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COVARIANCE BASED MIMO RADAR BEAMFORMING FOR
PATTERNS WITH DEEP NULLS

Tohid TONKABONI?, Yaser NOROUZI?, Amirsadegh ROSHANZAMIR?

Multiple Input-Multiple Output radar is an emerging technology and has
exclusive advantages and flexibilities. In this paper, we propose a method for beam-
pattern synthesis in order to construct a desired pattern which has specific nulls. It is
shown that arbitrary cross correlation matrix (R) can be approximated to achieve a
desired beam-pattern with a null in a specific direction. Besides constrained convex
optimization problem is investigated and it is shown that reconstructed pattern by this
matrix requires null at arbitrary angle. Penalty function and barrier methods are
applied to solve this constrained convex optimization problem. Finally, power and
advantages of our method for beam-pattern synthesizing has been depicted through
simulation results.

Keywords: MIMO Radar Beamforming, Convex Optimization, Penalty Function
Method, Barrier Method

1. Introduction

Multiple input-multiple output radars have attracted researcher’s attention
in recent years. These radars have been characterized with multi antennas for
transmitting different waveforms and receiving reflected signals. MIMO radars like
MIMO communications proposed new approaches in signal processing. Such
structures have good potentials in fading mitigation, resolution improvement and
jamming and deception suppression [1]. In this type of radars unlike phased array
counterpart , signals can be chosen so that the power density near arbitrary target is
maximized or reflected signal cross correlation is minimized[2, 3]. MIMO radars
ability causes resolution improvement [3, 4], high sensitivity in low velocity target
detection [5] and increasing parameter identifiability [6]. Generally MIMO radars
are classified into two main categories of MIMO radars with widely separated
antennas[3] and MIMO radars with collocated antennas[7]. In widely separated
antenna MIMO radars, transmitters are so far such that each one shows different
aspect of a target. This Specification of MIMO radars increases spatial diversity [8,
9]. In the case of collocated antenna MIMO radars, the transmitters are so close to
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each other that special aspect of a desired target can be shown. High ability in
interference suppression [10, 11], improvement of parameter identifiability and
flexibility increasing in waveform designation are some properties of this kind of
radars [12]. Generally, MIMO radars waveform designing can be divided into three
main classes. Covariance based methods [13, 14], ambiguity function based
methods [15, 16] and extended targets based methods [17, 18] are these three
classes. In covariance based approaches signal cross correlation matrix is
considered instead of entire waveform. In [15, 16] signal cross correlation matrix
is designed such that transmitted power is distributed in desired range of angles. In
addition in [19] cross correlation matrix is designed to control spatial power. In
contrast with the covariance based approaches, in the second method, the entire
signal is optimized. These methods try to find a set of signals which construct a
desired ambiguity function. They are more complicated than covariance based
methods. Angular resolution, Doppler and range of radar are described with radar
ambiguity function [20]. Extended target based methods like latter methods use
ambiguity function unless they estimate and detect extended targets. Another way
for transmit beampattern designation for MIMO radar is minimizing the radiation
powers of antenna in the selected directions with optimization variables constrained
to the waveform phases [21]. Also, the eigen decomposition method is applied to
calculate the subarray beamforming weights according to optimized correlation
matrix [22]. In this paper, we focus on covariance based method for waveform
designing. A convex optimization problem is selected for finding a suitable cross
correlation matrix. This optimization has two constraints which are equality and
inequality. This problem is solved with penalty function and barrier methods. In
section 2 we formulate our problem and show how it is possible to make a beam
pattern for MIMO radar. Section 3 discusses pattern synthesis and our main
problem which solved by penalty function and barrier methods. In section 4
simulation results are demonstrated and performance of our novel method is
presented while conclusions are brought after that.

2. Problem Formulation

Consider a collection of N transmitters which are located at known
coordinate X; = (X;, X,;, X5;) = (X, y,Z) as shown in

Fig. 1. In this paper we use spherical coordinate in which system elevation
@ is the angle made by v with the equatorial x—y plane. Each T\R module is
driven by a different signal with wavelength 4. Then the normalized power density
P(8) which is the summation over all transmitted waveforms in watts per steradian
(W/ster) is [12]:
(1)

P(0) = L gn (0)Ra(0)
Az
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In this quadratic form of normalized power density, R is cross correlation matrix
of transmitted signals. Note that electrical angle w, (¢) and direction vector are

defined as [12]:

27z, sin(6) (2)

‘//k(g) =

a(6’)=|:ej'//1(9) ejl/jZ(g) ej‘//N(‘g)JT ®)

z, is distance between array elements. The normalized power density P(8) is
exactly the beam that we want to synthesis. Besides, power density units are watts
per steradian which ensures that

(4)

72
27 | P(@)cos(8)dO =Tr(R)=N
-7

T/R modules

Fig. 1. T\R modulus and spherical coordinate[12]

By selection of optimum R, the desired pattern can be constructed, therefore an
optimization problem should be derived such that optimum R is obtained. As stated
in [12] the cost function used for this problem is :

()

1,(R) = j‘Pd 0)-a" (.9)Ra(0)‘2 cos(6)do
4

That is a weighted squared error metric and cos(8) is weighting function. It can be
shown that optimizing (5) can be rewritten as a convex optimization problem. Using
a single linear matrix inequality (LMI) R can be written as the weighted sum of
basis matrices F, and G [12]. Mentioned LM is as follow:
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N(N-1)
R=G+ X2 XNJrkI:N+k>_0 (6)
k=1

Where X >0 indicates that X is positive semi definite. x,X,,...,x, are

components of coefficient vector which makes linear combination of basis
matrices. Note that G =1,,. Dropping the first N basis matrices, vector space will

be X = (X, Xy, ... Xy (ngy) € RV P and thus

N(N-1)
R=G+ X xF >0 ()
k=1

Therefore, the problem is the following squared error constrained optimization [12]

minR J,(R) =[P, (0)—aH (Q)F(x)a(H)2 cos(6)dé (8)
4

N(N-1)
st R=Fx)=G+ X xF >0
k=1

Barrier method has been proposed as a solution approach for this problem [12,23-
25]. Now suppose we want to force some deep nulls to our desired pattern. For
example, 6, is a desired angle. Therefore, we have

H(x)=a" (6,)F(x)a(6,) 9)

Therefore, there is a new optimization problem with equality and inequality
constraints. Now we form an optimization problem as follow:

ming  J,(R) = [[P,(6) —a" (O)F(x)a(0) i cos(0)d@
17

(10)

N (N-1)
st R=F(xX)=G+ kZ XF =0
=1
H(x) =a" (6,)F(x)a(6,) =0
Penalty function and barrier methods are employed jointly to solve this
problem [23-25]. First, penalty function method is applied to convert problem to an
inequality constraint one and then barrier method solves our optimization problem
which had one inequality constraint.
Fig. 2 shows a simple flow chart for analytic solution of problem proposed in (10).
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Fig. 2. Flow chart of solving problem

3. Solving problem

Methods which use penalty function, transform a constrained problem into a
single unconstrained problem or into a sequence of unconstrained problems. The
constraints are placed into the objective function via a penalty parameter in order
to penalize any violation of the constraints. For solving the problem proposed in
(10), penalty function method should be used. We should minimize a cost function
like J,(x)+ ua(x) instead of a complicated problem as (10). «(x) should be chosen
so that J,(x) + ua(x) becomes a convex function [23]. As we have proved J,(x) is
a convex function [12], our attention must be focused on choosing an «(x) suitable

function so that cost the function remains convex. Since there are two constraints,
a(x)is as follow:

a(x) = ¢(F(x)) +w (H (X)) (11)

Note that ¢ and y should have the following conditions [23]:

#(y)=0 y<0 and ¢(y)>0 y>0 (12)
w(y)=0 y=0 and w(y)>0 y=0

Generally, a proper penalty function must incur a positive penalty for infeasible
points and no penalty for feasible points. Applying constraints mentioned in (12)
make J,(x) + ua(x) a convex function. For this problem, we have chosen ¢ and y

as follows:

4 13)
oy _JY y=20 (
¢(y)—t//(y)—{0 y <0
Therefore equation (10) transforms to:
ming  J,(X) + u(¢(F(X)) + #(H(x))) (14)

Note that, since H(x) is a scalar so ¢(H(x)) is scalar. F(x) is a matrix then ¢(F(x))
will be a matrix. Solving this problem by rewriting (14) results to:
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ming - {J,(X) + up(HX)} + 1($(F(X)) = I3(x) + (#(F(X)) (15)

Now for explaining novelty of our work, by comparing (15) with a standard
optimization problem which is solved in (8), a new objective function and constraint
can be defined as follows:

2
ming g Py(0) - a" (H)F(X)a(ﬁ)‘ cos(8)d O + ug(H (X)) = J,(X) + ug(H(x))

N(N-1)
st R=F(x)=G+ X xF >0
k=1

(16)

In simple expression, an optimization problem with an objective function and two
constraints which are equality and inequality is transformed to a simpler
optimization problem with another objective function which is inequality constraint
and can be solved by barrier method easily. In other words for constructing a pattern
with some specific nulls one can minimize J,(x)+ ug(H(x)) instead of J,(x) and
obtain a rather deep null with minimum error. This helps to synthesizing a pattern
which is similar to a desired pattern and we can have our special nulls in special
angles. To solve (16) using barrier method, a barrier function ¢(F(x)) is chosen that

is strictly convex over the feasible region of the problem. We choose log-det
function which is a well-known one [23-25]. We use here:

= 17
-~ {Iog(det(F () Fx)-0 (17)
oo Otherwise

Gradient and Hessian of the barrier function can be derived as follow [24]:
V(p(F(X); =-Tr(F ()R, (18)
VAGFOO)j =Tr(F 0ORF ™ (0F;) (19)

Also, we have

V3500 = V3, () + aVP(H (X)) = V3,09 + g (HO)VHx)  (20)
V23,(x) = V23, (X) + V2 p(H (X)) (21)

= V23,(x) + 1 (H()VZH () + 4 (H (<)) VH(X)VH (x)"
Note that
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a* (8,)Fa(6,) (22)
VH(x) = :
a" (6p)Fy n-pa(&)

and VPH() =0 . Also, gradient and hessian of J,(x) can be calculated as follow [24]:

V(,(X); = 2] a; () cos(O)(P, (8) —a" (9)F(x)a(6))do (23)
4
a,(0) =a" (9)Fa(0) (24)
V2 (3,00); = 2] o (O)ex (6) cos(6)d@ (25)
0

According to proposed derivations, we summarize steps of solving (16) .Note that
the barrier function is multiplied by a constant factor 1/t and as t approaches to
oo, barrier term diminishes.

e Selectinitial point X, and t >0, £ >1and ¢ >0.

o X (t)=argmin J,(F(x)) + up(H (X)) + @/ t)p(F(x)) .
e Setand x,, =x (t).
e Repeat step 2 using x;, as initial point until

|95 (FOG 1) + pap(H (1)) = 35 (FO, ) — pap(H ()] < &

In fact, the cost function which we optimize in step 2 is described in (26).We did
this optimization with Newton iterations because of its good convergence
properties.

G(x) = J5(x) + L/ )p(F(x)) (26)

Newton solutions for unconstraint optimization problem in step 2 are given by
X1 =% ~[V? G )]V G(x,) (27)

where
V G(x) = VI;(X) + L/ t)Ve(F(x)) (28)

V2 G(x) = V2 I,(x) + (L/ ) V2 p(F(X)) (29)
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In the implementation of our method selection of t and 4 values must be
cared. For large values of &, number of Newton iterations may be more than usual
for unconstraint optimization problem in step 2. Also, large t yields the fixed point
solution in step2. The result of barrier method optimization is a vector as
X = (X, X,,..-, Xy ) - By using this vector components and their corresponding basis
matrices, minimum mean square signal cross correlation matrix R, can be

constructed which optimally generates a pattern that is close to our desired beam
pattern.

4. Simulation Results

The array configuration in all simulations of this paper, is uniform linear
array (ULA) of N =10 sensors with A/2 sensor spacing.
Fig. 3 shows a desired pattern which is constructed by cross correlation

matrix of signals and has anull ing, = 44.4".

Optimized Beampattern(N=10 sensors)
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Fig. 3. Synthesized pattern for one null

Also, you can see reconstructed pattern and ability of this method for
creation a deep null in this angle.

We used minimum square error criterion as a cost function for our beam
pattern matching problem. This criterion has a specific property in this kind of
problems.
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In this problem MSE cost function causes the synthesized pattern does not
converge to our desired pattern rapidly. Because of this low rate of convergence,
one can see additional nulls besides desired nulls. The most important subject for
us is the location of the desired null which is so important in many applications.

One of the abilities of our novel method is its capability for creation of multi
nulls in a desired angle.

Fig. 4 shows that this method has no restriction for beam-pattern
synthesizing and creating multi nulls. This fact is true because of the characteristics
of penalty function method. If one increase number of equality constraints in this
optimization, objective function will have little changes while its convexity does
not change. Just new objective function will be sum of new penalty functions. This
robustness helps us in many applications which we need multi nulls in multi
directions.

Optimized Beampattern(N=10 sensors)
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Fig. 4. Synthesized pattern for four nulls
Note that the nulls are located atd, =44.4",0,=61.6, 6,=-35.3 and
0, =-51.5". Now for showing the ability of the method, consider two nulls which

are located at 6 =29.32 and 0,=81.91 . Suppose two angles are changing and
they are to be close to each other. Performance of reconstructed pattern can be
shown in

Table 1.
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Table 1
Comparison Between MSE of Reconstructed Patterns Based on Proximity of Nulls
First Null Angle Second Null Angle MSE
29.32 81.91 0.1656
33.37 77.86 0.0909
37.41 73.82 0.0922
41.46 69.77 0.1267
45.50 65.73 0.1562
49.55 61.68 0.1204
53.59 57.64 0.1068

If we admit minimum square error of reconstructed samples as a criterion
for similarity of reconstructed pattern to desired pattern, according to

Table 1 one can see reconstructed pattern has tolerable error and can provide
us an appropriate pattern which is so rival for desired pattern. According to

Table 1 when nulls are so close to each other the method can construct a
pattern with tolerable minimum square error. This robustness can help us in special
applications which we need exact nulls in our patterns and nulls are so close to each

other. For more description suppose two nulls which are located in 8, =53.75 and
0,=57.38" inFig. 5.
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Optimized Beampattern(N=10 sensors)
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Fig. 5 Reconstructed pattern for 8, =53.75 and @, =57.38°

This Simulation verifies our proposed method ability for constructing nulls

located in the neighborhood of each other.

Now consider a different kind of pattern which is constructed with proposed
method in [12] and proposed in this paper. We should attract your attention to this
tip that our proposed method works for every pulse shape with a tolerable error that
can be an advantage for this algorithm.

Table 2 shows a comparison between three kinds of patterns. For all three
categories of desired patterns our proposed method can make a better null in jammer
angle and attenuation is so better than signal cross correlation method proposed in
[12]. According to

Table 2 the reconstructed pattern with our proposed method has better
attenuation in specific nulls than signal cross correlation method proposed in [12].
Note that despite of better attenuation in null directions we have tolerable error
which is little more than signal cross correlation method in [12]. Therefore, this
proposed method has a tradeoff between minimum square error and attenuation in
null directions.
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Transmit Beamforming Using Proposed Method (N=10 sensors)

P(6) (dB)

== Desired Pattern

o | == nitial Soloution[8]

= Novel Solution

| |

-20 0
0(degree)

1l
0 'y 60

Fig. 6 Comparing Initial Solution with Our Novel Solution

We should attract your attention to this tip that the solution proposed in [12]
attenuates 1dB in the null direction but our proposed method attenuates 23dB more
than in the null direction. Fig. 6 shows this result. Note that MSE error for first
experiment is 0.23 and for second one is 0.97.

This ability of proposed method is effective in some applications such as
deceptive jamming suppression. A deceptive jammer tries to record signals and
broadcast them with delays. If a MIMO radar can transmit a signal with a deep null
in jammer direction it can confront against jammer’s operation.

Table 2
Comparison of Signal Cross Correlation Method versus our Method
Pulse Signal CCMethod Proposed Signal CC Proposed
MSE Method MSE Method Method
Attenuation(dB) | Attenuation(dB)
R Constructed 0.0112 0.0426 3.0344 32.3757
Rectangular 3.2263 6.0502 0.2550 30.5725
Triangular 0.2379 0.9787 1.0518 35.1049
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5. Conclusion

In this paper, a transmit beamforming method for multiple input-multiple
output radar has been proposed where transmitted signals can have arbitrary cross
correlation matrix R. R can be chosen so that a desired beam-pattern can be
constructed. Our criterion for constructing desired pattern is minimum mean square
and then we applied a constraint to our problem. This approach leads to interior-
point methods for a constrained convex optimization problem. We solved this
optimization problem using penalty function and barrier method. Through the
simulations it was shown that our proposed method can also synthesize every
desired beam. One of the advantages of our method is its null depth and it can
construct a pattern with tolerable error and deep null. Other capability of this
method is its ability different waveforms and pulse shapes. This characteristic can
be used in many applications in MIMO radar such as deceptive jamming
suppression. Much work remains for this problem in choosing different cost
functions.
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