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EFFECT OF INITIAL POROSITY SIZE ON THE FRACTURE
TOUGHNESS OF METALLIC MATERIALS

Rachid BENSAADA!, Madjid ALMANSBA?, Rabah FERHOUM 3, Zehra
SIDHOUM *

The purpose of this work is to assess porosity size effect on the fracture
toughness. The material considered is a stainless steel 316L. Simulations of the
behavior of compact tension (CT) tests were performed including four different
values of thickness (0.8, 1, 1.25, 1.5 mm) and three different initial porosities. For
the material behavior, the Rousselier damage model is implemented in the Abaqus
finite element package by means of UMAT (User MATerial) subroutine. Fracture
toughness is evaluated using the incremental formulation of J-Integral in conformity
with the ASTM E 1820-13 standard by means of a MATLAB script. We found that
the initial porosity size and the critical value of J-Integral are inversely proportional
and also that the critical J-Integral is dependent upon the specimen thickness.

Keywords: Ductile fracture, Initial porosity, Damage, Fracture toughness
dependence.

1. Introduction

Ductile fracture of metallic materials is associated with the development of
cavities within the material. We distinguish generally three phases which are: the
germination, growth and coalescence of cavities. The most known and used
micromechanical model is the Gurson one [1] modified by Tvergaard and
Needleman [2, 3]. Other models with the same assumptions were developed,
among them, we find the Rousselier damage model [4-6]. These models assume
that a metallic material contains a microstructure consisting of cavities and a
matrix whose elastic deformations are negligible compared to plastic
deformations. The first populations of cavities undergo growth in addition to the
germination of a second population which in turn undergoes ductile fracture
process. With the coalescence of cavities, macroscopic cracks appear and spread,
which leads the material to the ruin. Many authors have highlighted the
relationship between the micromechanical approach and the global approach of
fracture mechanics which is represented by the stress intensity factor or the J-
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integral [7] which is assessed using standards [8-11] or by the finite element
method [12].

The aim of this work is to determine the effect of the initial porosity size
and specimen thickness on the overall fracture toughness of stainless steel 316L
sheet.

2. Theoretical background

It is commonly known that the global parameter ‘J’ presents a dependency
identified by several authors. Pardoen et al. [13, 14] investigated porosity size
effect on the fracture toughness of aluminum thin plates from tensile testing of
double-edge notched tension (DENT) specimens. Their research showed that
thickness indeed influences fracture toughness, and the critical J-integral and
critical crack tip opening displacement (CTOD) constitute equivalent measures of
fracture toughness at small thickness. Other authors have highlighted the role of
the microstructure on the fracture toughness, Judelewicz et al. [15] and Arzt [16]
demonstrated that porosity size effect on the material properties of foil materials
was attributed to dimensional and microstructural constraints. Fan [17] made an
assessment of the grain size dependence on ductile fracture toughness using
available experimental data from various metals and alloys and proposed a semi-
empirical equation.

3. The Rousselier damage model

The Rousselier model is implemented in Abaqus/Standard using an
UMAT (User MATerial) subroutine following the Aravas algorithm [18], The
model is described by the following set of equations:

o, o,
¢(o,p) = pq —H(eg) + B(ﬂ)Dexp( . j : 1)
where p=ELD exp[ In j (2)
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in which o, is the equivalent Von Mises stress and o, is the mean stress
(1% invariant of the stress tensor); S is a scalar damage variable. Its evolution is
determined by equation (2). B is the damage function, o is a dimensionless
density which depends on £. D and o, are material constants, f, is the initial
void volume fraction. H(ey) is a term describing the hardening properties of the

material. Usually this is equal to the yield stress of the undamaged material,
H(el) =0, (&l).

4. Finite element analysis and fracture toughness assessment

In this study, simulations of CT (compact tension) tests on stainless steel
316L thin sheet in four different thicknesses are performed.
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Fig.1. Stress vs plastic strain curve of 316L

The relation stress-plastic strain is shown in Fig.1; this material was used
by Howells et al. [19] in order to study the effect of load history on ductile
fracture from a local point of view. The mechanical behavior of this material is
characterized by a Young’s modulus E =171 GPa, Poisson’s ratio v =0.294.
Note that the yield stress defined as the stress at 0.2% plastic strain is denoted by
Oy -

The initial volume fraction of voids or cavities f, is an important
parameter in fracture characterization. The relationship with the critical void
volume fraction f, was demonstrated by Benseddiq and Imad [20]. The influence
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of initial void volume fraction on the fracture and the void volume fraction
evolution was highlighted by Zhang et al. [21]. Bethmont et al. [22] showed that
the volume fraction of the inclusion which can be used to determine the initial
porosity size can be determined from the chemical composition of the material or
from the dimensions of porosity determined by microscopic observations. The
parameters used in this study for the Rousselier damage model are given in
Table 1:

Table 1
The Rousselier model parameters
E (GPa) 1% o, (MPa) fo fs D o,
171 0.294 375 Variable 0.2 3 500

To carry out this study, the FE package Abaqus [23] is used in its standard
form. Four thicknesses were chosen for the CT specimens, for every thickness (B)
we varied the initial porosity three times ( f,= 0.001, 0.005, 0.01) to check the

influence of this parameter on the fracture toughness. The specimens dimensions
are in conformity with the ASTM E 1820-13 standard [11]. The Von Mises stress
distribution is illustrated by Fig. 2 and the mesh deformation is given by Fig. 3
when the force — load line displacement curves are illustrated for each case by the
figures 4, 5, 6 and 7.

5, Mises
(Avg: 75%)
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Fig.2. Stress distribution on the specimen
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Fig.3. Mesh before and after deformation
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Fig.6. Force-displacement for CT1.25
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Fig.7. Force-displacement for CT1.5
For the assessment of fracture toughness of the material in each case, we

used the incremental formulation of the J-Integral given by the ASTM E 1820-13

standard [11]. The total J-Integral can be separated correspondingly into two
parts:

J=3,+J, ®)

By substitution of the elastic part, we have:

K2(1—v2
J = ¥ +J ol (6)
E
A
=5
g
£ Area, A, Original
Loading
Slope
Total Displacement, v

Fig.8. Definition of the area for the calculation of J [11]
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The plastic part is written as follows:

Jy=—2" (7

K: Stress Intensity Factor (SIF)

Api: Area highlighted in Fig.8

Bn: Net thickness of the specimen

ao: Initial crack length

W: Specimen width

bo =W - a: Ligament length

V: Total load-line displacement

Vpi: Plastic part of the load-line displacement

At the point corresponding to a(i),V (i), and P(i), in terms of the specimen
loading and the plastic displacement of the load line, the calculation is as follows:

K. )2(1— 2
0) :Lé‘/)"' pl (i) (8)

2 (A — Ay a _a
Jow =| I * ( . 1)] -0 = 9)
By By by,

In equation (9), the quantity A, — A, Is the increment of the plastic area

extracted from the load-displacement curve of the load line between the lines of
constant displacement in points i1 and i, the quantity J,,,, represents J-plastic

at the advance of the crack developed at the point iand is obtained in two steps by
incrementing J,,;,, existing and taking into account the total cumulative result

for the crack growth increment. The quantity A, can be calculated from the
following equation:

Aoy = Ay [ Py + Pony ] Vo Vo ]/ 2 (10)

This set of equations is written as a MATLAB script for the R-Curve (resistance
to crack growth) assessment in order to evaluate the critical value of J-Integral
[24-27]. The results obtained are illustrated by the curves in figures 9, 10, 11 and
12 and the results obtained in term of the evolution of critical J with the variation
of initial porosity and specimen thickness are given in figure 13 as indicated there.
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Fig.13. The J. evolution depending on foand the specimen thickness

5. Discussion

From the results obtained from the different simulations, we can see that
the initial void volume fraction f, has an important impact on the overall
behavior of the material. The influence of this parameter increase with the
increasing of the specimen thickness, from the curves illustrated by the figures 4,
5, 6 and 7 we can see that the final failure occurs more rapidly when the thickness
is greater despite greater load capacity; this is the result of the growing presence
of defects. We can also see that when the initial void volume fraction is increased,
the material fails more quickly; this can be the result of faster coalescence of
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cavities as mentioned by Zhang et al. [21]. These results are confirmed in terms of
fracture energy with the R-Curves determination which are given by figures 9, 10,
11 and 12. From these curves, we can see that the critical J-Integral value (crack
initiation) decrease with a greater initial porosity. The other conclusion is that this
critical value is also dependent on the specimen thickness, and this dependence is
highlighted by many authors [28-30]. Figure 13 gives the critical-J evolution with
the variation of f, for each specimen thickness. We can see that critical-J value

decreases linearly, and the decrease is more important when the thickness
increases.

6. Conclusions

The aim of this work is to assess the effect of initial void volume fraction
on the fracture toughness of a metallic material from a global point of view. We
can conclude that the initial void volume fraction and the critical value of J-
Integral are inversely proportional, when the initial void volume fraction is
greater, the material fails more quickly, this is the result of faster coalescence of
cavities. We also find that the criterion ‘J¢’ is highly dependent upon the
specimen thickness, its decrease is greater when the specimen thickness increases;
this is the result of the growing presence of defects. As perspectives to this work,
the use of the two parameters global approach consisting to link the J-Integral to a
second parameter as T-Stress to overcome the geometric dependence and to
propose a model to link explicitly the local approach based on the microstructure
evolution and the global approach based on the overall fracture toughness of the
material.
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