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RECURRENCE AND CHAOS

Nan Wang1,2, Lixin Jiao2, Lidong Wang2∗, Shaoyun Shi3

Assume that (Σ2, ρ) is a one sided symbolic space, σ is a sub-shift on
Σ2. In this paper, we proved that there exists T ⊂ PQW (σ) ⊂ Σ2 such that
σ |T is R − T chaos, Martelli chaos, distributional chaos, weakly mixing,
Xiong-chaos and distributional chaos in a sequence. As an application, we
prove that chaos occurs on recurrent sets in exchange economic systems.
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1. Introduction

Since Li and Yorke gave the definition of chaos in a strict mathematical
language [8], Scholars in different areas have given different concepts and cri-
teria for identifying chaos in the study of different systems, such as Devaney
chaos[6], topological chaos, Ruelle-Takens chaos[12], distributional chaos[14]
and so on. The main idea of the above concepts of chaos is the asymptotic and
topological structure of the orbits of points, but these chaos are independent
of each other. In order to explore the essential properties of chaos, scholars
have conducted their research by revealing the inner connection between var-
ious chaotic concepts and discussing various complexities such as topological
entropy, ergodicity, mixing, etc. After a further study, it is found that for
some chaotic systems with zero topological entropy, their uncountable chaotic
sets are all contained in an absolute zero measure set, and the absolute zero
measure set can not be ignored from the ergodic point of view. This situation
we call an artifact. In order to obtain a subsystem that both excludes artifact-
s and retains the original system’s important dynamics, Zhou[23] introduced
the concept of measure center, and divided Li− Y orke chaos into three levels
with different degrees of complexity: (1) f is chaotic, but f is not chaotic on
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non-wandering sets; (2) f is chaotic on the non-wandering set, but not chaotic
on its measure center; (3) f is chaotic on the measure center.

The opinion of measure levels contributes to a deeper understanding of
chaotic systems, and shows that the important dynamics of the system are
concentrated on the measure center. In order to discuss the measure center
and its structure, the concepts of weakly almost periodic points and quasi
weakly almost periodic points are introduced by Zhou [23], and the importance
on both point sets is illustrated. This paper discuss the chaotic behaviors for
subsystem which determined by a quasi-weakly almost periodic point from the
perspective of chaos level, and obtain that this subsystem is R − T chaos,
Martelli chaos, weakly mixing, Xiong-chaos and distributional chaos. As an
application, the chaos property on the recurrence point of sets in the exchange
economic systems are discussed.

The paper is organized as follows: In Section 2, we give the basic concepts
and lemmas used in this paper. In Section 3, the main theorem and the proof
of the theorem are given. In Section 4, as an application of the theorem, it is
proved that distributional chaos occurs on some recurrent points sets for the
exchange economic system.

2. Basic Definitions and Lemmas

In this paper, (X, d) denote a compact metric space with metric d, and
f : X → X is a continuous map. For all n ≥ 0, fn means the n iteration of f .

Definition 2.1. For any x ∈ X, x is called a periodic point of f , if there
exists a positive integer n such that fn(x) = x. The smallest positive integer n
that satisfies fn(x) = x is called its period. The periodic points with period n
are called n periodic points. Let P (f) be the collection of periodic points of f .

Definition 2.2. For non-empty open set V of X, we denote N(x, V ) = {n ∈
N|fn(x) ∈ V }, where N denotes the set of positive integers. A subset P of N
is said to be of positive lower density, if

lim inf
n→∞

](p ∩ {1, 2, · · ·n})
n

> 0;

And P is said to be of postive upper density, if

lim sup
n→∞

](p ∩ {1, 2, · · ·n})
n

> 0;

where ](·) denotes the cardinality.

Definition 2.3. For any x ∈ X is called almost periodic point of f , if for any
ε > 0, there exists N > 0, such that for any integer q ≥ 1, there is a integer r,
q ≤ r < N + q satisfying d(f r(x), x) < ε. Denote the set of all almost periodic
points of f by A(f).
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Definition 2.4. A point x ∈ X is called a weakly almost periodic point of f ,
if for any neighborhood V of x, N(x, V ) is of positive lower density. Denote
the set of all weakly almost periodic points of f by W (f).

Definition 2.5. A point x ∈ X is called a quasi-weakly almost periodic point
of f , if for any neighborhood V of x, N(x, V ) is of positive upper density.
Denote the set of all quasi-weakly almost periodic points of f by QW (f).

Denote that PQW (f) = QW (f) − W (f), PW (f) = W (f) −
A(f), PA(f) = A(f) − P (f) is proper quasi-weakly almost periodic points
set, proper weakly almost periodic points set and proper almost periodic points
set, respectively. For all x ∈ X, {x, f(x), f 2(x) · · · } is call the orbit of x, de-
note that orb(x, f). For any y ∈ X is called ω − limit point of x if there is a
sub-sequence of orb(x, f) convergences to y.

Assume that S = {0, 1}, Σ2 = {x = x1x2 · · ·xi · · · , xi ∈ S, i = 1, 2 · · · }.

Definition 2.6. ρ : Σ2 ×Σ2 → R is defined as follows: for all x, y ∈ Σ2, x =
x1x2 · · · , y = y1y2 · · · ,

ρ(x, y) =

{
0, x = y,
1
k
, x 6= y, and k = min{n | xn 6= yn}.

Obviously, ρ is a metric on Σ2. (Σ2, ρ) is a compact space which is called
a one-sided symbol space with 2 symbols.

Definition 2.7. For any x = x1x2 · · · ∈ Σ2, σ : Σ2 → Σ2, σ(x1x2 · · · ) =
x2x3 · · · is called a shift on Σ2. It is can be proved that σ is continuous.

Lemma 2.1. [15] There exists an set E in Σ2 with the property that for any
x = x1 · · · , y = y1 · · · ∈ E, there are infinitely many n satisfying xn = yn and
infinitely many m satisfying xm 6= ym.

If y ⊂ Σ2 is a closed set and σ(y) ⊂ y, then σ|x : y → x is called a
subshift of σ.

For any x0 ∈ X is said to be unstable with respect to X, if there exists
r(x0) > 0 such that for any ε > 0 there exists y0 ∈ X with d(y0, x0) < ε and
positive integers n, d(fn(y0), fn(x0)) > r(x0).

f is called sensitive dependence on initial value if there exists δ > 0 such
that for any x ∈ X and any neighborhood Ux of x, there is y ∈ Ux and n > 0,
satisfying d(fn(x), fn(y)) > δ. δ is called the sensitive constants of f .

Definition 2.8. A continuous map f : X → X is called R− T chaos if

(1) f is topological transitive on X.
(2) f is sensitive dependence on initial value.

Definition 2.9. A continuous map f : X → X is called Maurtelli chaos, if

(1) ω(x0, f) = X.
(2) x0 is unstable with respect to orb(x0, f)
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Definition 2.10. Let f : X → X be a continuous map, and {pi} be a in-
creasing sequence of positive integers. For a subset C of X, if A ⊂ C and any
continuous mapping F : A → X, there exists qj ⊂ {pi} such that for for any
x ∈ A, lim

j→∞
f qj(x) = F (x), then f is said to be chaotic in the sense of Xiong

on C with respect to the sequence {pi}.

Lemma 2.2. [20] Let X be a separable locally compact metric space containing
at least two points, f : X → X is continuous, then f is topologically weakly
mixed if and only if there exists a C-dense Fσ-subset of X which is chaotic in
the sense of Xiong with respect to the natural number sequence.

Definition 2.11. Assume that (X, d), (Y, ρ) are compact metric space, f :
X → X, g : Y → Y are continuous map. If there exists a continuous surjective
map Φ : X → Y such that Φ ◦ f = g ◦ Φ, then Φ is said to be a topological
semi-conjugation from f to g.

Lemma 2.3. [24] Assume that f : X → X, g : Y → Y are continuous maps,
Φ is a topological semi-conjugation from f to g, then

(1) Φ(A(f)) = A(g).
(2) Φ(W (f)) = W (g).
(3) Φ(QW (f)) = QW (g).

Definition 2.12. Let (X, f) be a dynamical system, x, y ∈ X, for all t > 0
and any positive integer n, take

ξ(f, x, y, t) = |{i|d(f i(x), f i(y)) < t, 0 ≤ i < n}|,
where | · | denotes the cardinality of the set. Assume that

Fx,y(t, f) = lim inf
n→∞

1

n
ξn(f, x, y, t),

F ∗x,y(t, f) = lim sup
n→∞

1

n
ξn(f, x, y, t).

If there exist x, y ∈ X such that the pair (x, y) satisfies:

F ∗x,y ≡ 1 and there exists t > 0, Fx,y(t, f) = 0 (1)

or
F ∗x,y ≡ 1 and for all t > 0, Fx,y(t, f) < F ∗x,y(t, f) (2)

or
For all t in some interval , Fx,y(t, f) < F ∗x,y(t, f) (3)

Then (x, y) exhibits distributional chaos of type 1,2,3, respectively. A
dynamical system (X, f) is said to be distributional chaos of type k (abbreviated
as DCk, where k = 1, 2, 3) if there exists an uncountable subset D ⊂ X such
that for any two different points in D, the point pair is distributional chaos of
type k.

Proposition 2.1. If f is DC1, then f also exhibites DC2, DC3, DC
′
2.
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For more information about DC ′2, please refer to the [22].

Lemma 2.4. [11] Let f be a continuous map from the compact metric space
(X, d) to itself, and Φ : X → Σ2 be a topological semiconjugate from f to σ.
If there exists y ∈ Σ2 such that orb(y, σ) 6= Σ2 and Φ−1({y}) = 1, then f is
distributional chaos.

Lemma 2.5. [16] For a positive integer n, the continuous map fn is distribu-
tional chaos if and only if f is distributional chaos.

In order to have a better understanding of the inner relationship be-
tween Li-Yorke chaos and distributional chaos, Wang introduced the concept
of Distributional chaos in a sequence in 2007.

Fxy(t, {pi}) = lim inf
n→∞

1

n

n∑
i=1

χ[0,t)(d(f {pi}(x), f {pi}(y))),

F ∗xy(t, {pi}) = lim sup
n→∞

1

n

n∑
i=1

χ[0,t)(d(f {pi}(x), f {pi}(y))).

Definition 2.13. D ⊂ X is called a distributional chaos set in sequence {pi}
if for any x, y ∈ D, x 6= y such that

(1) ∃δ > 0, Fxy(δ, {pi}) = 0.
(2) ∀t > 0, F ∗xy(t, {pi}) = 1.

where(x, y) is called a pair of distributional chaos in a sequence. If f has
an uncountable scramble set in which any pair is distributional chaos in a
sequence, then f is said to be distributional chaos in a sequence.

Lemma 2.6. [19] Weak mixing implies distributional chaos in a sequence.

The original definition of topological entropy was proposed by Adle, Kon-
heim et al. in the [1], which is a measure to describe the complexity of a system.

Definition 2.14. Let (X, f) be a compact system, α, β be an open cover of X,
and denote that N(α) is the smallest of the cardinality of the sub-covers of α,
and let

α ∨ β = {A ∩B : A ∈ α,B ∈ β},
f−1(α) = {f−1(A) : A ∈ α},

ent(f) = supα lim
n→∞

1

N
logN(α ∨ f−1(α) ∨ · · · ∨ f−(n−1)(α)).

where α takes all open covers of X, and we call ent(f) the topological
entropy of f .

Definition 2.15. A discrete system (X, f) is called mean Li-Yorke chaotic if
there exists an uncountable subset S of X such that for any x, y ∈ S with
x 6= y, one has
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lim inf
N→+∞

1

N

N∑
k=1

d(fkx, fky) = 0

and

lim sup
N→+∞

1

N

N∑
k=1

d(fkx, fky) > 0.

Lemma 2.7. [7] If a topological dynamical system (X, f) has positive topolog-
ical entropy, then it is multi-variant mean Li-Yorke chaotic.

Lemma 2.8. [4] Let f : I → I be a continuous map and I = [a, b](0 ≤ a < b),
if ent(f) > 0, then the compact subset Λ ⊂ I satisfies:

(1) f(Λ) = Λ.
(2) there exists N and continuous surjective map Φ : Λ → Σ such that

Φ ◦ fN |Λ= σ ◦ Φ |Λ.

Lemma 2.9. [10] Suppose that f : [a, b]→ [a, b](0 ≤ a < b <∞) is continuous
and satisfies:

(1) there exists m ∈ (a, b) such that f is strictly increasing in [a,m] and
strictly decreasing in [m, b].

(2) f(a) ≥ a, f(b) < b and for all x ∈ (a,m), f(x) > x.
(3) there exists unique z ∈ (m, b) such that f(z) = z, f 2(m) < m, f 3(m) <

z, therefore ent(f) > 0.

Definition 2.16. Suppose that a finite sequence of length n in S denoted by
A = a1 · · · an (i.e. |A| = n).

Denote that

[A] = {x ∈ Σk|xi = ai, 0 ≤ i ≤ n}
Obviously, [A] is the set of (Σ2, σ) that is both open and closed.

Definition 2.17. f is said to be topologically transitive if for any nonempty
open sets U , V of X, there exits n > 0 such that fn(U) ∩ V 6= ∅. The point
where the orbit is dense in X is called the transitive point of f , and is denoted
as Tran(f).

Definition 2.18. f is said to be topological weakly mixing if f2 is transitive,
i.e. for any nonempty open sets U1, U2, V1 and V2, there exists a positive
integer n such thatfn(Ui) ∩ Vi 6= ∅, i = 1, 2.

Definition 2.19. f is said to be topological mixing if for any nonempty open
sets U and V , there exists a positive integer N such that fn(U) ∩ V 6= ∅ for
all n ≥ N .

Lemma 2.10. [21] Let (X, f) be a compact transitive system, if Tran(f) ∩
(QW (f)− A(f)) 6= ∅, then f is R− T chaos.
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Lemma 2.11. [20] Suppose that f : I → I is continuous and ent(f) > 0, then
there exist Λ ⊂ I and n > 0 such that fn : Λ→ Λ is topological mixing.

Lemma 2.12. Suppose that f : I → Iis continuous and ent(f) > 0, then there
exist Λ ⊂ I such that f : Λ→ Λ is topological weakly mixing.

Proof. According to Lemma 2.11, it is easy to draw this conclusion. �

3. Proofs of the main theorems

Theorem 3.1. Let (Σ2, ρ) is a one-sided symbol space, σ is a shift on (Σ2, ρ),
there exists subset T ⊂ PQW (σ) such that

(1) σ|T is R− T chaos.
(2) σ|T is Martelli chaos.
(3) σ|T is distributional chaos.
(4) σ|T is DC2, DC3, DC ′2.
(5) σ|T is topological weakly mixing.
(6) σ|T is chaotic in sense of Xiong.
(7) σ|T is distributional chaos in a sequence.

Proof. Constructing T ⊂ PQW (σ) ⊂ Σ2. Let T be a collection of sequences
in an one-sided symbolic dynamical system consisting of two symbols 0, 1. T
consists of all sequences as follows:

a = A1B1C1A2B2C2 · · ·AnBnCn · · · , where A1 = 01, B1 = 00 or 11, C1 =
0101 and for n ≥ 2, AnBnCn are constructed inductively as follows.

For the sake of convenience, we denote by

p︷ ︸︸ ︷
0 · · · 0 the arrangement of p

many symbols 0 and by

p︷ ︸︸ ︷
1 · · · 1 the arrangement of p many symbols 1.

Denote Dm = A1B1C1A2B2C2 · · ·AmBmCm for 1 ≤ m ≤ n− 1.

(i) An = E1
nE

2
n · · ·En−1

n where |E1
n| is a multiple of |D1| with |Dn−1| ≤

|E1
n| < |Dn−1| + |D1|, and E1

n is a repeated arrangement of D1 (that is
E1
n = D1D1 · · ·D1). Inductively, for 2 ≤ m ≤ n−1, |Em

n | is a multiple of
|Dm| with |Dn−1E

1
2E

2
n · · ·Em−1

n | ≤ |Em
n | < |Dn−1E

1
nE

2
n · · ·Em−1

n |+ |Dm|,
and Em

n is a repeated arrangement of |Dm|.
(ii) |Bn| = n · |Dn−1An|, and |Bn| is a repeated arrangement of symbol 0 or

a repeated arrangement of symbol 1, that is,

Bn =

n·|Dn−1An|︷ ︸︸ ︷
0 · · · 0 or

n·|Dn−1An|︷ ︸︸ ︷
1 · · · 1 .

(iii) Cn = F 1
nF

2
n · · ·F n

n . where |F 1
n | is a multiple of 2 with n · |Dn−1AnBn| ≤

|F 1
n | < n · |Dn−1AnBn| + 2, and F 1

n is a repeated arrangement of
01. Inductively, for 2 ≤ m ≤ n, |Fm

n | is a multiple of 2m with
n · |Dn−1AnBnF

1
nF

2
n · · ·Fm−1

n | ≤ |Fm
n | < n. |Dn−1AnBnF

1
nF

2
n · · ·Fm−1

n |+

2m, and |Fm
n | is a repeated arrangement of

m︷ ︸︸ ︷
0 · · · 0

m︷ ︸︸ ︷
1 · · · 1.
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According to Lemma 2.1, one can choose a uncountable subset E ⊂ Σ2

such that for all x = x1 · · ·xn · · · , y = y1 · · · ym · · · ∈ E, x 6= y, there are
infinite n, m such that xn = ym, xn 6= ym. Define ϕ : E → Σ2 such that
for all x = x1 · · ·xn · · · ∈ E, ϕ(x) = A1B1C1A2B2C2 · · ·AiBiCi · · · , for all
i = 1, 2, 3 · · · .

Bi =


000 · · · 0︸ ︷︷ ︸
i|Di−1Ai|

, ifxi = 0,

111 · · · 1︸ ︷︷ ︸
i|Di−1Ai|

, ifxi = 1.

According to [18], it follows that a = A1B1C1A2B2C2 · · ·AnBnCn · · · ∈
PQW (σ), suppose T = ω(a, σ), then T ⊂ PQW (σ) and T ⊂ ϕ(E). In fact,
if y ∈ T and y = σn(a), then y ∈ PQW (σ). Assume that lim

k→∞
σnk(a), denote

σnk(a) = ank
, as a ∈ PQW (σ), we have ank

∈ PQW (σ), as ank
→ y(k →

∞), by the uniform continuity of σ, for all ε > 0, there exists k0, when k > k0,
there are ρ(ank

, y) < ε
4
, ρ(σn(ank

), σn(y)) < ε
4
, and v(ank

, ε
2
) ⊂ ν(y, ε).

Next, we will prove that if k > k0, σn(ank
) ∈ v(ank

, ε
4
), then σn(y) ∈

ν(ank
, ε

2
). Suppose σn(ank

) ∈ v(ank
, ε

4
)⇒ ρ(ank

, σn(ank
)) < ε

4
, ρ(σn(y), ank

) <
ρ(σn(y), σn(ank

)) + ρ(σn(ank
), ank

) < ε
4

+ ε
4

= ε
2
, hence σn(y) ∈ ν(ank

, ε
2
) ⊂

ν(y, ε). As ank
= σnk(a) ∈ PQW (f), so

lim sup
n→∞

1

n
[{n|σn(ank

) ∈ v(ank
,
ε

2
)} ∩ {1, 2 · · · }] > 0,

Therefore

lim sup
n→∞

1

n
[{n|σn(y) ∈ v(y, ε)} ∩ {1, 2 · · · }] > 0.

i.e. y ∈ PQW (f)⇒ ω(a, σ) ⊂ PQW (σ).

(1) For the conclusion (1) of theorem 3.1, it is obvious that σ |T is topological
transitive by the construction of T , and it is enough to prove that σ |T
has initial value sensitive dependence.
Let σ0 = 1

4
, for all x ∈ T , x = x1 · · ·xn · · · , v is any neighbourhood of

x, it is enough to prove that if there exists y = y1 · · · yn · · · ∈ v such that
x 6= y. Let k = min{n > 0|xn 6= yn} + 1, then ρ(σk(x), σk(y)) > 1

4
, So

we just need to prove the existence of y. We discuss the following in two
cases.

(i) Assume that there exists n such that x = σn(a), as x ∈ PQW (σ)
and the definition of PQW (σ), for all ε > 0 and any neighborhood
of x, V (x, ε) = {n|σn(x) ∈ V (x, ε)} is the positive upper density
set, then for all q ≥ 1, there exists r ≥ q such that ρ(σr(x), x) < ε,
i.e. ρ(σr(σn(a)), x) < ε.
Let y = σr(σn(a)) = σr+n(a), then y ∈ PQW (σ)( as σ(QW (σ) =
QW (σ))) and y 6= x, else if x = y, then σn+r(a) = σr(x) = y = x,
that is x ∈ p(σ), which is a contradiction with x ∈ PQW (σ).



Recurrence and Chaos 85

Hence, for any r, there exists k such that σr+n(a) is different
from the (k + 1)th symbol of x, therefore ρ(σk(σr+1(a)), σk(x)) =
ρ(σk(y), σk(x)) = 1 > 1

4
.

(ii) If for all n, σn(a) 6= x, x ∈ T , there exists an increasing sequence
{mi}, mi → ∞, such that lim

i→∞
σmi(a) = x. Thus for any ε > 0,

there exists i0, ρ(σmi(a), x) < ε if i ≥ i0. Let y = σmi0 (a), as for
any n ≥ 0, σn(a) 6= x, thus for i > i0, σ

mi(a) 6= x, there exist
k(i), i > i0 such that σmi0 (a) is different from the (k+ 1)th symbol
of x. Therefore ρ(σk(σmio )(a), σk(a)) = ρ(σk(y), σk(x)) = 1 > 1

4
.

In summary, σ|T is R− T chaos.

(2) For the conclusion (2) of Theorem 3.1, firstly, according to the
proof of ii , σ|T is sensitive. Secondly, by the construction of
T , for any a, b ∈ T , a = A1B1C1A2B2C2 · · ·AnBnCn · · · , b =
A′1B

′
1C
′
1A
′
2B
′
2C
′
2 · · ·A′nB′nC ′n · · · , there exist infinitely many n and m

such that Bn 6= B′n and Bm 6= B′m, thus for any x ∈ T , there exists
r(x0) = 1

4
> 0 and for any ε > 0, there exist y0 ∈ T and n such that

ρ(x0, y0) < ε, ρ(σn(x0), σn(y0)) > 1
4
, i.e. for any x0 ∈ T , orb+(x0) is

unstable with respect to T .
In summary, σ|T is Martelli chaos.

(3) For the conclusion (3) of Theorem 3.1, according to [18], σ|T is distri-
butional chaos.

(4) For the conclusion (4) of Theorem 3.1, according to Proposition 2.1, σ|T
is DC2, DC3, DC ′2.

(5) For the conclusion (5) of Theorem 3.1, as ω(a, σ) = ω(a, σ) and
f(ω(a, σ)) = ω(a, σ), then (ω(a, σ), f) is the sub-system of (Σ2, f). Let
V ω

1 ,V ω
2 ,Uω

1 ,Uω
2 be nonempty open set of ω(a, σ), U1, U2 are nonempty

open set of Σ2 and ω(a, σ) ∩ Ui 6= ∅, i = 1, 2. Next we will prove there
exists m ∈ N such that σm(V ω

i ) ∩ Uω
i 6= ∅, i = 1, 2.

Because ω(a, σ) is transitive, there exist mi ∈ N , i = 1, 2 such that
σmi(V ω

i )∩Uω
i 6= ∅, i = 1, 2. Also because V ω

i , i = 1, 2 are open sets in Σ2.
Hence there is ([xi1x

i
2 · · ·xiNi

]) ⊂ V ω
i , i = 1, 2 and σNi([xi1 · · · xiNi

]) = Σ2,

i = 1, 2, σNi(V ω
i ) = Σ2, thus σNi(V ω

i ) ∩ Uω
i = Uω

i 6= ∅, i = 1, 2. Take
m = max{N1, N2}, then σm(V ω

i ) ∩ Uω
i 6= ∅, i = 1, 2, that is ω(a, σ) is

topological weakly mixing.
(6) For the conclusion (6) of Theorem 3.1, according to Lemma 2.2, σ|T is

Xiong-chaos .
(7) For the conclusion (7) of Theorem 3.1, according to [19], σ|T is distri-

butional chaos in a sequence.

�

Theorem 3.2. Let (X, d) be compact metric space and f : X → X be con-
tinuous map, Φ : X → Σ2 is topological conjugate between f and σ. If there
exists x ∈ Σ2 such that orb+(x) 6= Σ2 and ](Φ−1[x]) = 1, then
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(1) f |PQW (f) is DC1.
(2) f |PW (f) is DC1.
(3) f |A(f) is DC1.

Proof. For the conclusion (1) of Theorem 3.2, Φ : X → Σ2 is the topological
semi-conjugate of f and σ. According to Lemma 2.3, for any y ∈ T ⊂
PQW (σ), there exists x ∈ PQW (f) such that Φ(x) = y. Let D = {x|Φ(x) =
y, ∀y ∈ T }, then D ⊂ PQW (f) and there exists y ∈ PQW (σ) ⊂ Σ2 such
that orb+(y) 6= Σ2 and Φ−1{(y)} = ]{x} = 1. By Lemma 2.4, f |PQW (f) is
distributional chaos.

Similarly, the conclusion (2)(3) holds. �

Theorem 3.3. Let f ∈ Co(I), if ent(f) > 0, then

(1) f |PQW (f) is DC1.
(2) f |PW (f) is DC1.
(3) f |PA(f) is DC1.
(4) f |T is topological weakly mixing.
(5) f |T is chaos in sense of Xiong.
(6) f |T is mean Li− Y orke chaos.

Proof. (1) If ent(f) > 0, according to [4], there exist N > 0 and a compact
subset Λ ⊂ I such that fN(Λ) = Λ and continuous surjective Φ : Λ→ Σ2

satisfy Φ◦fN |Λ = σ◦Φ|Λ. By theorem 3.1, there is sub-system consisting
of proper quasi weakly almost periodic sets T ⊂ PQW (σ) ⊂ Σ2 and
σ|T is DC1.
According to Lemma 2.3, for every y ∈ T ⊂ PQW (σ) there is
x ∈ PQW (fN) such that Φ(x) = y. Let D = {x|x ∈ T ⊂
PQW (fN), Φ(x) = y, y ∈ T ⊂ PQW (σ)}, then D ⊂ Λ. It is ob-
vious that if y ∈ T , orb+(y) 6= Σ2,Φ

−1(y) = ]{x} = 1. Therefore fN |D
is DC1. By Lemma 2.5, f |D is DC1.

(2) Similarly, conclusion (2)(3) of 3.3 are hold.
(3) By Lemma 2.12, f |T is topological weakly mixing.
(4) By [20] and (4) of Theorem3.3, f |T is chaos in sense of Xiong.
(5) According to Lemma 2.7, f |T mean Li− Y orke chaos.

�

4. Application of an Economic Model

An economic system is an evolutionary system, which is the object of
study of dynamical systems. After an economic mathematical model is built, it
can be judged by dynamical systems method whether it is simple or complex in
some sense. They have different perspectives and focus, such as chaos, entropy,
hybridity, etc. In this paper, we focus on the complexity of economic models
from the perspective of entropy and chaos.

First, we give the economic model under discussion, which is described
in more detail in [5, 2, 3, 9, 13].
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Suppose that there is an economic model with two individuals A, B and
two goods x, y, where the preference functions of A, B are xαy1−α, 0 < α < 1
and xβy1−β, 0 < β < 1, respectively. Also, the endowments of A, B are (0, x0)
and (0, y0), where x0 > 0 and y0, respectively. Let p be the price of x with
respect to y, then the excess demand function for good x is

Z(p) =
βy0

p
− (1− α)x0. (4)

It is easy to find the fix point of Z(p), p∗ = βy0

(1−α)x0
, let

p(t+ 1) = p(t) + γ Z(p(t)). (5)

where γ > 0 is the rate of price adjustment (which we assume to be constant
here), and from p(t+ 1) = f(p(t)), the equation (5) can be written as

f(p) = p+ γ Z(p) = p+ γ(
βy0

p
− (1− α)x0).

It is easy to obtain that p = p̄ =
√
γβy0 is a minimal point of f and the

minimal value f ¯(p) = 2
√
γβy0 − γ(1− α)x0.

In order to make function f has defined for any p > 0, it demands for all
p > 0, f(p) > 0, so only need the minimum f ¯(p) = 2

√
γβy0− γ(1−α)x0 > 0,

that is to say

4 >
γ((1− α)x0)2

βy0
. (6)

Let K = γ((1−α)x0)2

βy0
, then K = p̄2/p∗. The following fixes the values of

all parameters except γ:

βy0 = 1, (1− α)x0 = 6.

Then K = 36γ, the formula (5) reduces to

p(t+ 1) = p(t) +
( 1
p(t)
− 6)K

36
(7)

From q = 1
p

and formula (7),

q(t+ 1) =
1

p(t+ 1)
=

36q(t)

36 +K(q(t)− 6)q(t)
= g(q(t)),

Denote gk(q) = 36q
36+kq2−6kq

, in the following we discuss the chaoticity of

gk(·).

Theorem 4.1. There exists 2.78 < k < 4 and the interval Ik, such that
gk : Ik → Ik, then:

(1) gk has uncountable distributional chaos sets in PA(gk).
(2) gk has uncountable distributional chaos sets in PW (gk).
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(3) gk has uncountable distributional chaos sets in PQW (gk).
(4) The subsystem (I∗k · g |I∗k ) consisting of PQW (gk) is a R− T chaos.
(5) gk |T ⊂PQW (gk) is topological weakly mixing on a subsystem consisting of

PQW (gk).
(6) gk |T ⊂PQW (gk) is chaos in sense of Xiong on a subsystem consisting of

PQW (gk).
(7) gk |T ⊂PQW (gk) is mean Li− Y orke chaos.

Proof. (1) To prove that the conclusions of the above (1) to (6) hold, accord-
ing to theorem 3.3, it is enough to prove that ent(gk) > 0 on the interval
Ik(2.78 < k < 4). The following proves that q = 6√

k
is the maximum

point of gk(q). Because

g′k(q) = (
36q

36 + q2k − 6kq
)′

=
36(36 + q2k − 6kq)− (2qk − 6k)36q

(36 + q2k − 6kq)2
.

Let g′k(q) = 0, and solve qk =
√

36
k

= 6√
k
, so qk = 6√

k
is the stationary

point of gk(q).
When q < qk, it is obvious that there is g′k(q) > 0, i.e., g′k(q) is mono-
tonically increasing when q < qk. Similarly, q > qk, we have g′k(q) < 0,
that is, g′k(q) is monotonically decreasing when q > qk.
Thus, qk is a maximal point of gk(q), and since qk is the only stationary
point of gk(q), qk is a maximal point of gk(q) and the maximum value is
b(k) = gk(qk).
Let b(k) = gk(qk), a(k) = min{gk(b(k))qk}, since gk has a unique fix
point 6, so qk 6= gk(qk). Therefore, we can set Ik = [a(k), b(k)], and
obviously gk(·) : Ik → Ik is continuous.
It follows that ent(gk) > 0, for which it is sufficient to prove that

(i) there exists m ∈ (a(k), b(k)) such that gk in increasing on (a(k),m)
and decreasing on (m, b(k)).

For this purpose we let gk(b(k)) < qk, i.e., 6(2−
√
k)√

k(5+2k−6
√
k)
< 6√

k
, the

solution gives 2.78 < k < 4 and Ik = [gk(b(k)), gk(qk)]. Let m = qk,
then

a(k) = gk(b(k)) < qk = m < 6 = q = gk(q) < gk(qk) = b(k), (8)

gk(q) is strictly increasing on [a(k),m] and strictly decreasing on
[m, b(k)].

(ii) Prove that gk(a(k)) > a(k), gk(b(k)) < b(k) and for all q ∈
(a(k),m), gk(q) > q.
Let g(q) = q, f(q) = gk(q) − q, q = 6 is the only fix point of
gk(·), so q = 6 is the only real root of f . And g(q) and gk(q)
have a unique intersection at q = 6, and by m = qk = 6√

k
<
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q = 6 we know that gk(q) is monotonically increasing on [a(k),m]
and has no intersection. So, gk(q) must be above g(q). Therefore,
f(q) = gk(q) − g(q) > 0. That is, for any q ∈ [a(k), qk], there
is gk(q) > q, gk(a(k)) > a(k). And by equation (8) we know that
6 = q = gk(q) < b(k), so we know that gk(b(k)) < b(k).

(iii) It proves that g2
k(m) < m, g3

k(m) < 6, where 6 is the only fix point
of gk(q). By Lemma 2.9 we have ent(f) > 0.

(2) For conclusion (7), let q ∈ (QW (gk) − A(gk)), then q ∈ R(gk), and

thus q ∈ ω(q, gk) = orb(q, gk). Let I∗k = ω(q, gk), then the dynamical
system (I∗k , gk) is topological transitive. By Lemma 2.10, we know that
the subsystem (I∗k , gk) is R− T chaos.

�

The result shows that it is unlikely that a real economic system will ex-
perience chaos in the exact set of periodic points, and if it does, it will be
an illusion. Therefore, some approximation is generally considered, such as al-
most periodic, weakly almost periodic, and quasi weakly almost periodic. And
these recurrent points are generally the points that indicate the stability of
the system. But the discussion of this economic system shows us that a simple
exchange economic system is also very complex, and even in the seemingly
stable set of recurrent points, chaos, mixing and other complex phenomena
can occur.
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