t) = u(x, t) — Z i ou 8:5:’ )|(xo,t)7
/=0 . (8)
togt toJt ﬁu(‘ra t) =u(z,1) — Z ;,' Su 8; J |(m,t0)'
\ 3'=0

In order to solve the system (5), let the solutions w;(z,t) for (5) be given by

0= uyle 1) )
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Next, let the functions u;(x,t), (i = 1,--- ,m) be h;-differentiable functions,
and we consider the following homotopy:
w Tt (@, t,p) = plfi(, t) — Lilg] — Ni[]], (10)

where p € [0,1], @(x,t,p) = (p1,92,...,%m), and @;(z,t,p) are unknown
functions defined by

pi(z,t,p) = wp(z,t) + ZPTUz‘j(%t)- (11)
J=1
Therefore, when p = 0, we have p;(z,t,0) = u;p. For p =1, we have ¢; = u,.
Then, when p changes (0 to 1), we have solution functions ¢;(z,t,p) vary from
wo(z,t) to solution functions u;(x,t). The solution w;(z,t) can be evaluated
by
0T ui(x,t) — filx,t) =0,
OFiug(x,0) (12)
i = Ju(@), k=012, i L,

By substituting (11) in the equation (10), we have

[e.o] o oo

WO p () = plfi(e,t) = Ll plan(w,0)] = Nil ) pla,(x,1)]].
r=0 r=0 r=0
(13)
By using Theorem 2.1 into (13), we obtain
i Bi - r 1 o . s — 7
tOT?lﬁl(Zp Uij = Zp rl op” (N p uS)pzo)p - (14)
r=0 r= =0
Equating the terms in (14) with identical powers of p, we get
to(fthiﬂiuio =0, toTthiBiUﬂ = fi— ‘(ﬂo) — N[t
5 1 (15)
h'L/B'L —_ 17
toJp Uiy = _Li(u(r—l)) W@pr 1 ZP us p=0’

for r = 2,3,.... Next, we apply the conformable partial integral to both sides
of the system (15) and using the initial conditions given by (5), we obtain

;

wio(x, 1) Z fzawun ,t) = 4,3/ (fi(z,t) — Li(to(x, 1)) — Ni[uo(z, t)]],

B (16)
uij(w,t) = togtﬁi( — Li(t—1y(7,1)) — ﬁ%(Ni[Zpsﬂs(x,t)])pzo),

\ s=0

for r = 2,3, .... By substituting the components from (16) into (9), we obtain
the analytical solutions for (5).



114 Hayman Thabet, Subhash Kendre, Dumitru Baleanu, and James Peters

Theorem 3.4. Assume that the space B is a Banach space. The solutions
series in (9) converges to S; € B if 3 v, 0 < 4 < 1 such that, ||u,| <
Yillwin—1y|| for ¥n € N.

Proof. Let S;, be a series of partial sums defined as follows:
Sio = uio(x, 1), Sin = wio(w,t) + ua(x,t),

Sia = wio(z,t) + uin (v, 1) + uia(z, 1),
(17)

Sin = wio(x,t) + up (z,t) + up(x,t) + - - - + ug (2, 1),

and we want to claim that {S;,} is a family of Cauchy sequences in the Banach
space B. In this regard, we introduce the following inequality

1Sima1) = Sinll = ltinay (@, O < yillwin (@, O] < A2 |tign—1) (2, 1)
< < o (1)) (18)

For all r,7" € N, r > r" and by using (18) with help of triangle inequality,
we obtain

1Sir — Sir || = | Si(rrg1) = Sir 4 Sirrs2) = Sigr41) + -+ + Sir — Sir—y) ||
< 1Sigra1y = Sirll + [[Sir+2) = Siwrap | + -+ - + (183 = Sir-)|
<7 Mo, )| + A7 2 lwioll + - - + 7wl

r’ r—r'— r’ 1— ,.Yr—r’
= Ly AT Y uol| <4 H(ﬁ) [[eio|

Since 0 < v < 1,50 1 =~ < 1. Then [|S; — S| < ﬂ’li_w ZHuzOH Since
uio(z,t) is bounded, then lim, .o [|Sir — Si|| =0, ¢ = 1,2,...,m. Thus the
family of {S;,} are Cauchy sequences in B. Therefore, solutions series given

by (17) converges. O

Theorem 3.5. For the solutions series (9) of (5), the error is

7m—l—l
12 sup |uio(z,t)|, Q C R% (19)
— Vi (x,t)eQ

sup |u;(z, ) — Zuzk(l‘,t)‘ <
(z,t)EQ =0

7‘/+
Proof. By using Theorem 3.4, we get ||S; — Siv|| < “{1% SUP(;.pyeq [wio(7,1)].
But we assume S;, = Z};:O wk. Since r — 0o, we have S, — u;(z,t), we have

’ r'4+1
i
i, t) = Sive || = lua(, t) = wag(ar, )| < sup |uio(z,t)].  (20)
— I =% (ep)e0
” 77~’+1
Therefore, sup, cq ‘ul — > o u1k| < 1 SUP( e [wio- d
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4. Applications to Dynamical Systems of Conformable PDEs

In this section, we introduce exact solutions for some examples of the
conformable dynamical systems. These examples are chosen as they have not
been considered before in the current forms or their exact solutions are not
available in the literature.

Example 4.1. For 0 < a, 8 < 1, we consider the following system:

{O‘J'fu(:v,t) +u(z,t) + vz, t)oTu(z, t) = 1, u(x,0) = =/, 1)

oTPv(x, t) — v(z,t) — u(z, t)oTov(x,t) = 1, v(z,0) = e >/,
For a = 3 = 1, the exact solutions for system (21) are [30] u(z,t) = €'z, v(z,t) =

e~ . Next, assume the solutions u and v for (5) are

u(a,t) =Y up(z,t), v(w,t) = v(x,t), (22)

From the system (23), we have
( OTQBUO =0, OTEUO =0, onul = fi— L1(U07UO) - Nl(u07U0>>
075’01 = fa— LZ(U()aUO) - Nz(“o;’Uo),

1 ot
0T u, = — Ly (U1, 1) — WW(NI [ZPS(US,US)])Z):(), (23)
’ 0

1 9! =
B, _ s
\ 0T vk = —Lo(up—1,vp-1) — k1) oph (Nz[;P (Us>Us)])p:0>
for k = 2,3,.... Next, we apply the conformable space-time partial integral

transform given by Definition 3.3 to (21), we obtain

o tkﬂema/a tkﬂe—za/a
_ z%/ _ — (_1)k —
Up = € y Vo = € 7uk_( 1 k'ﬂk y Uk = k"ﬂk ’

(24)

for £ = 1,2,... By substituting the components from (24) into the system
(22), the solutions u and v for (21) are

z%/a 28 ,x%/« 368 %/«
u:el’a/o‘_tﬁe / +t66 / _tﬁe / _|_.“:exo‘/a—t5/,3 (25)
3 2132 313 ’
t,Be—:co‘/a t2,36—x°‘/a t3,6’6—x°‘/o¢
_ oo o L a8
v=e + 3 + e + 315 +---=e . (206)

Which is same to the exact solutions in case of a« = g = 1.
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Example 4.2. We consider nonlinear dynamical system of conformable space-
time PDFEs with initial values of the following form.:

th 80T U TP Gy th

I A L LA Ctnt ) B )
8 tﬁoquOTau (xa — ya) 8

T — (u— =)oT — L ——=+1=0

0 0 x )

subject to the following initial conditions:
u(r,y,0) ==+ L @y 0)==-L 0<a<p<1 (2
Q@ o Q@ a

Next, we assume that the solutions of (5) have the analytic expansions

oo

u(w, y,t Zuwy, oy, t) =Y oz, y,t). (29)

r=0

From the system (23), we have
(0T ug =0, T vy =0,

OTful = fi— L1(U0,Uo) - Nl(um?)o), 075711 = fi— L2(U0,U0) - N2(U07?10)>
1 ot ]

0T uy, = —La(ug—1) — WW(M [;ps(us,vs)])pw (30)
1 9! !
\ 0T vy = —Lo(ug_1) — mw(%[;ﬁ(us,vs)])p:o,
for k = 2,3,.... Next, we apply the conformable space-time partial integral

transform given by Definition 3.3 to both sides of the system (30) and using
the initial conditions, we obtain

— + (e} o ,Q t/B tﬂ
Uy = € Y ,UO:uyulz_7v1:__7uk:07Uk:O,k:2,,3....
o a g g
And finally we obtain th exact analytical solutions for the system 27 as follows:
P Y~ 8 o Y~ e
uz,y,t)=——+—+ vz, yl) = ——— — —, 31
(2, y,t) s ats (@,y,t) = — - — 5 (31)

which is same to the exact solutions in case of @ = § = 1.

5. Discussion and Graphical Representations

The solutions for Example 4.1 are graphically described in Figure 1la and
Figure 1b when a« = 8 = 0.5 and in Figure2a and Figure 2b when o = 1 and
B = 1 through several points of x and t. We represent u, v for Example 4.2
when y is fixed at y = 1 in Figure 3a and Figure 3b for a = § = 0.5 and in
Figure 4a and Figure 4b for @ = § = 1 through several values of x and t.
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(a) Graphical representation of (b) Graphical representation of
u for Example 4.1 as o = 8 = v(z,t) for Example 4.1 a = =
0.5. 0.5.
Fig. 1. Graphical representations of solutions when o« = 0.5, 5 = 0.5 for
Example 4.1.

(a) Graphical representation of (b) Graphical representation of
u for Example 4.1 as a = 1 and v(x,t) for Example 4.1 as o = 1
g =1 and 8 = 1.

Fig. 2. Graphical representations of solutions for Example 4.1 when a =

g=1

u(x?)

1
234
t

5§
7
¥ 9710

(a) Graphical representation of (b) Graphical representation of
u(z,y,t) for Example 4.2 at y = 1 v(x,y,t) for Example 4.2 at y = 1
and a = =0.5. and a = § = 0.5.

Fig. 3. Graphical representations of solutions for Example 4.2 at y = 1 as
a=L8=0.5.
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(b) Graphical representation of
v(z,t) at y = 1 when @« = 8 =1
for Example 4.2.

Fig. 4. Graphical representations of solutions for Example 4.2 at y = 1 as
a=p=1.

(a) Graphical representation of u for
Example 42 at y=1asa == 1.

6. Conclusion

In this paper, we introduced an effective analytical approach for solving
nonlinear systems of conformable space-time PDEs. Further, the convergence
and error analysis of the solution are also shown. The real benefit of the
introduced method is that it provides exact solutions of nonlinear dynamical
systems of conformable space-time PDEs, which are in excellent agreement
to prove the efficiency of the introduced method. It is valued to state that
putting the proposed method into practice is very dependable, well-organized,
and applicable to solve other nonlinear physical systems.
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