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RIGOROUS ANALYSIS OF TM WAVE SCATTERING BY A LARGE

CIRCUMFERENTIAL GAP ON A DIELECTRIC-FILLED CIRCULAR

WAVEGUIDE

Hülya Öztürk1, Gökhan Cinar2, Özge Yanaz Cinar3

TM wave scattering by a large circumferential gap on a circular waveguide filled
with a dielectric material is investigated rigorously by applying direct Fourier transform

and reducing the problem into the solution of a modified Wiener-Hopf equation of the

first type. Classical Wiener-Hopf procedure is applied and the Wiener-Hopf equation is
solved via a set of Fredholm integral equations of the second type. At the end of the

analysis, the effects of waveguide radius, relative permittivity, frequency and the gap

width on the scattered fields are illustrated graphically.
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1. Introduction

The problem of scattering of electromagnetic waves along waveguides with gaps on
their walls has become more interesting for scientists and engineers. It has been extensively
studied in the literature, such as microwave bandpass filters, measurement devices, and
waveguide radiators. Due to the need of more accurate modeling of related engineering
applications of practical importance, analytical methods has recently increased [3,12,13]. In
1954, Sheingold and Storer analyzed a circular waveguide with a gap on its wall in the case
of TE wave incidence by using variational principle [14]. They found good agreement with
experiments for narrow gaps (small gap width to the wavelength). Later, in 1968, Morita and
Nakanishi investigated the same problem by means of fictitious equivalent magnetic current
for the gap [7]. They compared the results with the analysis obtained by Bethe’s method
and two results agreed well for narrow gaps. Besides, Lawrie [5] has analyzed the acoustic
scattering problem by a finite gap in an infinite, rigid, circular duct. For circular waveguides,
the case where the gap on the wall of a waveguide is large compared to the wavelength is
studied by Elmoazzen and Shafai for TM wave incidence and air-filled waveguides, where
they applied direct Fourier transform and reduced the problem into solving a modified
Wiener–Hopf technique of the first kind [4]. The resulting Fredholm integral equation of the
second type is solved for large gap width compared to the wavelength. The same problem is
then analyzed by Park and Eom in 2003 for thick walls and field expressions are determined
by applying a new method based on Fourier transform and series representation techniques
[10]. More recently, the authors of this paper have analyzed TEM wave scattering by
a hollow and dielectric-filled coaxial waveguides having a large circumferential gap on its
outer wall [8,9]. In this paper, TM wave scattering by a large circumferential gap on the
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wall of a dielectric-filled circular waveguide is analyzed rigorously by applying direct Fourier
transform which yields a modified Wiener–Hopf equation of the first type as [1,2,11,15]. This
modified Wiener–Hopf equation is reduced to a Fredholm integral equation of the second
type which is solved in a similar fashion as in [11]. Finally, the diffraction coefficients related
to the reflected, transmitted, and radiated fields are determined explicitly. At the end of
the analysis, numerical results illustrating the effects of the waveguide radius, the relative
permittivity of the dielectric material inside the waveguide and the gap width on the radiated
field are presented. A time dependence e−iωt with ω being the angular frequency is assumed
and suppressed throughout the paper.

2. Formulation of the problem

Consider a dielectric-filled circular waveguide whose wall is located at S = {ρ =
a, (−∞ < z < 0) ∪ (l < z < ∞)} (see Figure 1) and assume an incident TM0n wave
propagating in the positive z−direction, with an electric hertz vector given by

a

ψi(ρ,z)

ε1

ε0

zz = 0 z = l

Fig. 1. The geometry of the problem.

Πi (ρ, z) = ψi (ρ, z) az (1)

where the potential function ψi (ρ, z) stands for

ψi (ρ, z) = J0 (Knρ) eiαnz. (2)

Here Kn’s satisfy

J0 (Kna) = 0, n = 1, 2, 3, ... (3)

with

αn =

√
k2

1 −
(
Kn

a

)2

, n = 1, 2, 3, ... (4)

and Jn (z) being the usual Bessel function of the first type. Here, k1 is the propagation con-
stant inside the waveguide, which is assumed to have a small imaginary part corresponding
to slightly lossy medium. The lossless case can then be obtained by letting =m (k1) → 0
at the end of the analysis. In virtue of the axial symmetry of the problem, all the field
components may be expressed in terms of ψ (ρ, z) as

Eρ =
i

ωε

∂2ψ (ρ, z)

∂ρ∂z
, Ez =

i

ωε

(
∂2

∂z2
+ k2

)
ψ (ρ, z) and Hφ = −∂ψ (ρ, z)

∂ρ
.

Hence, the field components of the incident wave become

Eiρ =
αnKn

ωε1
J1 (Knρ) eiαnz, Eiz =

iK2
n

ωε1
J0 (Knρ) eiαnz and Hi

φ = KnJ1 (Knρ) eiαnz.

For the sake of analytical convenience, the total field can be written as

ψT (ρ, z) =

{
ψi (ρ, z) + ψ1 (ρ, z) , ρ < a
ψ2 (ρ, z) , ρ > a

(5)
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where ψ1 (ρ, z) and ψ2 (ρ, z) are the scattered fields which satisfy the Helmholtz equations[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂

∂z2
+ k2

1

]
ψ1 (ρ, z) = 0, ρ < a (6)[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂

∂z2
+ k2

0

]
ψ2 (ρ, z) = 0, ρ > a (7)

with the boundary conditions

ψ1 (a, z) = 0 , z ∈ (−∞, 0) ∪ (l,∞) , (8)

ψ2 (a, z) = 0 , z ∈ (−∞, 0) ∪ (l,∞) (9)

and the continuity relations

1

ε1

(
∂2

∂z2
+ k2

1

)
ψ1 (a, z) =

1

ε0

(
∂2

∂z2
+ k2

0

)
ψ2 (a, z) , z ∈ (0, l) (10)

and

KnJ1 (Kna) eiαnz − ∂ψ1 (a, z)

∂ρ
= −∂ψ2 (a, z)

∂ρ
, z ∈ (0, l) . (11)

Additionally, to ensure the uniqueness of the solution, one has to take into account the radi-
ation and edge conditions as described in [6]. In (7) and (10), k0 stands for the propagation
constant outside the waveguide, which is also assumed to have a small imaginary part.

The Fourier transform of the Helmholtz equation satisfied by ψ1 (ρ, z) with respect
to z, in the range of z ∈ (−∞,∞) gives[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+K2

1 (α)

]
F (ρ, α) = 0. (12)

Here K1(α) =
√
k2

1 − α2 is the square-root function defined in the complex α−plane ,cut
along α = k1 to α = k1 + i∞ and α = −k1 to α = −k1 − i∞, such that K1 (0) = k1 as seen
in Figure 2, and the Fourier transform is

F (ρ, α) = F− (ρ, α) + F1 (ρ, α) + eiαlF+ (ρ, α) (13)

with

F− (ρ, α) =

∫ 0

−∞
ψ1 (ρ, z) eiαzdz, (14)

F1 (ρ, α) =

∫ l

0

ψ1 (ρ, z) eiαzdz (15)

F+ (ρ, α) =

∫ ∞
l

ψ1 (ρ, z) eiα(z−l)dz. (16)

Notice that F+ (ρ, α) and F− (ρ, α) are unknown functions which are regular in the half-

−k0

k0

Re α

L

Im α

k1

−k1

L−

L+

Fig. 2. Complex α−plane.
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planes =m (α) > =m (−k1) and =m (α) < =m (k1), respectively, while F1 (ρ, α) is an entire
function of α. The general solution of (12) is

F (ρ, α) = A (α) J0 (K1ρ) , (17)

where A (α) is the unknown spectral coefficient to be found. Applying the Fourier transform
of the boundary conditions (8) yields A (α) = F1 (a, α) /J0 (K1a) to give

F (ρ, α) = F1 (a, α)
J0 (K1ρ)

J0 (K1a)
. (18)

On the other hand, the Fourier transform of the Helmholtz equation satisfied by ψ2 (ρ, z)
with respect to z, in the range of z ∈ (−∞,∞) gives[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+K2

0 (α)

]
G (ρ, α) = 0 (19)

where K0(α) =
√
k2

0 − α2 is the square-root function defined in the complex α−plane ,cut
along α = k0 to α = k0 + i∞ and α = −k0 to α = −k0 − i∞, such that K0 (0) = k0 as seen
in Figure 2, and the Fourier transform is

G (ρ, α) = G− (ρ, α) +G1 (ρ, α) + eiαlG+ (ρ, α) (20)

with

G− (ρ, α) =

∫ 0

−∞
ψ2 (ρ, z) eiαzdz, (21)

G1 (ρ, α) =

∫ l

0

ψ2 (ρ, z) eiαzdz (22)

G+ (ρ, α) =

∫ ∞
l

ψ2 (ρ, z) eiα(z−l)dz. (23)

Here, G+ (ρ, α) and G− (ρ, α) are unknown functions which are regular in the half-planes
=m (α) > =m (−k0) and =m (α) < =m (k0), respectively, while G1 (ρ, α) is an entire func-
tion of α. The general solution of (19) is

G (ρ, α) = B (α) H
(1)
0 (K0ρ) , (24)

where B (α) is the unknown spectral coefficient to be found. In (24), H
(1)
n (z) stands for the

usual Hankel function of the first type. Applying the Fourier transform of the boundary

conditions (9) yields B (α) = G1 (a, α) /H
(1)
0 (K0a) to give

G (ρ, α) = G1 (a, α)
H

(1)
0 (K0ρ)

H
(1)
0 (K0a)

. (25)

Similarly, applying Fourier transform to the continuity relations (10) and (11), one
can obtain

G1 (a, α) =
ε0

ε1

K2
1 (α)

K2
0 (α)

F1 (a, α) (26)

and

G′1 (a, α) = KnJ1 (Kna)

[
1− ei(αn+α)l

]
i (αn + α)

+ F ′1 (a, α) , (27)

respectively. By taking into account the above equations with (13), (18), (20) and (25), one
can get

N (α)F1 (a, α) + eiαl
[
F ′+ (a, α)−G′+ (a, α)

]
+
[
F ′− (a, α)−G′− (a, α)

]
=
KnJ1 (Kna)

i (αn + α)
− KnJ1 (Kna) ei(αn+α)l

i (αn + α)
(28)
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with

N (α) =
K1J1 (K1a)

J0 (K1a)
− ε0

ε1

K2
1 (α)

K2
0 (α)

K0H
(1)
1 (K0a)

H
(1)
0 (K0a)

(29)

Equation (28) is nothing but the modified Wiener-Hopf equation regarding the potential
function ψ. By taking into account the relation between ψ and Ez, (28) can be rearranged
as

ωε1

iK2
0 (α)

M (α)P1 (a, α) + eiαlP+ (α) + P− (α)

=
KnJ1 (Kna)

i (αn + α)
− KnJ1 (Kna) ei(αn+α)l

i (αn + α)
(30)

with

P1 (a, α) =
iK2

1 (α)

ωε1
F1 (a, α) , (31)

P+ (α) = F ′+ (a, α)−G′+ (a, α) , (32)

P− (α) = F ′− (a, α)−G′− (a, α) (33)

and

M (α) =
ε1K

2
0K1J1 (K1a) H

(1)
0 (K0a)− ε0K

2
1K0J0 (K1a) H

(1)
1 (K0a)

ε1K2
1J0 (K1a) H

(1)
0 (K0a)

. (34)

Notice that P1 (ρ, α) is the Fourier transform of Ez (ρ, z) in the region z ∈ (0, l), ρ < a.
Applying classical Wiener-Hopf procedure to (30) yields

(k0 + α)

M+ (α)
U (α) = − 1

2πi

∫
L+

e−iτl (k0 + τ)

M+ (τ)
L (τ)

dτ

(τ − α)
(35)

(k0 − α)

M− (α)
L (α) =

1

2πi

∫
L−

eiτl (k0 − τ)

M− (τ)
U (τ)

dτ

(τ − α)
− KnJ1 (Kna) (k0 + αn)

iM+ (αn) (αn + α)
. (36)

with U (α) and L (α) being defined as

U (α) = P+ (α) +
KnJ1 (Kna) eiαnl

i (αn + α)
(37)

L (α) = P− (α)− KnJ1 (Kna)

i (αn + α)
, (38)

respectively. The split functions M+ (α) and M− (α) can be determined by following the
procedure described in [8]. (35) and (36) are Fredholm integral equations of the second type
with the paths of integration L+ and L− denoted in Figure 2. Changing the integration
variable τ by −τ in (35) and replacing α by −α in (36) and adding and subtracting the
resulting equations reads

(k0 + α)

M+ (α)
Ũ (α) =

1

2πi

∫
L−

eiτl (k0 − τ)

M− (τ)
Ũ (τ)

dτ

(τ + α)
− KnJ1 (Kna) (k0 + αn)

iM+ (αn) (αn − α)
(39)

(k0 + α)

M+ (α)
L̃ (α) = − 1

2πi

∫
L−

eiτl (k0 − τ)

M− (τ)
L̃ (τ)

dτ

(τ + α)
+
KnJ1 (Kna) (k0 + αn)

iM+ (αn) (αn − α)
(40)

respectively, where Ũ (α) and L̃ (α) are defined by

Ũ (α) = U (α) + L (−α) (41)

L̃ (α) = U (α)− L (−α) . (42)

In order to solve the coupled system of integral equations (39) and (40), one can apply the

method of successive approximations. When k0,1l is large, Ũ (1) (α) and L̃(1) (α) are the first

order solutions obtained by letting the integrals in (39) and (40) be equal to zero. Ũ (2) (α)
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and L̃(2) (α) are the second order solutions which are derived by substituting the unknown
functions appearing in the integrands by first order approximations. The same process can
be used to obtain the higher-order terms. Hence, one gets

Ũ (α) = Ũ (1) (α) + Ũ (2) (α) + Ũ (3) (α) + ... (43)

L̃ (α) = L̃(1) (α) + L̃(2) (α) + L̃(3) (α) + ... (44)

where the first-order solutions are determined to be

Ũ (1) (α) = −KnJ1 (Kna) (k0 + αn)

i (αn − α)M+ (αn)

M+ (α)

(k0 + α)
(45)

L̃(1) (α) =
KnJ1 (Kna) (k0 + αn)

i (αn − α)M+ (αn)

M+ (α)

(k0 + α)
(46)

while the second-order solutions become

Ũ (2) (α) = L̃(2) (α) =
M+ (α)KnJ1 (Kna) (k0 + αn)

2π (k0 + α)M+ (αn)
I1 (α) (47)

with

I1 (α) =

∫
L−

eiτlM
2
+ (τ)

M (τ)

(k0 − τ)
2

K2
0 (τ) (αn − τ)

dτ

(τ + α)
. (48)

Due to the Jordan’s lemma and the law of residues, the integration contour L− can be
deformed onto the branch-cuts C1 + C2 and C ′1 + C ′2 through the branch points τ = k1

and τ = k0, respectively. By substituting τ = k0 + it,
√
τ − k0 =

√
teiπ4 on C ′1 and√

τ − k0 = −
√
teiπ4 on C ′2 and using the properties

Jn
(
eiπz

)
= einπJn (z) , H(1)

n

(
eiπz

)
= −einπH(2)

n (z)

gives

I1 (α) =
4iM2

+ (k0) (k1 − k0)
4

eik0lε0ε1J2
0

(√
k2

1 − k2
0a
)

πa (αn + α)
[β1 (a, l)− β2 (a, l, α)] (49)

where β1 (a, l) and β2 (a, l, α) stand for

β1 (a, l) =

∫ ∞
0

t2e−tl

[t− i (k0 − αn)]A (t)
dt (50)

β2 (a, l, α) =

∫ ∞
0

t2e−tl

[t− i (k0 + α)]A (t)
dt, (51)

respectively with

A (t) =
[
ε1K

2
0K1J1 (K1a) H

(1)
0 (K0a)− ε0K

2
1K0J0 (K1a) H

(1)
1 (K0a)

]
×
[
ε0K

2
1K0J0 (K1a) H

(2)
1 (K0a)− ε1K

2
0K1J1 (K1a) H

(2)
0 (K0a)

]
. (52)

The integrals in (50) and (51) are to be evaluated numerically. Finally, the solution of the
modified Wiener-Hopf equation (30) is determined as

P1 (a, α) =
KnJ1 (Kna) (k0 + αn)

ωε1M+ (αn)

{
(k0 + α)

M+ (α) (α+ αn)
− ieiαl (k0 − α)

2πM− (α)
I1 (α)

}
. (53)
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3. Analysis of the fields

Considering the relation between Hφ and ψ and taking into account (31), the radiated
magnetic field Hsc

φ in ρ > a can be expressed as

Hsc
φ (ρ, z) =

ωε0

2πi

∫
L

P1 (a, α)
H

(1)
1 (K0ρ)

K0H
(1)
0 (K0a)

e−iαzdα (54)

where the integration path L is lying in the strip =m (−k0) < =m (α) < =m (k0) as shown in

Figure 2. Taking into account the asymptotic expression of the Hankel function H
(1)
1 (K0ρ)

for large arguments and applying the saddle point technique, one obtains

Hsc
φ (r, θ) = D (θ)

eik0r

k0r
(55)

with

D (θ) = −ωε0

iπ

P1 (a, k0 cos θ)

sin θH
(1)
0 (k0a sin θ)

and r and θ being defined as shown in Figure 3. On the other hand, the scattered magnetic

aε1

ε0

zz = 0 z = l

θ

P

r

Fig. 3. Observation point P.

field Hφ in the region ρ < a can be determined by the integral

Hsc
φ (ρ, z) =

ωε1

2πi

∫
L

P1 (a, α)
J1 (K1ρ)

K1J0 (K1a)
e−iαzdα. (56)

In order to determine the reflected field, the above integral must be evaluated for z < 0.
Taking into account the asymptotic behavior of M+ (α), (53) and the standard asymptotics
related to the Bessel functions of the first and second type, one can show that the integrand
in (56) tends to zero for |α| → ∞. This allows the application of the Jordan’s lemma and
by virtue of Jordan’s lemma and the application of the law of residues, the above integral
becomes equal to the sum of the residues related to the poles occurring at the simple zeros
of J0 (K1a) lying in the upper half-plane, namely, at α = αm’s. Defining the reflected field
in this region as

Href
φ (ρ, z) =

∞∑
m=1

Rmψm (ρ) e−iαmz (57)

one determines

Rm =
ωε1P1 (a, αm)

αmKmaJ1 (Kma)
(58)

with

ψm (ρ) = KmJ1 (Kmρ) . (59)

Similarly, solving the integral (56) for z > l in a similar fashion gives the transmitted
magnetic field as

Htr
φ (ρ, z) =

∞∑
m=1

Tmψm (ρ) eiαmz (60)
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with

Tm = − ωε1P1 (a,−αm)

αmaKmJ1 (K1a)
. (61)

4. Results

The numerical analysis is made in order to investigate the effects of the parameters
waveguide radius, gap width, frequency, relative permittivity of the filling material on the
radiated magnetic field. The frequency range for the numerical analysis should be decided
carefully, so that the dominant TM01 mode can propagate. Considering the first three zeros
of J0 (z), one can find that the only propagating mode is TM01 for 2.4048 < ka < 5.5201.
The numerical analysis in this section is done within this frequency range. Also, in all the
figures, the magnitude of the radiated field is normalized as described in [4]. In Figure 4,
the results regarding different values of kl for ka = 2.5, εr = 1 is presented. It is understood
from this figure that the analysis done in this paper has an excellent agreement with the one
done by Elmoazzen and Shafai in 1974, when it is compared to Figure 3a in [4]. On the other
hand, the dependence of the magnitude of the radiated field to εr, ka and kl is illustrated in
Figures 5, 6 and 7, respectively. It is observed in Figure 6 that ka dependence is strong as
the magnitude of the radiated field increases with increasing ka until the observation angle
140◦. After that angle, it tends to vanish for higher values of ka. Also, one can see that
for ka = 6, the magnitude of the radiated field drops significantly, as some of the energy is
transferred to the TM02 mode, which starts propagating for ka > 5.5201. Besides, small εr
dependence is observed in Figure 5, while negligibly small kl dependence is seen in Figure
7.

Fig. 4. The results for εr = 1.

Fig. 5. εr dependence.

Fig. 6. ka dependence.
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Fig. 7. kl dependence.

5. Conclusions

In this paper, TM wave scattering by a large circumferential gap on a circular waveg-
uide filled with a dielectric material is investigated rigorously by applying direct Fourier
transform and reducing the problem into the solution of a modified Wiener-Hopf equation
of the first type. Classical Wiener-Hopf procedure is applied and the Wiener-Hopf equation
is solved via a set of Fredholm integral equations of the second type. At the end the radiated
field is investigated numerically and the dependence of its magnitude with respect to waveg-
uide radius, relative permittivity, frequency and the gap width is illustrated graphically.
Besides, it is found that the analysis done in this paper has an excellent agreement with the
one in [4]. As this geometry is a good model for certain embedded antennas located inside
organic tissues, the problem where the outer medium is complex, would be very interesting
to analyze for future studies, and thus, develop a more accurate model for such applications.

6. Appendix

Convergence of β1 (a, l) and β2 (a, l, α)

In order to show the convergence of the integrals, we primarily split them into sums
of two terms:

β1 (a, l) =

1∫
0

t2e−tl

[t− i (k0 − αn)]A (t)
dt+

∞∫
1

t2e−tl

[t− i (k0 − αn)]A (t)
dt (A.1)

β2 (a, l;α) =

1∫
0

t2e−tl

[t− i (k0 + α)]A (t)
dt+

∞∫
1

t2e−tl

[t− i (k0 + α)]A (t)
dt (A.2)

Since the integrands are continuous for t ∈ [0, 1] in the above integrals, we can easily say
that the first integrals are convergent. For the second integrals, by utilizing the following
asymptotic expansion for t→∞,

A (t) ' −2t2

πa

{
ε2

1 cos2 (ta− 3π/4) + ε2
0 cos2 (ta− π/4)

}
, (A.3)

it is possible to use limit comparison test with

g(t) =
πae−tl

2t {ε2
1 cos2 (ta− 3π/4) + ε2

0 cos2 (ta− π/4)}
, (A.4)

which is continuous except at t = 0. For t > 1∣∣∣∣ πae−tl

2t {ε2
1 cos2 (ta− 3π/4) + ε2

0 cos2 (ta− π/4)}

∣∣∣∣ ≤ πae−tl

2tε2
0

. (A.5)

holds. Since
∞∫
1

πae−tl

2tε2
0

dt (A.6)
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converges,
∞∫
1

πae−tl

2t {ε2
1 cos2 (ta− 3π/4) + ε2

0 cos2 (ta− π/4)}
dt (A.7)

is absolutely convergent. Moreover,

lim
t→∞

∣∣∣∣∣∣
t2e−tl

[t−i(k0−αn)]A(t)

πae−tl

2t{ε21 cos2(ta−3π/4)+ε20 cos2(ta−π/4)}

∣∣∣∣∣∣ = 1 (A.8)

lim
t→∞

∣∣∣∣∣∣
t2e−tl

[t−i(k0+α)]A(t)

πae−tl

2t{ε21 cos2(ta−3π/4)+ε20 cos2(ta−π/4)}

∣∣∣∣∣∣ = 1. (A.9)

Since
∞∫
1

πae−tl

2t {ε2
1 cos2 (ta− 3π/4) + ε2

0 cos2 (ta− π/4)}
dt (A.10)

is absolutely convergent, we conclude that second integrals in (A.1) and (A.2) are also
convergent. Therefore, the improper integrals (50) and (51) are convergent.
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