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REGULARIZED MEDIANS ON SYMMETRIC CONES
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We are concerned with an extension of main results of [6] into a general sym-

metric cone Ω from the convex cone of positive definite matrices P. To be more spe-

cific, two regularized median optimization problems are introduced and the existence

and uniqueness of solutions are studied on Ω. Moreover the Lipschitz continuity of the

gradient of objective functions of the regularized median optimizations are provided for

a possible design of gradient-based methods of finding the unique minimizer. Based on

some results of [7], we present purely Jordan-algebraic techniques of proof in comparison

with matrix-analytic ones in [6].
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1. Introduction

Recently, Kum et al. [7] studied divergences on a symmetric cone Ω, and considered

a median optimization problem. The motivation is from the problem of finding Wasserstein

barycenter for Gaussian measures in the theory of optimal transport where the symmetric

cone Ω is the convex cone of positive definite matrices P. Indeed, for Gaussian measures µ

and ν with mean 0 (without loss of generality) and covariance matrices A and B respectively,

the Wasserstein distance dW is expressed by

dW (µ, ν) = dW (A,B) =

√
tr(A+B)− 2tr(A

1
2BA

1
2 )

1
2 . (1)

Then the problem of finding Wasserstein barycenter of Gaussian measures νj with zero mean

and with positive definite covariance matrices Aj , j = 1, · · · , n respectively, is formulated

as the least squares problem minimizing the averaged sum of squared dW :

Ω(ω;A) := arg min
X∈P

n∑
j=1

wjd
2
W (X,Aj). (2)

Here A = (A1, · · · , An), and ω = (w1, . . . , wn) is a positive probability vector. Hence the

problem is immediately converted to a problem of matrix analysis in the special symmetric

cone P. Then a natural question arises from a theoretical perspective: How about the general

symmetric cone case Ω? That is, is it possible to extend the results in P into Ω? In this

respect, the paper [7] can be regarded as an answer to the question.
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On the other hand, very recently, Kum et al. [6] also introduced a gradient projection

method for solving regularized Wasserstein barycenter problems in some probability measure

spaces including Gaussian and q-Gaussian measures. Its mathematical analysis is based on

the identification of Gaussian and q-Gaussian measures with the corresponding covariance

(positive definite) matrices. This enabled them to adopt matrix analysis for dealing with

the problem. Under this circumstances, the same question can be cast in the same view as

[7]: What happens if a general symmetric cone Ω is considered instead of P? Is it possible

to generalize the results in P to Ω?

The present paper is a trial to give an answer to the question. It is the aim of

this work. Thus our work stands on the same line as [7]. We are concerned with an

extension of main results of [6] into the general symmetric cone Ω from the convex cone

of positive definite matrices P. To be more specific, two regularized median optimization

problems are introduced and the existence and uniqueness of solutions are studied on Ω.

Moreover the Lipschitz continuity of the gradient of objective functions of the regularized

median optimizations are provided for a possible design of gradient-based methods of finding

the unique minimizer. Based on some results of [7], we present a purely Jordan-algebraic

framework in comparison with the matrix-analytic one in [6]. This may be thought of as a

main contribution of our paper.

This work is organized as follows. In Section 2, we take a brief look at basic facts

regarding Euclidean Jordan algebras and symmetric cones. In section 3, we give a description

of the regularized median optimizations and show the existence and uniqueness of solutions

of the optimization problems. In section 4, the Lipschitz continuity of the gradients of

objective functions is provided.

2. Euclidean Jordan algebras and symmetric cones

As in [7], in this section, we briefly describe (following mostly [4]) some Jordan-

algebraic concepts pertinent to our purpose. A Jordan algebra V over R is a commutative

algebra satisfying x2(xy) = x(x2y) for all x, y ∈ V. For x ∈ V, let L(x) be the linear operator

defined by L(x)y = xy, and let P (x) = 2L(x)2 − L(x2). The map P is called the quadratic

representation of V. An element x ∈ V is said to be invertible if there exists an element y

(denoted by y = x−1) in the subalgebra generated by x and e (the Jordan identity) such

that xy = e.

An element c ∈ V is called an idempotent if c2 = c 6= 0. We say that c1, . . . , ck is a

complete system of orthogonal idempotents if c2i = ci, cicj = 0, i 6= j, c1 + · · · + ck = e. An

idempotent is primitive if it is non-zero and cannot be written as the sum of two non-zero

idempotents. A Jordan frame is a complete system of orthogonal primitive idempotents.

A finite-dimensional Jordan algebra V with an identity element e is said to be Eu-

clidean if there exists an inner product 〈·, ·〉 such that 〈xy, z〉 = 〈y, xz〉 for all x, y, z ∈ V.

Theorem 2.1. (Spectral theorem, first version [4, Theorem III.1.1]) Let V be a Euclidean

Jordan algebra. Given x ∈ V, there exist real numbers λ1, . . . , λk all distinct and a unique

complete system of orthogonal idempotents c1, . . . , ck such that

x =

k∑
i=1

λici. (3)

The numbers λi are called the eigenvalues and (3) is called the spectral decomposition of x.
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Theorem 2.2. (Spectral theorem, second version [4, Theorem III.1.2]) Any two Jordan

frames in a Euclidean Jordan algebra V have the same number of elements (called the rank

of V , denoted by rank(V )). Given x ∈ V, there exists a Jordan frame c1, . . . , cr and real

numbers λ1, . . . , λr such that x =
∑r
i=1 λici. The numbers λi (with their multiplicities) are

uniquely determined by x.

Definition 2.1. Let V be a Euclidean Jordan algebra of rank(V ) = r. The spectral mapping

λ : V → Rr is defined by λ(x) = (λ1(x), . . . , λr(x)), where λi(x)’s are eigenvalues of x (with

multiplicities) as in Theorem 2.2 in non-increasing order λmax(x) = λ1(x) ≥ λ2(x) ≥ · · · ≥
λr(x) = λmin(x). Furthermore, det(x) =

∏r
i=1 λi(x) and tr(x) =

∑r
i=1 λi(x).

Let Q be the set of all square elements of V. It turns out that Q has non-empty interior

Ω := int(Q), and Ω is a symmetric cone, that is, the group G(Ω) = {g ∈ GL(V ) | g(Ω) = Ω}
acts transitively on it and Ω is a self-dual cone with respect to the inner product 〈·, ·〉 where

GL(V ) is the Lie group of the invertible linear operators on V (see [4]). Furthermore, for

any a ∈ Ω, P (a) ∈ G(Ω) and is positive definite so that its operator norm

‖P (a)‖ = max{λiλj | λi, λj are eigenvalues of a} (4)

because the eigenvalues of P (a) are of the form λiλj [12, Theorem 3.1].

Note that Ω = {x ∈ V | λi(x) ≥ 0, i = 1, . . . , r}. For x, y ∈ V , we define

x ≤ y if y − x ∈ Ω

and x < y if y − x ∈ Ω. Clearly Ω = {x ∈ V | x ≥ 0} and Ω = {x ∈ V | x > 0}.
On the other hand, the symmetric cone Ω is a Riemannian manifold [4]. In this case,

the unique geodesic curve joining a and b [10, Proposition 2.6] is

t 7→ a#tb := P (a1/2)(P (a−1/2)b)t

where at =
∑r
j=1 λj(a)tcj for the spectral decomposition a =

∑r
j=1 λj(a)cj in Theorem 2.2.

Moreover, the geometric mean a#b := a#1/2b is a unique geodesic middle between a and b.

Basically the trace is an inner product on V , and the Jordan algebra V endowed

with the trace inner product 〈x, y〉 = tr(xy) is still Euclidean [4]. Every Euclidean Jordan

algebra admits a unique direct sum decompositions with irreducible (simple) Euclidean

Jordan algebras. Since the trace of a product of Euclidean Jordan algebras is the sum of

their trace functionals, from now on, we assume that V is a simple Euclidean Jordan algebra

of rank r equipped with the trace inner product.

3. Regularized Medians

Let A = (a1, · · · , an) ∈ Ωn, and ω = (w1, . . . , wn) be a positive probability vector.

Then we first consider the following minimization problem:

Ω(ω;A) := arg min
x∈Ω

n∑
j=1

wjΦt(aj , x) + γF (x) (5)

where

Φt(a, b) = tr ((1− t)a+ tb)− tr
(
P (a

1−t
2t )b

)t
, 0 < t < 1, and

F (x) = −r
2

ln(2πe)− 1

2
ln(detx).



52 Sangho Kum, Jen-Chih Yao

Now let us briefly describe the problem setting (5). As mentioned in [7], the real valued

function Φt involves the t-weighted arithmetic mean of a and b, and the sandwiched quasi-

relative entropy

Ft(a, b) := tr
(
P (a

1−t
2t )b

)t
,

which is well-known in the theory of quantum information; for positive semidefinite matrices

A and B,

Ft(A,B) := tr
(
A

1−t
2t BA

1−t
2t

)t
, t ∈ (0, 1).

This is a parameterized version of the fidelity F1/2(A,B) = tr
(
A

1
2BA

1
2

) 1
2

. Fidelity and

sandwiched quasi-relative entropies play an important role in quantum information theory

and quantum computation, and it has deep connections with quantum entanglement, quan-

tum chaos, and quantum phase transitions. See [5, 13, 14, 15]. Moreover, the real-valued

function F on Ω is originated from the Boltzmann entropy of a Gaussian measure [6]. The

definition of F is formally extended into Ω from P. Also γ > 0 is a regularization parameter.

When the symmetric cone Ω is the particular case P with t = 1/2, (5) immediately

reduces to the problem (3.1) in [6], the regularized Wasserstein barycenter problem for

Gaussian measures. In this case, Φ1/2(a, b) is nothing but the squared Wasserstein distance

d 2
W (a, b). However, Φ1/2(a, b)

1
2 may not be a distance on the general Ω as noted in [7]

even though Φ1/2(a, b) is a divergence (for definition, see [7]) on Ω. Nonetheless, without

the regularized term γF (x), the problem (5) has a unique solution [7], which is called the

ω-weighted Φ-median of a1, . . . , am. So we name the problem (5) as a regularized median

optimization problem.

Now we state the first main result.

Theorem 3.1. The minimization problem (5) has a unique solution and it satisfies the

following nonlinear equation:

tx− γ

2
e = t

n∑
j=1

wj

(
P (x

1
2 )a

1−t
t

j

)t
. (6)

Proof. We first show that the objection function f of (5)

f(x) =

n∑
j=1

wjΦt(aj , x) + γF (x) (7)

is strictly convex. It suffices to verify that for each 0 < t < 1 and a ∈ Ω, the map ϕa,t : Ω→ R

ϕa,t(x) := Φt(a, x) = tr ((1− t)a+ tx)− tr
(
P (a

1−t
2t )x

)t
and F are strictly convex. Indeed, the strict convexity of ϕa,t is explained in [7] using [3,

Lemma 3.1 and Theorem 3.2]. In addition, that of F is directly from the well-known formula

[9]

∇(− ln det)(x) = −x−1, ∇2(− ln det)(x) = P (x)−1 = P (x−1). (8)

Hence the hessian of F is positive definite, so F is strictly convex. Thus f is strictly convex

so that ∇f(x) = 0 at the unique solution if it exists. From [7, Proposition 4.1] we have

∇ϕa,t(x) = t
(
e−

(
a

1−t
t #1−tx

−1
))

. (9)
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Hence

∇f(x) =

n∑
j=1

wj∇ϕaj ,t(x)− γ

2
x−1 = t

n∑
j=1

wj

[
e−

(
a

1−t
t

j #1−tx
−1
)]
− γ

2
x−1.

So

∇f(x) = 0 ⇐⇒ te− γ

2
x−1 = t

n∑
j=1

wj

(
a

1−t
t

j #1−tx
−1
)
. (10)

Note that

a
1−t
t

j #1−tx
−1 = x−1#ta

1−t
t

j = P (x−1/2)
(
P (x1/2)a

1−t
t

j

)t
.

Taking P (x
1
2 ) in both sides of (10) yields

∇f(x) = 0 ⇐⇒ tx− γ

2
e = t

n∑
j=1

wj

(
P (x1/2)a

1−t
t

j

)t
. (11)

Thus the existence of solution of (5) is equivalent to that of a fixed point of the mapping

H(x) =

m∑
i=1

wj

(
P (x1/2)a

1−t
t

j

)t
+
γ

2t
e. (12)

Now we show the existence. Let

α := min{λmin(aj) | j = 1, . . . , n}, β := max{λmax(aj) | j = 1, . . . , n}

where λmin(aj) and λmax(aj) denote the minimum and maximum eigenvalue of aj , respec-

tively. So ∀j, aj ∈ [αe, βe] := {x | αe ≤ x ≤ βe}. Consider the elementary equation for a

positive real variable y

α1−tyt − y = − γ
2t
. (13)

Then it is easily checked that the function f(y) = α1−tyt − y is decreasing on [α,+∞) and

f(y) → −∞ as y → +∞. Thus the equation (13) has a unique solution α∗ ∈ [α,+∞).

Similarly we can obtain a positive real β∗(> α∗) on [β,+∞) satisfying β1−tyt − y = − γ
2t .

So we have

α1−tα t∗ +
γ

2t
= α∗, β1−tβ t∗ +

γ

2t
= β∗. (14)

Then the mapping H in (12) is a self-map on [α∗e, β∗e]. To see this, let x ∈ [α∗e, β∗e].

From αe ≤ aj ≤ βe,

α
1−t
t e ≤ a

1−t
t

j ≤ β
1−t
t e

and hence

α
1−t
t x = P (x1/2)

(
α

1−t
t e
)
≤ P (x1/2)a

1−t
t

j ≤ P (x1/2)
(
β

1−t
t e
)

= β
1−t
t x.

Thus

α
1−t
t α∗e ≤ α

1−t
t x ≤ P (x1/2)a

1−t
t

j ≤ β
1−t
t x ≤ β

1−t
t β∗e.

By (14)

α∗e = α1−tα t∗e+
γ

2t
e ≤

(
P (x1/2)a

1−t
t

j

)t
+
γ

2t
e ≤ β1−tβ t∗e+

γ

2t
e = β∗e.
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Therefore

α∗e ≤ H(x) =

n∑
j=1

wj

(
P (x1/2)a

1−t
t

j

)t
+
γ

2t
e ≤ β∗e.

By Brouwer’s fixed point theorem, there exists a point x ∈ [α∗e, β∗e] such that x = H(x).

This completes the proof. �

Remark 3.1. Theorem 3.1 is a generalization of [6, Theorem 3.1] in Ω. In fact, when

t = 1/2 and Ω = P the cone of positive definite matrices, Theorem 3.1 immediately reduces

to [6, Theorem 3.1].

For the second minimization problem, the following coefficients [7] are necessary: For

r the rank of V (replacing d in [7]), C0(q, r), C1(q, r) are given by

C1(q, r) =
2

2 + (r + 2)(1− q)
,

C0(q, r) =



Γ

(
2−q
1−q + r

2

)
Γ

(
2−q
1−q

) (
(1−q)C1(q,r)

2π

) r
2

if 0 < q < 1,

Γ

(
1

q−1

)
Γ

(
1

q−1−
r
2

)( (q−1)C1(q,r)
2π

) r
2

if 1 < q < r+4
r+2 .

We set the second optimization problem. For simplicity, only the standard case t = 1/2 is

considered as follow:

Ω(ω;A) := arg min
x∈Ω

n∑
j=1

wjΦ 1
2
(aj , x) + γFq(x) (15)

where

Φ 1
2
(a, b) =

1

2
tr(a+ b)− tr

(
P (a

1
2 )b
) 1

2

,

Fq(x) = −r
2
C1(q, r) +

[
1− (1− q)r

2
C1(q, r)

]
lnq

C0(q, r)

(detx)
1
2

and

lnq
C0(q, r)

(detx)
1
2

=
1

1− q

[
C0(q, r)1−q(detx)−

1−q
2 − 1

]
.

The functional Fq on Ω is deduced from the Tsallis entropy of a q-Gaussian measure [6,

Lemma 2.2]. Under these circumstances, the minimization problem (15) can be written as

min
x∈Ω

1

2
g(x) (16)

where

g(x) =

n∑
i=1

wi tr ai +

n∑
i=1

wi tr
(
x− 2

(
P (a

1
2
i )x

) 1
2
)

+ γ
[
2− (1− q)rC1(q, r)

]
lnq

C0(q, r)

(detx)
1
2

− γrC1(q, r)

= f1(x) + γ
[
2− (1− q)rC1(q, r)

]
lnq

C0(q, r)

(detx)
1
2

− γrC1(q, r), (17)
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with f1(x) =
∑n
i=1 wi tr ai +

∑n
i=1 wi tr

(
x − 2

(
P (a

1
2
i )x

) 1
2
)

. Using explicit formula of

C1(q, r) we get

2− (1− q)rC1(q, r) = 2− (1− q)r 2

2 + (r + 2)(1− q)

=
4(2− q)

2 + (r + 2)(1− q)
.

Substituting these expressions into (17) we obtain

g(x) = f1(x) +
4γ(2− q)C0(q, r)1−q

(2 + (r + 2)(1− q))(1− q)
(detx)−

1−q
2

− 4(2− q)
(1− q)(2 + (r + 2)(1− q))

− γrC1(q, r). (18)

Now we state the second main result.

Theorem 3.2. Suppose that αe ≤ ai ≤ βe (0 < α ≤ β) for all i = 1, . . . , n. The regularized

median optimization problem (15) has a unique solution x for all γ ≥ 0 if either 0 < q ≤ 1

or 1 < q ≤ 1 + 2α2

rβ2 and for γ sufficiently small if 1 + 2α2

rβ2 < q < r+4
r+2 . The solution x solves

the following nonlinear equation

x− γm(q, r)(detx)
q−1
2 e =

n∑
i=1

wi

(
P (x

1
2 )ai

) 1
2

, (19)

where m(q, r) is defined by

m(q, r) :=
2(2− q)C0(q, r)1−q

2 + (r + 2)(1− q)
.

Proposition 3.1. The nonlinear equation (19) has a solution.

Proof. The argument in the proof of [6, Proposition 4.2] is available. We will show that

ψ(x) :=

n∑
i=1

wi

(
P (x

1
2 )ai

)1/2

+ γm(q, r)(detx)
q−1
2 e

has a fixed point. Since αe ≤ ai ≤ βe, for α∗e ≤ x ≤ β∗e (with α∗, β∗ chosen later as in

[6]), we have

αx = P (x1/2) (αe) ≤ P (x1/2)ai ≤ P (x1/2) (βe) = βx, and

√
αx

1
2 ≤

(
P (x1/2)ai

) 1
2 ≤

√
βx

1
2 .

Hence

√
α
√
α∗e ≤

√
αx

1
2 ≤

(
P (x1/2)ai

) 1
2 ≤

√
βx

1
2 ≤

√
β
√
β∗e, and

√
α
√
α∗e ≤

n∑
i=1

wi

(
P (x

1
2 )ai

)1/2

≤
√
β
√
β∗e.

Thus

√
α
√
α∗e+ γm(q, r)(detx)

q−1
2 e ≤

n∑
i=1

wi

(
P (x

1
2 )ai

)1/2

+ γm(q, d)(detx)
q−1
2 e

≤
√
β
√
β∗e+ γm(q, r)(detx)

q−1
2 e. (20)
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Case 1. 1 < q < r+4
r+2 . From (20) and the inequalities

α∗
r = det(α∗e) ≤ detx ≤ det(β∗e) = β∗

r

we obtain

√
α
√
α∗e+ γm(q, r)α∗

r(q−1)
2 e ≤ ψ(x) =

n∑
i=1

wi

(
P (x

1
2 )ai

)1/2

+ γm(q, d)(detx)
q−1
2 e

≤
√
β
√
β∗e+ γm(q, r)β∗

r(q−1)
2 e.

For the existence of a fixed point of ψ, it suffices to check that ψ is a self-map on [α∗e, β∗e]

so that we can use Brouwer’s fixed point theorem again. Thus we have only to show that

there exist 0 < α∗ < β∗ such that

α∗ =
√
α0
√
α∗ + γm(q, r)α

r(q−1)
2

∗ and β∗ =
√
β0

√
β∗ + γm(q, r)β

r(q−1)
2

∗ .

But this is straightforward from the argument of [6]. So we omit it.

Case 2. 0 < q < 1. The same argument of [6] is available, too. Therefore, (19) has

a solution. This completes the proof of the proposition. �

Proposition 3.2. Suppose that αe ≤ ai, x ≤ βe for all i = 1, . . . , n. The functional g given

in (18) is strictly convex for all γ ≥ 0 when one of the following condition holds

(1) 0 < q < 1,

(2) 1 < q ≤ 1 + 2α2

rβ2 .

In addition, if 1 + 2α2

rβ2 < q < r+4
r+2 , then g is strictly convex for 0 ≤ γ < γ0 where

γ0 =
1

2

α2

β3

1
(q−1)d

2α2 − 1
β2

1

m(q, d)

1

βd(q−1)/2
.

Proof. We follow the argument in [6].

Case 1. 1 < q < r+4
r+2 .

Let k(x) := 4γ(2−q)C0(q,r)1−q

(2+(r+2)(1−q))(1−q) (detx)
q−1
2 . Let h(x) := (detx)

q−1
2 . By (8) and the

chain rule, we get

∇ det(x) = det(x)x−1. (21)

Using the definition of m(q, r), we have

∇k(x) = −γm(q, r)(detx)
q−1
2 x−1 = −γm(q, r)h(x)x−1. (22)

By the Leibniz rule and (8), we obtain

∇2k(x)(h) = D(∇k)(x)(h)

= −γm(q, r)[Dh(x)(h)x−1 + h(x)(−P (x−1))(h)]

= −γm(q, r)[〈∇h(x), h〉x−1 − h(x)P (x−1)(h)]

= −γm(q, r)

[〈
q − 1

2
(detx)

q−1
2 x−1, h

〉
x−1 − (detx)

q−1
2 P (x−1)h

]
= −γm(q, r)(detx)

q−1
2

[〈
q − 1

2
x−1, h

〉
x−1 − P (x−1)h

]
.
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Thus

〈∇2k(x)(h), h〉 = −γm(q, r)(detx)
q−1
2

[
q − 1

2

〈
x−1, h

〉2 − 〈P (x−1)h, h〉
]

= γm(q, r)(detx)
q−1
2

[
〈P (x−1)h, h〉 − q − 1

2
〈x−1, h〉2

]
.

Furthermore, according to [7, Corollary 6.3], for αe ≤ ai, x ≤ βe, we obtain from (17)

〈∇2f1(x)(h), h〉 ≥ 1

2

α2

β3
‖h‖2.

Thus we get

〈∇2g(x)(h), h〉 = 〈∇2f1(x)(h), h〉+ 〈∇2k(x)(h), h〉

≥ γm(q, r)(detx)
q−1
2

[
〈P (x−1)h, h〉 − q − 1

2

〈
x−1, h

〉2]
+

1

2

α2

β3
‖h‖2

≥ γm(q, r)(detx)
q−1
2

[
1

β2
‖h‖2 − q − 1

2
‖x−1‖2‖h‖2

]
+

1

2

α2

β3
‖h‖2

=

{
γm(q, r)(detx)

q−1
2

[
1

β2
− q − 1

2
‖x−1‖2

]
+

1

2

α2

β3

}
‖h‖2

≥
{
γm(q, r)(detx)

q−1
2

[
1

β2
− q − 1

2

r

α2

]
+

1

2

α2

β3

}
‖h‖2

From this estimate, we deduce the following cases

(i) If

1 < q ≤ 1 +
2α2

rβ2
,

thus 1
β2 − q−1

2
r
α2 ≥ 0, which implies that the Hessian of g is positive for all γ. Note that the

above condition is fulfilled if α and β satisfy β2 ≤ r+2
r α2. In fact, we have

q < 1 +
2

r + 2
≤ 1 +

2α2

rβ2
.

(ii) If

1 +
2α2

rβ2
< q <

r + 4

r + 2
.

then for

γ <
1

2

α2

β3

1
(q−1)r

2α2 − 1
β2

1

m(q, r)

1

βr(q−1)/2

the Hessian of g is positive since

γ <
1

2

α2

β3

1
(q−1)r

2α2 − 1
β2

1

m(q, r)

1

βr(q−1)/2

≤ 1

2

α2

β3

1
(q−1)r

2α2 − 1
β2

1

m(q, r)

1

(detx)(q−1)/2
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Case 2. 0 < q < 1. Similarly, we obtain

〈∇2k(x)(h), h〉 = γm(q, r)(detx)
q−1
2

[
1− q

2

〈
x−1, h

〉2
+ 〈P (x−1)h, h〉

]
≥ γm(q, r)(detx)

q−1
2

1

β2
‖h‖2.

Hence the Hessian of g is always positive definite in this case. �

Remark 3.2. Proposition 3.2 may be regarded as an extension of [6, Proposition 4.3] in Ω

with a slight change of the coefficient α1/2

β3/2 by α2

β3 . This minor difference is due to the fact

that we adopt the Jordan-algebraic technique in [7] instead of the matrix-analytic one in [2].

Actually, the matrix-analytic method in [2] is only available to the special case of Ω = P the

cone of positive definite matrices.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Suppose that the hypothesis of the statement of Theorem 3.2 is sat-

isfied, that is, either (i) 0 < q ≤ 1 or (ii) 1 < q ≤ 1+ 2α2

rβ2 or (iii) 1+ 2α2

rβ2 < q < r+4
r+2 . Suppose

that γ is sufficiently small in the last case; in the other cases γ can be arbitrarily positive.

Recall that g(x) is given in (18)

g(x) = f1(x) + k(x)− 4(2− q)
(1− q)(2 + (r + 2)(1− q))

− γrC1(q, r).

By Proposition 3.2, x 7→ g(x) is strictly convex. Now we compute the derivative of g(x).

Obviously

∇g(x) = ∇f1(x) +∇k(x). (23)

From (9) and (17) we get

∇f1(x) = e−
n∑
i=1

wi(ai#x
−1). (24)

By (22), we have

∇k(x) = −γm(q, r)(detx)
q−1
2 x−1

Substituting these computations into (23) we obtain

∇g(x) =
(
e−

n∑
i=1

wi(ai#x
−1)
)
− γm(q, r)(detx)

q−1
2 x−1. (25)

Thus ∇g(x) = 0 if and only if

e− γm(q, r)(detx)
q−1
2 x−1 =

n∑
i=1

wi(ai#x
−1)

=

n∑
i=1

wi(x
−1#ai) =

n∑
i=1

wiP (x−1/2)
(
P (x1/2)ai

) 1
2

.

Taking P (x
1
2 ) in both sides of the above equation yields

x− γm(q, r)(detx)
q−1
2 e =

n∑
i=1

wi

(
P (x1/2)ai

) 1
2

,
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which is precisely equation (19). By Proposition 3.1, it has a solution. This, together with

the strict convexity of g, guarantees the existence and uniqueness of a minimizer of g. So

the proof of the theorem is completed. �

Remark 3.3. Theorem 3.2 is a purely Euclidean Jordan algebraic version of [6, Theorem

4.1] in Ω. Indeed, [6, Theorem 4.1] is the particular case of Theorem 3.2 when Ω = P the

cone of positive definite matrices with the minor change mentioned in the previous Remark

3.6.

4. Lipschitz continuity of the gradient maps

We establish the Lipschitz continuity of the gradients of the objective functions of

(5) and (15). For the first regularized median optimization problem (5), the standard case

t = 1/2 is considered for simplicity. In this case, we may regard f̃(x) = 2f(x) as the

objective function. Indeed, from (7) we have

f̃(x) =

n∑
i=1

wi tr ai +

n∑
i=1

wi tr
(
x− 2

(
P (a

1
2
i )x

) 1
2

)
− γ ln det(x)− γr ln(2πe)

= f1(x) + γf2(x), (26)

where

f1(x) =

n∑
i=1

wi tr ai +

n∑
i=1

wi tr
(
x− 2

(
P (a

1
2
i )x

) 1
2

)
,

f2(x) = − ln det(x)− r ln(2πe).

Before going to main results, we need the following:

Proposition 4.1. Let us consider two functions G and H where 0 < α < β and

G : [αe, βe]→ [
√
αe,
√
βe], G(x) = x

1
2 , H : [αe, βe]→

[ 1

β
e,

1

α
e
]
, H(x) = x−1.

Then for x, y ∈ [αe, βe], we have

‖G(x)−G(y)‖ ≤ 1

2
√
α
‖x− y‖, ‖H(x)−H(y)‖ ≤ 1

α2
‖x− y‖.

Proof. In fact, by Sun and Sun [12, Theorem 3.2] G, H are continuously differentiable on the

Löwner interval [αe, βe] because the corresponding real valued functions g(t) =
√
t, h(t) =

1/t are continuously differentiable on the interval [α, β]. In addition, [αe, βe] is a compact

convex set so that G, H are Lipschitz continuous on [αe, βe] with the Lipschitz constants
1

2
√
α

and 1
α2 by [12, Theorem 3.2] and the mean value theorem for operators [11, Proposition

2, p.176]. �

Remark 4.1. Note that for the corresponding matrix case in [8], Theorem X.3.8 of [1] was

used to derive the same Lipschitz constants of G and H, which can be applied only to matrix

case. In this regard, Proposition 4.1 is a general version of [1, Theorem X.3.8].

Observe that for a, x ∈ [αe, βe],

α2e ≤ αa = P (a
1
2 )(αe) ≤ P (a

1
2 )x ≤ P (a

1
2 )(βe) = βa ≤ β2e.

Using Proposition 4.1 and the above observation, we directly obtain the first Lipschitz

continuity:
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Theorem 4.1. Suppose that ai ∈ [αe, βe] for all i = 1, . . . , n. Then for αe ≤ x 6= y ≤ βe

we have

‖∇f̃(x)−∇f̃(y)‖
‖x− y‖

≤ β2

2α3
+

γ

α2
.

Proof. According to (24) and (4) we have

‖∇f1(x)−∇f1(y)‖ =
∥∥∥ n∑
i=1

wi[(ai#x
−1)− (ai#y

−1)]
∥∥∥

=
∥∥∥ n∑
i=1

wiP (a
1
2
i )
[(
P (a

− 1
2

i )x−1
) 1

2 −
(
P (a

− 1
2

i )y−1
) 1

2
]∥∥∥

≤
n∑
i=1

wi

∥∥∥P (a
1
2
i )
∥∥∥∥∥∥(P (a

− 1
2

i )x−1
) 1

2 −
(
P (a

− 1
2

i )y−1
) 1

2

∥∥∥
≤ β

n∑
i=1

wi

∥∥∥(P (a
1
2
i )x

)− 1
2 −

(
P (a

1
2
i )y
)− 1

2

∥∥∥
≤ β

α2

n∑
i=1

wi

∥∥∥(P (a
1
2
i )x

) 1
2 −

(
P (a

1
2
i )y
) 1

2

∥∥∥
≤ β

2α3

n∑
i=1

wi

∥∥∥P (a
1
2
i )x− P (a

1
2
i )y
∥∥∥

≤ β

2α3

n∑
i=1

wi

∥∥∥P (a
1
2
i )
∥∥∥‖x− y‖

≤ β2

2α3
‖x− y‖.

Therefore we get

‖∇f̃(x)−∇f̃(y)‖
‖x− y‖

≤ ‖∇f1(x)−∇f1(y)‖+ γ‖∇f2(x)−∇f2(y)‖
‖x− y‖

≤ β2

2α3
+
γ‖x−1 − y−1‖
‖x− y‖

≤ β2

2α3
+

γ

α2
.

�

Now we are in a position to provide the Lipschitz continuity of ∇g concerned with

the second regularized median optimization (15). By (25), we know

∇g(x) =
(
e−

n∑
i=1

wi(ai#x
−1)
)
− γm(q, r)(detx)

q−1
2 x−1 =: ∇f1(x)− γm(q, r)h̃(x),

where ∇f1(x) =
(
e −

∑n
i=1 wi(ai#x

−1)
)

as in (24) and h̃(x) = (detx)
q−1
2 x−1 = h(x)x−1.

Since the method of proof of the second result below is exactly the same as that of [6,

Theorem 5.3 ], only the statement is made without proof. Readers may refer to [6].
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Theorem 4.2. Suppose that ai ∈ [αe, βe] for all i = 1, . . . , n. Then for αe ≤ x 6= y ≤ βe,

we have

‖∇g(x)−∇g(y)‖
‖x− y‖

≤


β2

2α3 + γ
α2 + γm(q,r)

α2 · β
q−1
2 r

(
1 + q−1

2 r

)
, if 1 < q < r+4

r+2 ,

β2

2α3 + γ
α2 + γm(q, r)α−2+ q−1

2 r

(
1 + 1−q

2 r

)
, if 0 < q < 1.

Remark 4.2. Theorem 4.1 and Theorem 4.2 are generalizations of [6, Theorems 5.2 and

5.3] in Ω, respectively.

5. Conclusions

In this paper we studied two regularized median optimization problems on a general

symmetric cone Ω. Basically the existence and uniqueness of solutions are treated. Moreover

the Lipschitz continuity of the gradient of objective functions of the regularized median

optimizations are provided. All of these results belong to a development of general Jordan-

algebraic frameworks beyond the usual matrix-analytic one. This is a main contribution of

our work from a theoretical perspective. However, we did not consider a numerical algorithm

to find the unique minimizer and implement it numerically. Besides, we presently do not

know of various applications of our results. So we leave them for further study.
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