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IN VITRO BIOCOMPATIBILITY INVESTIGATION OF
SILVER AND ZINC MODIFIED HYDROXYAPATITE
DEPOSITED ON IMPLANT MATERIALS
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Cosmin Mihai COTRUT#, Maria Diana VRANCEANU?®, Mihai TARCOLEA?®

The purpose of this in vitro study was to evaluate the biocompatibility and
bioactivity of silver and zinc modified hydroxyapatite coatings deposited on titanium
by electrochemical deposition technique. Preliminary cell culture investigations
showed that Ag-HAp and Zn-HAp coating were non-cytotoxic and biocompatible.
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1. Introduction

Titanium (Ti) and its alloys are the most commonly used metallic
materials for medical implants in orthopedic and dental applications, due to their
low density, non-toxicity, excellent corrosion resistance [1], great
biocompatibility and mechanical properties for load bearing orthopedic
applications [2]. Even though Ti and its alloys can fulfill most of the clinical
requirements which are mandatory in order to properly function in the human
body, it is worth mentioning that it also presents some drawbacks. Due to its high
affinity for oxygen, Ti is covered with a thin layer of oxide which protects the
material from the aggressive media of the human, acting as a barrier. This
titanium oxide barrier reduces the osseointegration of titanium and doesn’t allow
biological interlocking at the bone- titanium implant interface. Thus, to overcome
this inconvenient, for many years, surface modification methods for Ti and its
alloy have been extensively investigated.
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In recent years, hydroxyapatite (HAp, (Ca(POa4)s(OH).) has been widely
used to coat load-bearing metallic implants. The main reason of using HAp
coating on metallic substrates is to maintain the mechanical properties of the
metal such as load-bearing ability and to use the advantage of the coating which
presents a similar chemical composition and biocompatibility with the bone [3].
According to the available literature, several techniques have been used to
develop HAp coatings on metallic implants, such as plasma spraying process [4-
9], thermal spraying [10], sputter coating [11], pulsed laser ablation [12, 13],
dynamic mixing [14], dip coating [15], sol-gel [16, 17], electrophoretic deposition
[18], biomimetic coating [19], ion-beam-assisted deposition [20], and hot iso-
static pressing [21], electrochemical deposition [22 - 26].

One of the primary features of HAp is the capacity for ion substitution. The
ion exchange of HAp with metal ions is promising because it can improve the
properties of HAp coating in various applications. Various ions such as Cu*? [27,
28], Zn*2 [27, 29 - 41, 42, 43], Ag" [26, 27, 44 - 74], Sn*? [3, 53, 75, 76], Mn*2
[75], Mg*? [75], etc. are incorporated into HAp through substitution Ca?* ions. In
the present study two metal ions, Ag* and Zn?*, respectively, were selected for
doping the HAp by electrochemical deposition technique. The samples were
investigated by SEM for morphological features and the chemical composition
was evidenced by EDS analysis. Moreover, the deposited coatings were
evaluated/tested in vitro through biocompatibility and bioactivity assays. In this
regard, the in vitro cellular behavior was evaluated on simple and Ag and Zn
modified HAp coatings electrochemically deposited on pure titanium. The cell
culture used in the resent study consisted in human embryonic kidney 293 cells,
HEK 293T cells. Bioactivity behavior of the coatings also were assessed in
simulated body fluid (SBF). Several methods have been reported previously to
develop simple and modified HAp coatings, including electrochemical deposition
[27, 28, 44 - 49, 77 - 81], plasma spray [52 - 58], magnetron sputter coating
method [59 - 61], sol-gel synthesis [62 - 65], hydrothermal method [66, 67], wet
chemical method [68], the precipitation [69, 70], the dipping [71, 72], the ball
milling [73], the ion exchange method [74], etc. To the best of our knowledge
there are no studies regarding the addition of Zn into HAp by electrochemical
technique, and only through other techniques such as sol—gel process [29, 30],
hydrothermal technique [31], ion-exchange [32], precipitation method [33 - 41].

2. Materials and Methods
2.1 Pretreatments of Ti substrate

The coatings were deposited on commercially pure Ti (cp-Ti, purchased
from Bibus Ag Metals, Germany) which acted as substrate. Samples in disc shape
with dimension of 14 mm in diameter and 2 mm in thickness were prepared. The
substrates were metallographically prepared using different grades of silicon
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carbide paper (400 - 800 grit). After, the substrates were thoroughly cleaned with
ultrapure water and ultrasonically cleaned in 2-propanol for 20 min and dried in
air.
2.2 Electrochemical deposition of HAp, Ag-HAp, Zn-HAp coatings on
titanium

The electrochemical deposition was carried out with a Potentiostat/
Galvanostat Parstat MC, PMC 2000 (Princeton Applied Research, USA)
employed to deposit the coatings on Ti, using a typical three cell system
conFig.ured as following: the Ti substrate was set as working electrode (WE), the
platinum foil was the counter electrode (CE) and the saturated calomel electrode
(SCE) as reference electrode (RE).

In Table 1 is presented the chemical composition of the electrolytes used
in the study. Briefly, the electrolytes were obtained by dissolving the salts
(analytical grade, purchased form Sigma Aldrich) in ultra-pure water, ASTM |
(Milli-Q). The pH value of electrolyte was adjusted to 5.0 by addition of 1M
NaOH. The electrolyte was purged with nitrogen gas for 20 min prior the
experiments in order to reduce the hydrogen evolution. During the deposition the
electrolytes were continuously stirred. The experiments were performed at 75°C
by applying a constant current density of - 0.85 mA/cm? for 1200s. After the
deposition, the samples were gently rinsed in distilled water and dried in air.

Table 1
Chemical composition of the electrolyte and samples codification
(Ca+M)/P
Substrate Sgr_nplg Chemical composition (mM) (M=Ag,
codification Zn)
Ca(NOs)2:4H20 | NH4H2PO4 | Ag(NOs) [ Zn(NOs)2-6H20
HAp 10 - - 1,67
cp-Ti HAp-Ag 9.975 6 0.025 - 1,67
HAp-Zn 9.975 - 0.025 1,67

2.3 Characterization and composition analysis of coatings

The morphology and element distribution of the coatings were studied
using scanning electron microscopy equipped (SEM) with an energy dispersive
spectroscopy (EDS) (Phenom ProX, Phenom World, Netherlands).

2.4 In vitro biological activity analysis

Bioactivity was evaluated by soaking the coated specimens in 40 mL of
simulated blood fluid solution (SBF). The chemical composition of the media
(Table 2) used in the present study resemblance to human blood plasma and uses
the receipt proposed by Kokubo [82, 83]. The tests were achieved at 37°C for 21
days and at different periods of 1, 3, 7, 14, 21 days samples were removed from
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the media and gently washed with distill water and then dried in a desiccator. The

SBF was refreshed every 3 days to preserve the ions concentration.
Table 2

The chemical composition of SBF media (1000 mL)

NaCl | NaHCOs3 | KCI | K2HPO4.3H20 | MgCl.6H20 | 1M | CaCl | Na;SOs | Tris

(9) (9) (9) (9) (9) HCI | (9) (9) (9)
mL

8.035 | 0.355 | 0.225 0.231 0.311 32 | 0292 | 0.072 |6.118

The samples mass (substrate and coating) evolution was gravimetrically
monitored using an analytical balance with an accuracy of 0.01 mg. The weight
variation of the formed/lost mass on the surface was determined using the
following equation:

Am =m; —m,

where 4Am represents the mass variation on the surface, ms and m; are
sample weights before and after exposure to SBF media.

2.5 Evaluation of biocompatibility

2.5.1 Cell culture

Human embryonic kidney 293T cells (HEK293T) were used to assess the
biocompatibility of HAp, HAp-Ag, HAp-Zn coatings. HEK293T were cultured in
Dulbecco’s modified eagle medium 1X (DMEM), supplemented with Glutamax-|
(Life technologies), 10% FBS (Life technologies) and 1% Non-essential amino
acids (Life technologies).

Cells were seeded on the Ti samples that were placed in 24-well
polystyrene cell culture plates (internal well diameter is 15 mm) and previously
rinsed twice with ethanol 70%. Cells seeded on 24-well plates served as control.

Cells were seeded onto the samples at an initial density of 25.000
cells/well and were cultured for 1, 3, and 4 days at 37°C under a humidified air
atmosphere consisting of 5% CO> and 95% air. The cells were seeded and further
were used for cell proliferation assay or stained for immunofluorescence. Culture
medium was renewed every 2 days.

2.5.2 Immunofluorescence assay
2.5.2.1 Sample preparation

After 24 h culture, the extracellular media was removed, the cells were
washed with Dulbecco’s Phosphate Buffered Saline (DPBS (1X), Life
technologies) and fixed with Paraformaldehyde 4% (PFA 4%) for 20 min at room
temperature. Further, the cells were washed again with DPBS 1X, followed by
permeabilization with detergent Triton X-100 0.2% in PBS for 4 min and washing
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with DPBS (1X). Subsequently, blocking was performed using Bovine serum
albumine 1% (BSA) in phosphate buffer solution (PBS) 1X.

2.5.2.2 Staining procedure

a) Staining for Actin and Ki67

Cells seeded on the Ti samples were stained with Alexa Fluor® 594

phalloidin (A594) 1/40 in BSA 1% for 60 min. Further, the samples were
incubated with anti-Ki67 antibody (rabbit, Thermo Scientific) 1/200 in BSA 1%
for 30 min and further with anti-rabbit Alexa Fluor 488 secondary antibody,
dilution 1/500 in BSA 1%, for 30 min. Cells were washed 5 times with PBS after
each incubation. After staining, samples were mounted on glass slides using Anti-
fade solution with DAPI (Invitrogen).

b) Staining for Tubulin and PDI
Cells seeded on the samples were incubated with Anti-Tubulin antibody
(rabbit, Abcam) 1/1000 in BSA 1% for 30 min and further with Anti-Rabbit Alexa
Fluor-A594 secondary antibody, 1/500 in BSA 1% for 30 min.

Afterwards, samples were stained with Anti-PDI antibody (mouse,
Abcam) 1/1000 in BSA 1% for 30 min, followed by incubation with anti-mouse
Alexa Fluor 488 secondary antibody, 1/500 in BSA 1%, for 30 min. Cells were
washed 5 times with PBS after each incubation. After staining, samples were
mounted on glass slides using Anti-fade solution with DAPI (Invitrogen).

¢) Microscopic immunofluorescence analysis

The cells were visualized under Microscope (ApoTome.2, AXIO) at a
magnification 20 X (mode: dry) and 63 X (mode: oil, immersol 518F),
respectively.

3.5.3 Cell proliferation assay
Cells were counted at days 1, 3 and 4 using a hemocytometer. A dilution
of the mixture with the number of cells to be counted should be used Trypan Blue
Stain 0.4% (710282, USA) was used to stain the dead cells and calculate cell
viability (volumetric ratio 1:1).
The biocompatibility tests were performed in triplicate using different
samples to ensure the validity of the results. Means and standard deviations were

also calculated.
Number of Cell alive

Total cell

Cell viability (%) =

3. Results and discussions

3.1 Morphological investigation

Fig. 1 shows the scanning electron microscope (SEM) image for simple
and modified HAp coatings prepared by the electrochemical deposition method.
The images are clearly visible in Fig. 1(a) that the electrodeposited of simple HAp
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coating presents a morphology made of ribbon-like crystals and a Ca/P ratio of
1.47.

Fig. 1. The SEM/EDS measurements on substrate material:
HAp (a, d), Hap-Ag (b, e), HAp-Zn coatings (c, f).

The addition of Ag into HAp hasn’t modified the plate-like morphology of
HAp but some silver particle agglomerations are visible on the HAp crystals Fig.
1(b). In this case the Ca/P ratio is about 1.67 which is similar to the stoichiometric
HAp (Ca/P=1.67). The HAp-Zn coatings is characterized by an interconnected
network made of very thin and small crystals (Fig. 1.c) suggesting that the
morphology of HAp is visible modified by addition of zinc. The Ca/P ratio
registered a value of 1.62 which is very close to the stoichiometric one.

According to the EDS analysis, it can be noted that all characteristic
elements were identified (Ca, P and O) and also the silver and zinc signals appear
on the spectra Fig. 1(e, f).

Thus, it can be said that the addition of Ag and Zn has induced some small
modifications in the HAp and also the Ca/P ratio has increased from a value of
1.47 in the case of HAp coatings to 1.67 and 1.62 for HAp-Ag and HAp-Zn,
respectively.
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3.2 Evaluation of Bioactivity

Immersion in SBF media has commonly been used to study the bioactivity
of materials as a quick, easy and low-cost method. The SBF used was according
to the bioactivity evaluation of the implant materials via the formation of apatite
layers on surface of substrates (ISO 23317:2014) and is an important feature in
order to estimate the material ability to bond with leaving tissues. After every
period of 1, 3, 7, 14, 21 days immersion in SBF, a thick and dense apatite layer
was formed on the specimen surface, minerals crystals covered almost the surface
of the specimen. The growth of apatite layers was measured carefully and the
obtained values are presented in Table 3. Each sample was measured five times.

Table 3
Mass evolution of the newly apatite layer on substrate after immersion in SBF
Mass [mg]

Sample Day 1 Day 3 Day 7 Day 14 Day 21
cp-Ti 0.01 (+0.01) -0.01(+0.01) 0.01 (+0.01) 0.01 (+0.01) 2.62 (+0.01)
HAp 0.51 (+0.01) 0.71 (x0.01) 1.19 (x0.01) 2.08 (+0.01) 4.58 (+0.01)

HAp-Ag 0.41 (x0.01) 1.25 (£0.01) 2.59 (+0.01) 3.60 (+0.01) 7.11 (+0.01)

HAp-Zn | 0.7 (20.01) | 1.11(x0.01) | 2.48(x0.01) | 3.41(x0.01) | 4.38(x0.01)

A slight increase in the initial mass was observed on all the samples after
one day exposure to SBF media, except Ti substrate without coating which didn’t
present any mass changes. The apatite growth rate on HAp-Ag is the fastest at
each period. For Hap-Zn samples, the growth rate of the new apatite layer was
higher compared to HAp samples at 7 days and 14 day but smaller than at 21 days
(Fig. 2). Hence, the bioactivity sequence of the coatings was Hap-Ag > Hap-Zn >
HAp > Ti. The presence of bone-like apatite layers on the substrate has been
considered as a positive biological response to host.
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Fig. 2. The chart shows the increase in the mass of the apatite layer on Ti
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3.3 Evaluation of biocompatibility
3.3.1 Cell morphology

Cell morphology was analyzed by staining the cells for cytoskeletal proteins
as actin and tubulin. The actin filaments (polymerized actin) were visualized using
phalloidin. No significant differences in the cell’s morphology was noted (Fig. 3
and Fig. 4). A reduced polymerization of actin was observed for all the coatings
(HAp, HAp-Zn and HAp-Ag) compared to the Ti samples (Fig. 5), suggesting the
HAp coatings alter the organization of actin in filaments.

Magnification X20 Magnification X63

cp-Ti

Hap

HAp-Ag
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HAp-Zn

(ad) (b4)
Fig. 3 Fluorescence microscope images of cells stained for actin and Ki67 of the HEK 293T
cells (actin-red, Ki67-green)
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HAp-Zn

PFalha,
(ad) (b4)
Fig. 4 Fluorescence microscope images of HEK 293T cells stained for tubulin and PDI of the
HEK 293T cells (PDI-green, Tubulin-red)

Tubulin staining revealed a better organization of the microtubules in the
cells seeded onto HAp-Zn and HAp-Ag than those seeded onto cp-Ti or HAp
(Fig.5). This suggest that Zn** and Ag* ions could add a benefit for tubulin
polymerization, which is an important dynamic process for cell intracellular
transport and cell division.

Magnification X63

Magnification X20

cp-Ti

HAp
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Fig.5. Fluorescence microscope images of HEK 293T cells stained for actin (al, b1,
cl, d1) and tubulin (a2, b2, c2, d2)

The intracellular transport is also related to the function of reticulum
endoplasmic, which was evaluated by staining for a specific protein, called
protein-disulphide-isomerase (PDI). PDI expression was similar in cells grown on
either material (Fig. 6). To evaluate cell proliferation, HEK293T cells were also
stained for Ki67 protein, which is associated with this process. It is expressed
during G1(growth phase), S (synthesis phase), G2 (gap phase) and mitosis phases
of cell cycle, but not in GO (metabolic state). As it is shown in Fig. 6, Ki67
expression was identified for the majority cells seeded on all samples. A higher
level of Ki67 protein was found in cells during mitosis phase, fact confirmed by
visualizing the separation of chromosomes during mitosis (prophase, metaphase,
telophase and anaphase) by staining with DAPI. Comparison between cell number
(by DAPI staining) on the different samples indicates a higher proliferation rate
for cells grown on HAp-Zn and HAp-Ag coatings and the lowest on the control
sample, cp-Ti.

These results suggest a possible advantage of using HAp-Zn and HAp-Ag
coatings to improve cell growing parameters, but further experiments should be
carried out using other types of cells.
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Magnification X63

Magnification X20
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HAp

HAp-Ag
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di d2

Fig.6. Fluorescence microscope images of HEK 293T cells stained for PDI (al, b1,
cl, d1) and for Ki67 (a2, b2, c2, d2)
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3.3.2 Cell proliferation

Cell Number
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Hmcp-T1 ®MHAp HAp-Ag B HAp-Zn ™ Control
Fig. 7. Cell proliferation on the tested materials after 1, 3 and 4 days.
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Fig. 8. Cell viability on the tested materials after 1, 3 and 4 days

In Fig. 7 are presented the values obtained for the cell proliferation assay. It
can be observed that on day 1 no significant differences were noted between all
tested materials. On day 3, a slight increase of cells was observed on all materials.
Compared to control sample, the lowest cell proliferation was registered for the
uncoated cp-Ti and sequence of the increase rate was cp-Ti < HAp < HAp-Ag <
HAp-Zn < control. Similarly, a constantly increase on day 4 was observed on all
the samples. Thus, according to cell proliferation assay, it can be said that all
coatings have enhanced the cell proliferation on cp-Ti, but better results were
noted for HAp coatings with addition of Ag and Zn.

In Fig. 8 are presented the cell viability results which demonstrated that all
the samples have good cytocompatibility of HEK 293T cells. In vitro
biocompatibility clearly indicated that all tested samples showed no cell cytotoxic
activity. The cell viability was above 80% (non-cytotoxic), the highest values
being obtained for HAp-Zn coatings (86.41 % at day 4). Moreover, on the 4th
day, the cell viability was similar for all coatings as following: HAp (85.14 %),
HAp-Ag (86.19 %) and HAp-Zn coating (86.41 %). There are no significant
differences found between them at day 1 and day 3

4. Conclusions

In the present study, biocompatibility and bioactivity of simple and Ag and
Zn modified HAp deposited by electrochemical deposition on pure titanium was
evaluated. Based on the presented results the following conclusions were drawn:
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- the morphology of HAp was made of thin ribbon-like crystals; the addition of
Ag into HAp didn’t induce major modification of the ribbon like morphology,
but some Ag particle agglomerations were noted; in the case of HAp-Zn
coatings, the morphology was made of very thin crystals which formed an
interconnected porous network, suggesting that Zn alters the nucleation
Kinetics;

- the elemental composition indicated that the addition of Ag and Zn enhances
the Ca/P ratio of HAp from a value of 1.49 for simple HAp to 1.62 for HAp-
Zn and 1.67 for HAp-Ag, the latter ones being close to the stoichiometric
HAp (1.67);

- in terms of bioactivity, all coatings have enhanced the biomineralization
ability of cp-Ti; after 21 days of immersion in SBF the highest values were
registered for HAp-Ag coatings (7.11 mg), followed by HAp (4.58 mg) and
HAp-Zn (4.38 mg), while the cp-Ti have registered the smallest value (2.11
mg);

- the preliminary cell culture investigations showed that Ag-HAp and Zn-HAp
coating were non-cytotoxic and biocompatible and overall addition of Ag and
Zn into HAp enhanced the behavior of HAp.

As a conclusion, it can be said that HAp based coatings with small
amounts of Ag and Zn can improve the bioactivity and biocompatibility of
titanium and can be considered as potential materials for medical application
usage.
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