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A COMPACT FINITE DIFFERENCE SCHEME FOR SPACE-TIME
FRACTIONAL DIFFUSION EQUATIONS WITH TIME
DISTRIBUTED-ORDER DERIVATIVE

Qinghua Feng®

In this paper, we present a compact finite difference scheme for the Dirich-
let problem of a class of space-time fractional diffusion equations with time distributed-
order derivative, where the time fractional derivative is defined in the sense of Caputo
derivative, and the space fractional derivative is defined by the Riesz derivative. The
term involving time distributed-order derivative is discretized by use of the compound
Simpson formula, and the Caputo fractional derivative is approrimated by the Lagrange
interpolation formula, while the Riesz space fractional derivative is approximated by the
compact fractional center difference formula. The proposed difference scheme is proved
to be uniquely solvable, unconditionally stable and convergent with accuracy of fourth
order in both space and time directions. Numerical experiments for supporting the the-
oretical analysis are given.
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1. Introduction

Fractional derivatives have been proved to be very useful in describing the memory
and hereditary properties of materials and processes, and fractional differential equations
are widely used various domains including physics, biology, engineering, signal processing,
systems identification, control theory, finance, fractional dynamics and so on [1-5]. One of
the most important applications for fractional differential equations is to model the pro-
cess of subdiffusion and superdiffusion of particles in physics, where the fractional diffusion
equations are extensively used [6-8].

Due to the complexity of fractional calculus, it is difficult to obtain exact solutions
for fractional differential equations. So it becomes important to develop effective numer-
ical methods for seeking numerical solutions for fractional differential equations. Among
the numerical methods existing in the literature, the finite difference method is the most
popular one, which has been used by many authors to construct efficient difference schemes
for a variety of fractional differential equations. Also there have been many effective finite
difference schemes for solving fractional diffusion equations. For example, in [9-12], finite
difference schemes were established for time fractional subdiffusion equations and diffusion-
wave equations, where the time fractional derivative is defined in the sense of the Caputo
derivative, and was approximated mainly by use of the Lagrange interpolation formulas
(L1 or L2). In [13-18], the authors developed various finite difference schemes for space
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fractional diffusion equations, while in [19, 20], difference schemes for space-time fractional
equations were investigated. Recently, there have also been some papers investigating dif-
ference methods for distributed-order fractional differential equations. In [21], Ye et al.
derived a second order compact difference scheme to approximate a distributed-order time-
fractional diffusion-wave equation, while in [22], Morgado and Rebelo presented an implicit
scheme for the distributed order time-fractional reaction-diffusion equation with a nonlinear
source term. In [23, 24], Gao and Sun developed alternating direction implicit difference
schemes for the two-dimensional diffusion and wave equations with fractional derivatives in
time. In [25], Ye et al. researched a class of space-time fractional diffusion equations with
time distributed-order, and proposed a second order difference scheme to approximate both
time and space fractional derivatives.

In this paper, we investigate difference schemes for space-time fractional diffusion
equations with time distributed-order derivative, and the following problem will be consid-
ered:

B
D7 u(w.t) = pla) S 4 fe.0), w € f0.b) 1e .7,
x

u(w,0) = pla), @ € [a,b], W

u(a,t) = u(b,t) =0,
where @ € (0,1), f € (1,2), u is smooth enough, p is continuous with p(z) > L > 0

B
for z € (a,b), % denotes the Riesz fractional derivative, Df(a)u(m,t) denotes the
x

time-fractional derivative of distributed order defined by

Df(a)u(x,t) = fol w(@)§ Du(z, t)da,

!/

OCDf‘u(x,t) = r(1 1_ @) ot (u;(_m;l ds, (2)

w(a) >0, fol w(a)da = K >0,
where w is smooth enough.

The fractional diffusion equation with time distributed-order is useful for modeling

a mixture of delay sources [26]. The Riesz fractional derivative can be used for describing
anomalous diffusion [27]. In general, the most popular methods available for approximating

the Riesz fractional derivative in the case 0 < a < 2, a # 1, are the Grunwald-Letnikov
and the fractional center difference approximation methods. In [28], Shen et al. established
implicit and explicit finite difference methods with Griinwald-Letnikov derivative approxi-
mation to a linear Riesz fractional diffusion equation, and proved that the explicit method is
conditionally stable, while the implicit method is unconditionally stable. In [29], the authors
investigated a discrete random walk model based on an explicit finite-difference approxima-
tion for the Riesz fractional advection-dispersion equation, and presented explicit and im-
plicit difference schemes using Griinwald-Letnikov derivative approximation. In [30], Yang
et al. presented the standard and shifted Griinwald-Letnikov derivative approximations, the
method of lines, the matrix transform method, the Lagrange approximation method and
a spectral representation method for a Riesz fractional advection-dispersion equation on a
finite domain, while in [31], Zhang et al. established an implicit finite difference method for
a non-linear Riesz fractional diffusion equation with Griinwald-Letnikov derivative approxi-
mation. In [32], Celik et al. used the fractional centered difference to approximate the Riesz
fractional derivative, and established a second order accuracy Crank-Nicolson method for
the fractional diffusion equation with the Riesz fractional derivative.

We organize the rest of this paper as follows. In Section 2, we present some notations
and preliminaries. Then in Section 3, we develop a compact finite difference scheme for
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the problem (1). First, the spatial fractional derivative will be approximated by a compact
scheme of fourth order accuracy. Second, the integral term in the time distributed-order
derivative denoted by the first equation of (2) will be approximated by the compound Simp-
son formula, which is also of fourth order accuracy, and after this approximation, the time
distributed-order derivative can be decomposed to multi-term time fractional derivatives.
Third, each time fractional derivative will be approximated by the Lagrange interpolation
formula. In Section 4, Theoretical analysis including unique solvability, stability and conver-
gence for the present finite difference scheme are fulfilled. In Section 5, numerical examples
are given for testing the present finite difference scheme. Finally, in Section 6, some con-
cluding comments are proposed.

2. Preliminaries

Let J, M, N be positive integers, and Ao = %, h = b]\—/z’ T = % Define
a=lAa(0<1<2J), zi=a+i*xh(0<i< M), t,=n7(0<n<N), Qp={z;]0<i<
M}, Q. ={t,]0 <n < N}, (i,n) = (24,t,), and then the domain [a, b] x [0, T] is covered by

Qn x Qp. By U = u(a;, t,) and ul* we denote the exact solution and numerical solution at

the point (i, n) respectively. Denote U™ = (U, U3, ..., Uy )T, u™ = (uy, ul, ..., uy,_)7T.
Define the grid functions spaces Vi, = {u|u = (u1, ug,...ups—1)T} and VP = {ulu €
M-1
Vi, o = upyy = 0. For u, v € V2, define inner product as (u,v) = h Y uv;, and
=1

M—1
corresponding discrete Ly norm by ||ul| = /(u,u) = ( 3 hlu;[?)=.
i=1

For further use, denote

n n n n n
Soun = L _hui—l §2un — Y1 —2up Ui,
i1 y Uty :
2

h2

Definition 1. For n — 1 < 8 < n, n € N, the left-side Riemann-Liouville derivative, the
right-side Riemann-Liouville derivative, and the Riesz derivative of order g for the function
u(z,t) are defined by

oo DBu(z,t) = %(ﬁ [* (@ = o) Bu(o, t)do),
2Dlule,t) = (1" o (g 70 —a) Pl )do), (3
OPu(z,t

a\g(c|6 ) _ _2cos(lﬂ7r/2)(_ooD§u(x,t)) +, D2 u(z,t))

respectively, where in the definition of the Riesz derivative it satisfies that 5 # 2k + 1, k =
0,1,...

Remark 1. Considering the homogeneous boundary value conditions in the problem (1),
we can extend the spatial definition of the function u to the whole R, and then it holds that

—ooDBu(z,t) =, DBu(z,t)),

DB u(z,t) =, Dfu(m,t), (4)

5‘5u(x, t) 1 B B

o~ Zeos(Bry2) o Pen: ) Fa Dyu( b))

Lemma 1 (The compound Simpson formula). Suppose f(a) € C#[0,1]. Then it holds
that

S f(a)da = Aa z difla) — L8 s e 0,1), (5)

where
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,1=0,2J,
k=24,..,2] —4,2] —2
k=1,3,..,2J —3,2J — 1.

d =

)

37
Lemma 2 [9, Lemma 2.1](The Lagrange interpolation formula). Suppose 0 < a < 1,
and u(t) € C?[0,t,]. Then it holds that

o « n-l @ « «
§Dru(t) - rE—gylot” ultn) = X @2y = aJu(t) - ayulto)]

| SO DN —

1 1 — X o _ —a " 2«
. m_aﬂ %+ 5= ~ (1+27)] max |u (1), (6)
where (1 =(k+ 12— k=2 k>0, and satisfies (1 —a)(k+1)7% < al(f) <(1-a)k.

Remark 2. Note that Lemma 2 also holds for &« = 0 under the same conditions and
for a = 1 if the coefficients are modified by af = 1, a}c =0, k=1,2,..n—1.

Lemma 3 [33, Theorem 2.4]. Let 1 < 8 < 2, f € C"(R) and all its derivatives up to
order five belonging to L1 (R). Define the fractional center difference

AR f(a) = z a7 f(x — kh),

where gl(cﬁ) _ 5 (_ )kr(ﬁ‘f' 1) _ Then
F(— —/f-i—l)l—‘(f-‘rk-i-l)

Bty — 5 5t (p
L ad) - 42 L)+ et o)

TR 24 p)f 12
Furthermore, the coefficients g,(f ) satisfy the following properties:
g = Lﬁﬁ D s, ¢ = [1- % g k=12,
L5+ 1) k+ 5
(B) g(ﬂk)’ k=1,2,..., Z g(B)
k=—o0

3. Derivation of the compact finite difference scheme

Let the operator A be defined as Au; = Q%Ui,l +(1- 1%)uz + Q%UiJr]. The first

equation of (1) can be rewritten as
1 w(ar) aﬁu(xvt) f($7t)
—D 1) = . 8
plz) u(z,t) 8|$‘ﬁ + (@) (8)
Applying the operator A to (8) at the point (i,n) and by use of Lemma 3 one can
deduce that

n ) n
AlDY U7 = AR+ AR = 3 U+ A0
On the other hand, by (2) and Lemma 1 one has
DY IR = () DIUT = Aa z diw(e)§ DU + O(Aa)t. (10)

Furthermore, from Lemma 2 and Remark 2 one can obtain that

n o )TN (1) (1) (1) —a
§ DU = M[ao YU — kgl(an—lk—l —a, ) UF — a, 1 UP] + O(72720).(11)

Combining (9)-(11) we have
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n—1

2J - (67) n g (67) - (67)
MBE L i) = o5 lof™ U7 = 3 (0l — DU — U]}
L5 ogn, +A(f )+ O(r + 1 + (Aa)b). (12)

h? k:—M—i—z
Then the finite difference scheme for the problem (1) can be formulated as follows:

Aa 2 TN e S (gl glen (1), 0
A7 2 diw(a) g™ uf = 3 (a7 ) — @, )uf — apud]}
Di fr I'(2— o)

k=1

1 ¢ n i :
= —Zf:mg;f)ul k+ﬂ(%),1§z§M—1,1§n§N7 (13)
ud = o(x:), 1<i< M -1,
ugy = uhy = 0.

4. Unique solvability, stability and convergence analysis

In this section, we prove the unique solvability, stability and convergence of the finite
difference scheme (13)

n
Setting ul' = —&, f” = f , the first equation of (13) can be rewritten
(2
A{A %d ( ) T ¢ [ (az)~n_nzl( () _ (az))~{c_ az)~0]}
O‘lio 1wl F(2—al) Qo Uy = Q-1 = Qg JU; — Qp 14
= —hiﬂ S g PDpigar  +ASP. (14)
k=—M+i

By the definition of the operator A we have Au; = (1 + %h%ﬁ)ui, and for Yu € V2,
(A, w) = () + b (520, 0) = [ul]® = b (G, 6,u)

= llul* = Fhoul.
On the other hand, by [34, Lemma 2.1.1] we have [|d,ul| < %Hu” So one can obtain that
(Au,u) > [Jul]® - gHqu Since 8 € (1,2), then %Hu”2 < (Au,u) < [Jul?. Furt}]‘1/[er11nore7 for

Vu, v € V2, we can define one discrete inner product as (u,v)4 = (Au,v) =h Y. (Au;)v;,
i=1

while define the discrete norm as ||ulla = y/(Au,u). As one can see from above, %HUHZ <
lull% < flul.

Lemma 4. Forﬁe( ,2), p(xz) > L >0, ve VY, it holds that

7

> ®) LR - ) Ph S w2
z_: [ Z gk Di—kVi— kvz] S —Cx [ ( )] z_:l vy,

M+ =
_ 2 _ 2 4=P)2-p)B I'(3+1) B
where Cf = e end s =< legyay pe ) [Pppen Ot
The proof of Lemma 4 is similar to [34, Lemma 5.1.2].

Theorem 1. The finite difference scheme (13) is uniquely solvable.

Proof. We need to prove that there is only zero solution for the corresponding homo-
geneous difference equation of (13), which is formulated as follows due to (14)
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A{Aa 22% dlw(al)ia(a’)ﬂ”} =L ZZ: (B)p R (15)
=0 F2—o)° ™ L ek
Taking the inner product of (15) with u™, considering aga’) = 1, from Lemma 4 one can

deduce that2]
AaS diwlog) =I— a2 <0
[ ZZ:O l ( Z)F(2 Ozl)]”u HA =

Since p(z) is continuous on the compact interval [a,b], there exists a positive constant k

such that p(x) < k for x € (a b), and furthermore, there exists one integer j satisfying
n

[ulloo = |u}| = |p]p | < /i\ | < glla"|| < %/@Hﬂ”HA < 0, which implies (15) has only
zero solution. Furthermore, the finite difference scheme (13) has unique solution. The proof
is complete.

Theorem 2. The finite difference scheme (13) is unconditionally stable with respect to
the initial datum and the right source term f.

2J
Proof. Set p = AaY, dw(og) Then according to (2) and Lemma 1 one can
=0

Tfal
i= I'2-a)
deduce that there exists a positive constant K, such that p > K,,.
Taking the inner product of the first equation of (14) with @”, considering p(x) >

L >0, by use of Lemma 4 one can deduce that

o « n-l « « akan
B 3 duslen) g ol (AT ) = E (@) - AT )
o) (70 ~ 1S S B, o
an—Ll(‘Auovun)] = W E Z gk: pZ—kugLfku?—i—(‘Afn’un)
i=1 — M+
M —
< —dL2(b—a)] P Z @+ (Af, ")
=1
=—C*L[2(b )]*ﬁHﬂ”H2+(Aﬁf",’d") . N
<~ L2(b— a)]Pl[an||? + {LL[2(b — a)] P |a" 2 Afr?
2(b — a)]P[Ja"[|* + {cx L[2(b — a)| 7 |u”| +4ch[2(b—a)]—ﬂH VA
1 T2
4c'fL[2(b—a)]*5” I
that is,
~nl|2 2! TN
plumlz < Aalgodzw(az)m
() e (ar) (50 7n o2
[22 (@ 25q —an” W) (@ @) a4+ a" (@0, 1) 4] + K| A2, (16)
where K| = 1

4P L2(b —a)] 77"
Now we prove the following inequality by use of the mathematical induction method

~n|l2 ~01(12 2K1 s12
17 < 1+ 25 max A a7
If n =1, from (16) one has
ula I < w2 + KA,
which implies (17) holds.
Suppose (17) holds for 1,2,...,n — 1, then for the level n, from (16) one can deduce
that

—a n—1

T2 a2

(™

«@ Un + I
nigﬁl _aghz;c)(” ||A . l|w ”A)

2J
pllat]% < Aays diw(en)
=0
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n 0 ~
+a az)(”“ ||A JF [|w ”A)] +K1||-Af"||2,

n—1

which is followed by

~ 2J - n_l a (e
plfa I < Ao 5 diten pg— o5 X @2 - a7
+al™) [@0)1%] + 2K | AF" 2.
Then
2 < A ng T () () o024 28K Afs
plar|? < az (o) g — al)[kzl( neket — G ) (5 + =5t max | AR
<°” \~0||A1+2K1Hftfnu2
and furthermore,
. A o A ) e @0 11a0|12
plla"% < Aa Z;Jdlw(al)F(Z —a) [kzl(an—k—l ay'y) + 1l 1%
2J —a n—1
+80Y dislen) o [3_ (@, = al)) + T max AT+ 200 AT
2 T(2 — o) 4 Ikt © G720

— @1 + 261 max AT+ 2K |4

Moreover, we have

a3 < @15 + 280 max [AF]P

So (17) also holds for Vn > 1 according to the mathematical induction method.
From (17) we have

~n ~ 2K Ts 2K S
Flam? < @) + 25t max [AF? < Fuf? + 50 max Af2 0 (18)
Furthermore, there exist K3 > 0 and an integer j € [1, M — 1] such that |p(x)| < K3, and
[ oo = |uj| = [pjuj| < Ksluf| < Kal[u™]. (19)
Combining (18) and (19) we have
n 3K 3K
12 < 32002 4 35

K2 max [JAf]|?

”u 1<s<n
3K2(b—a 3K K2(b s
< Sy, o KD gl
3K3(b—a) 3K, K2(b— a)
< 2 0112 1o 5|2
< 57— 1w ll5 + LK, pax A S5 (20)

From (20) one can see that the solution u™ of the finite difference scheme (13) depends
continuously on the initial datum u" and on the term f on the right, which shows that the
difference scheme (13) is unconditionally stable. The proof is complete.

For the convergence of the finite difference scheme (13), we have the following theorem.

Theorem 3. The finite difference scheme (13) is convergent with the accuracy O(7T +
14 (Aa)h).

Proof. Let € =U" —u", n=0,1,..., N denote the errors between the exact solutions and

n
the numerical solutions, and € = (€}, €%, €5,...,e%, )T, & = % Then from (12)-(14)
one can obtain that

Afda 5 duslen) sy o8 = 5 (@), a2 - a2
l l F(?—al) 0o € = k=1 Qp_)€E i
fh—lﬁ %Jrzg,(f)pi_kg?,k+R"(T,h,Aa), 1<n<N,1<i<M-1,
=0,1<:<M-1,
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where R™(7,h, Aa) = O(7 + h* + (Aa)?).
Similar to the proof process of Theorem 2 one can deduce that

22 < (202 4 2K s 2 _ 2K, s 2
217 < 170 + 254 max |5, b, A = 250 mae |R5(r, Ao

and
max ||R*(7, h, Aa)|2,

le™ 13 max.
where K, Ky, K, are defined as in Theorem 2.
Cq, Cy, C3 such that

||6n||oo <Cit+ 02h4 + C3(AO()4.
The proof is complete.

(22)

Then there exist positive constants

< 3K1K22(b — a)
KH

5. Numerical experiments

In this section, we carry out numerical experiments for testing the efficiency of the
finite difference scheme (13).

Example 1. Consider the problem (1) with the following conditions

a=0,b=1,

w(a) =T3 - a),

plz) =2 +1,

p(z) = 22(1 - 2)?,

2t — 1)z (1 —z)? (> +1) canlz " canl(l —z)~ 1"

1) = Tn(?) t Seos(Br/2) 2 Ti—aFn) T TA—atn)

where co = ¢4 = 1, ¢ = —2. The exact solution is u(z,t) = (t> + 1)z%(1 — x)? for the
problem above.
Let ||e™]] = ||U™—u"]|| denote the absolute error in Ly norm between the exact solution

and the numerical solution. In Table 1, the numerical error results at different time steps
are shown.

Table 1: The absolute errors at 7 = 0.01, h = %, Aa =0.05

=13 =15 B=17 B=18
time steps llello llelloo llelloo llelloo
10 1.5210%x107% | 2.4070x10~* | 3.7246x10* | 4.5876x10~*
20 1.7650x107% | 2.7418x10™* | 4.1557x10* | 5.0644x10~*
30 1.9259x107% | 2.9658x107* | 4.4586x10~* | 5.4137x10™*
40 2.0823x107% | 3.1944x10™ % | 4.7861x107* | 5.8032x10~*
50 2.2562x107* | 3.4567x107% | 5.1728%x107* | 6.2687x10™*
60 2.4564x107% | 3.7635x10* | 5.6308x107* | 6.8230x10~*
70 2.6871x107% | 4.1198x107* | 6.1659x10™* | 7.4721x10~*
80 2.9506x107* | 4.5285x107% | 6.7811x107* | 8.2191x10™*

In Figs. 1-2, comparisons between the exact solutions and the numerical solutions are
demonstrated.

It follows from Table 1 that the absolute errors are stable with the increment of the
computation time steps, which coincide with the theoretical analysis results in Theorem 2.
From Figs. 1-2 one can see that the numerical solutions can approximate the exact solutions
in a prefect manner.
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Fig 1. The exact solutions with h=1/41;7=0.001;A0=0.1;$=1.5
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*0 0.01 Hy

Fig 2. The numerical solutions with h=1/41;7=0.001;Aa=0.1;3=1.5

Example 2. Consider the problem (1) with the following conditions

a=0,b=1,
w(a) =T'(4 - a),
pla) = sin(o) +1,
p(r) = (1 —)°,
6t°(t — (1 —x)® | (sin(z) +1) & epnle ™ ennl(l — )~
flat) = In(t) + 2 cos(B/2) n§3[ C(ln—xoz +n) 'l—a+n)
where c3 =1, ¢4 = -3, ¢5 =3, cg = —1.
The exact solution is u(x,t) = (3 + 2)2®(1 — z)3.

In Table 2, the numerical error results at different time steps are shown, while in
3-4, the exact solutions and the numerical solutions are demonstrated respectively

Figs.

under certain selected parameters.

Table 2: The absolute errors at 7 = 0.01, h = 110, Aa =0.05
8=13 =15 8=17 B=18
time steps llellos llellos llello llelloo
10 5.x107% 1.9228x107% | 3.7246x10™* | 4.5876x10~4
20 1.2317x107% | 1.9371x107* | 2.5216x10~* | 3.2158x10™*
30 1.3152x107% | 1.9362x107% | 2.7956x10~* | 3.4235x10™*
40 1.3789x107% | 1.9440x10~* | 2.8691x10~* | 3.7008x10~*
50 1.5634x107% | 1.9706x107* | 3.2354x10™ % | 4.2164x10~*
60 1.6107x107* | 2.0238x107* | 3.5211x10™* | 4.6018x10™*
70 1.6986x107% | 2.1101x107% | 4.1026x10™* | 5.1127x10~*
80 1.8206x107% | 2.2363x107% | 4.3257x10™* | 5.8765x10™*

From Table 2 one can see that the numerical results are stable, and Figs.

that the numerical solutions can approximate the exact solutions satisfactorily.

Remark 3(Comparison with other method).

In [25

], the author considered the following

space-time fractional diffusion equations with time distributed-order derivative
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’ 0.6
S i r08 .
Fig 3. The exact solutions with h=1/51;1=0.002;A0=0.05;8=1.5 Fig 4. The numerical solutions with h=1/51;7=0.002;A0=0.05;$=1.5

B
S
with the same initial and boundary value conditions as in (1), where K3 > 0 is a constant.
A finite difference scheme was proposed with the error is in fact O(7 + h? + (A«)?) in [25].
From the results in Tables 1-2 one can see that the orders of magnitude of the errors are
1074, that is, h~%, while the orders of magnitude of the errors in Ref. [25] is h=2. So our

method is evidently of higher precision than that in Ref. [25].

Df(a)u(a:, t) = Kz

6. Conclusions

We have developed a compact difference scheme with accuracy O(7+h*+(Aa)?) for a
class of space-time fractional diffusion equations with time distributed-order derivative, and
proved the uniquely solvability, unconditionally stable and convergence for it. Numerical
experiments for testing the theoretical analysis results were carried out, and the numerical
results show that they are in good agreement with the theoretical analysis.
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