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ADJOINT OF PAIR FRAMES

Abolhassan Fereydooni', Ahmad Safapour?, Asghar Rahimi®

The concept of (p, q)-pair frames is generalized to (£,£%)-pair frames.
Adjoint (conjugate) of a pair frames for dual space of a Banach space is introduced
and some conditions for the existence of adjoint (conjugate) of pair frames are
presented.
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1. Introduction

Frames were introduced by Duffin and Schaeffer [1], in studying nonharmonic
Fourier series. After some decades, Young reintroduced frames in abstract Hilbert
spaces [11]. Daubechies, Grossmann and Meyer studied frames deeply in 80’s [3].
Feichtinger and Grochenig [5, 10] extended the concept of frames from Hilbert spaces
to Banach spaces and defined atomic decomposition and Banach frames.

The interested readers can refer to [(] to study a memoir about frames from
nonharmonic Fourier series to Banach pair frames.

Pair frames were introduced by the authors in Hilbert spaces [7]. They also
considered pair frames in Banach spaces and defined Banach pair frames [6]. It is
shown that this notion generalizes some various types of frames. Some characteri-
zations of Banach pair frames are presented in [8].

The present paper is organized as follows. In section 2, some notations and
required definitions are recalled. The concept of frames and some types of frames in
Banach spaces are considered in Section 3. It is proved that if we have two ¢/-Bessel
and /*-Bessel for a Banach space and its dual respectively, they are pairable.

If we have a (Banach) pair frame for a Banach space, a natural question
can arise: Can one construct a (Banach) pair frame for the dual space using this
(Banach) pair frame? Section 4 is devoted to address this question. Considering
this subject, instead of the dual of pair frames, the concept of adjoint of pair frames
arises.
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Almost all propositions and theorems are stated in two cases, unconditional
or nonunconditional cases. In each proposition and theorem the unconditional case
is put in ”( )”.

2. Preliminaries

Through this paper, X ( H ) will denote a reflexive Banach space (Hilbert
space, rep.). (.,.) is used for the inner product of Hilbert spaces or the action the
functionals X* on X. ”I” denotes the index set of the natural numbers. The notation
o is standed for permutations of I. All norms are denoted by ||.||; the reader can
recognize conveniently that to which concept each norm refers.

Let L be a bounded linear operator, D(L) and R(L), denote the domain and
the range of L, respectively. If 0 < p < oo, and %4—% =1, q is called the exponential
conjugate of p.

For F = {f;} C X and G = {g;} C X*, the operator

UUg) : X = C' U(f) = {(f.9:)}

is called the analysis operator, and the operator

T(Tr): DT)(C C) =X, T({ea}) =) efi

is said to be the synthesis operator.

Let £ be a Banach scalar sequence space; a normed vector space of scalar
sequences which is a Banach space with respect to its norm. If £ is a scalar sequence
space, for every permutation o of I, put

oF = {fa(i)}7 oG = {ga(i)}v ol = {{Ca(i)} ‘ {Cl} € K}

Definition 2.1. We say that a Banach scalar sequence space ¢ is an unconditional
Banach scalar sequence space if for every permutation o of I and every {¢;} € ¢,

{coyr €4 Hea@mHl = [Heidl:

A Banach scalar sequence space £ is called a BK-space if the coordinate
functionals are continuous. Put 6; = {d;;}; for i € I, where ¢;; is the Kroneker delta
for i, j € I. {0;} is called the set of the canonical vectors. Additionally, when {d;}
constitute a basis for ¢, ¢ is said to be a Schauder sequence space (CB-space or
model space). Furthermore, when ¢ is reflexive, it is called an RCB-space.

For the proof of the next Lemma we refer to [11, p. 201].

Lemma 2.2. Let ¢ be a Schauder sequence space. £*, the dual of £, is isometrically
isomorphic to a BK-space

8 = {60} | 6 € £},

Also, for every linear functional ¢ € £* there is a unique {d;} € ¥, so that ¢ has
the form

o({ei}) =D dici, e} el

The sequence {d;} is uniquely determined by d; = ¢(d;) for all i € 1. Moreover if ¢
is reflexive, than £* is a Schauder sequence space.

¢* and (® are identified in this paper.
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3. Frames in Hilbert and Banach Spaces

Here we restate some definitions and results from [6]. The reader can refer
there for considering the proofs.

Definition 3.1. A family F' = {f;} C H is called a frame for K if there exist
A, B > 0 such that for every f € H,

AlFIP <Y KE f)l? < BIFIP (1)

If the right inequality is satisfied for some B > 0, F = {f;} is called a Bessel
sequence for K.

The following proposition is proved in [7].

Proposition 3.2. A family F = {f;} C H is a Bessel sequence for H if and only if
the operator

S:H =K, S(f)=) (f.fifi (2)

1s a well defined operator. In this situation, S is bounded.

Theorem 3.3. ([0]) A family F = {f;} C H is a frame for H if and only if the
operator S defined in (2) is well defined and invertible.

As a standard reference about frame theory, [2] can be suggested.

Definition 3.4. Let F' = {f;} € X and G = {¢;} C X*. The pair (G, F) is said to
be an (unconditional) pair Bessel if the operator

S(Ska): X=X, S(f) =Y _(f.9)

is well defined (unconditionally); i.e. the series converges (unconditionally) for every
f € X. The (unconditional) pair Bessel (G, F) is called an (unconditional) pair
frame when S is invertible.

Let F ={fi} ¢ Xand G = {¢;} C X*. By the term "F = {f;} and G = {¢;}
are pairable for X’ we mean that (G, F') is a pair Bessel for X.

Next proposition is proved in [6]. But it can also be concluded from Proposi-
tion 3.2 and Theorem 3.3. Proposition 3.5 shows that the pair frames (Bessels) are
generalizations of frames (Bessel sequences) in Hilbert spaces.

Proposition 3.5. F'={f;} C H is a frame (Bessel sequence) for H if and only if
(F,F) is a pair frame (Bessel) for 3. In this case (F, F) is an unconditional pair
frame (Bessel).

Definition 3.6. Let F = {f;} C X and G = {g;} C X*. The (unconditional) pair
Bessel (G, F') is said to be an (unconditional) Schauder frame for X if for every
feX,

F=Y (f90)f
(and the sum converges unconditionally).

Every Schauder frame can be considered as a pair frame. But the associated
operator S, have to be the identity operator.
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Definition 3.7. Let G = {g;} C X* and ¢ be a BK-space. G = {g;} is called an
(unconditional) ¢-Bessel for X with bound B > 0, if for every f € X,

(1) {(fr90} €t ({f900))} € £,V0),
(2) {f 903 < BIfIL (s 9o I < Bl Vo).
Additionally, if for every f € X,

A< I g3 1 CAILFIE< TCF 90)) 35 Vo),

for some A > 0, G = {g;} is said to be an (unconditional) /-frame for X. A and B
are called lower and upper ¢-frame bounds, respectively.

It is obvious that ||Ug/||, ||Usc|| < B for every permutation o of I. If £ is an
unconditional Banach scalar sequence space and G = {g;} C X* is an ¢-Bessel for
X, then G = {g;} is an unconditional ¢-Bessel for X and ||Ug| = ||Usq|| < B for
every permutation o of I.

If conditions (1) and (2) in the Definition 3.7 are satisfied for some G = {g¢;} C
X*and ¢ = P, G = {g;} is called a p-Bessel for X; also if the lower inequality holds
for some A > 0, it is said to be a p-frame for X.

After definition of /-Bessels with a BK-space ¢, the notion of pair frames
(Bessels) w.r.t. £ can be defined.

Definition 3.8. Let ¢ be a BK-space and G = {g;} C X* be an (unconditional)
¢-Bessel for X. If there exists F' = {f;} C X such that (G, F') is an (unconditional)
pair Bessel for X; i.e. the operator

S(Sr): X — X, S(f) =Y (f,9) fi-

is well defined (unconditionally), then (G, F) is called an (unconditional) pair
Bessel for X w.r.t. £ or an (unconditional) ¢-pair Bessel for X.

Assume that (G, F') is an (unconditional) pair Bessel for X w.r.t. ¢. If the
operator S is invertible, (G, F') is called an (unconditional) pair frame for X w.r.t.
¢ or an (unconditional) ¢-pair frame for X.

Furthermore, if for an ¢-pair frame (Bessel) (G, F), there is a BK-space ¢’ such
that F' = {f;} is an ¢'-Bessel, (G, F) is said to be an (¢, ¢')-pair frame (Bessel)
for X or a pair frame (Bessel) for X w.r.t. (¢,¢).

Definition 3.9. Let ¢ be a BK-space, F = {f;} ¢ X and G = {g;} € X*. (G, F)
is called an (unconditional) atomic decomposition for X w.r.t. /, if there are
A, B > 0 such that for every f € X,

(1) {<f7gl>} el ({<f7ga(z)>} €€7V0—>7
) AlfI < {903 < BIFI (AIFI < HCS 906) HE < Bl ] Vo),
(3) f=>(f,gi) fi (series converges unconditionally).

Additionally, if F' = {f;} is an ¢-Bessel, which ¢ is a BK-space, the above
atomic decomposition is said to be an (¢, ¢')-atomic decomposition.

Definition 3.10. Let ¢ be an unconditional Banach scalar sequence space. The
bounded operator T : £ — X is said to be an unconditional operator from / into
X if for every permutation o of I, there is a bounded operator T, : £ — X so that

To({co@t) = T({ei}),
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The notion of pair frame is extended by generalizing the synthesis operator.

Definition 3.11. Let G = {¢;} C X* and T': R(Ug) — X be an operator. (G,T) is
called a Banach pair Bessel for X if the operator

S(Sra) : X — X, 5(f) == T{(f, 90},

is bounded. If for every permutation o of I, there is an operator Ty, : R(U,q) — X
such that
Sa(f) = TU({<f7 ga(z)>}) = S(f),
(G,T) is said to be an unconditional Banach pair Bessel for X.
Let (G,T) be an (unconditional) Banach pair Bessel and S be the associated
operator. If S is invertible, (G,T) is said to be an (unconditional) Banach pair
frame for X.

By implementing a BK-space ¢, another version of the above definitions w.r.t.
¢ is defined.

Definition 3.12. Let ¢ be a BK-space and G = {¢;} C X* be an ¢-Bessel for X. If
T : ¢ — X is a bounded operator, (G,T) is referred to as a Banach pair Bessel
for X w.r.t. £ or a Banach /-pair Bessel for X.
Define
S(Sar) : X — X, S(f) = TH{f90)}).
Additionally suppose that G = {g;} C X* is an unconditional ¢-Bessel for X. If for
every permutation o of I there is a bounded operator T, : £ — X such that,

So(f) == To({{f> 9oi))}) = S(f),

(G,T) is called an unconditional Banach pair Bessel for X w.r.t. /.

Let (G,T) be an (unconditional) Banach pair Bessel and S be its associated
operator. If S is invertible, (G,T’) is said to be an (unconditional) Banach pair
frame for X w.r.t. ¢ or an (unconditional) Banach ¢-pair frame for X.

Definition 3.13. Let ¢ be a BK-space, G = {g;} C X* and T': ¢ — X be a bounded
operator. (G,T) is called an (unconditional) Banach frame for X w.r.t. ¢ if
there are A, B > 0 such that for every f € X,

(W) {{f,90)} € £ ({{f:900))} € £,Y0),
(2) AllfI < {903 < BIFI (ANF< (S 9o6) HE < Bl Vo),
®3) f=T{({f,90})

(for every permutation o of I, there is a bounded operator T, : £ — X such
that
f=T({{f, 9o(i))})-

We refer to T, as a permutation of T" for the permutation o of I.

The all operators S, in the above definition of pair frames (Bessels) is called
pair frame (Bessel) operator.

The authors have proved in [7] that for the conjugate exponentials p and g, if
F ={f;} ¢ X is p-Bessel and G = {¢g;} C X* is ¢-Bessel for X* and X, respectively,
then F' = {f;} and G = {g;} are pairable for X* and X. In this situation, (F,G) is
called a (p, q)-pair frame for X. In the other words, by letting £ = /P and ¢* = ¢4, if
F ={f;} ¢ X is ¢-Bessel and G = {g;} C X* is £*-Bessel for X* and X respectively,



136 Abolhassan Fereydooni, Ahmad Safapour, Asghar Rahimi

then (F, G) and (G, F') are pair Bessels for X* and X, respectively. A natural question
which arises is that does analogous results hold for general Banach scalar sequence
spaces £ and £*7 The next theorem provides an affirmative answer to this question.
The claim is proved in [7] for p-Bessels and ¢g-Bessels by using the Holder’s inequality.
In the proof of Theorem 3.14 we don’t use the Holder’s inequality. Following the
above nomination, we call such a pair frame (Bessel), (¢, £*)-pair frame (Bessel).

Theorem 3.14. Let ¢ be a Schauder sequence space, G = {g;} C X* be an (-Bessel
for X and F = {f;} C X be an {*-Bessel for X*. Then (G, F) is a pair Bessel for X
w.r.t. L.

Proof. For m,n € N with n < m and for any f € X,

I D_4F 00 fill = S 1> (fa)fin )

gll=1,9€X*

i=n
Lemma 2.2 yields that for every g € X* there is a ¢, € £* such that {(f;, g)};=; as
an element of £* can be rewritten in the form of {¢4(d;)}2,. Hence

1> (Fogdfill = sup (O (f,90)Fir9)|

i—n lgll=L,geX* =,
=5 ;U, gi){fi-9)|
= sup  [({(f.9) i {{fis @) HE0)]
llgll=1,g€X*
= sup  [({{f.90) il {{fis ) 320
llgll=1,g€X*
= sup og({(f 90 i)l
llgll=1,g€X*
< sup lggllIH(S, 900 |
llgll=1,g€X*
= sup  {(fi, )}l IS 900 2
llgll=1,g€X*
<( sup  BlgIDI{(f, 90 iz,
llgll=1,g€X*

= BI{{f, g}z ll;

where B denotes the upper Bessel bound of F' = {f;}. The last value tends to zero
when m and n tends to infinity. Therefore > (f, g;) fi converges for every f € X. O

Corollary 3.15. With the assumptions of the above theorem, if additionally £* is a
Schauder sequence space, then (F,G) is a pair Bessel for X*.

4. Frames for Dual Banach Spaces

It may seem that when (G, F') is a pair Bessel (frame) for X, one can conclude
that (F,G) is a pair Bessel (frame) for X*. This is not true even for reflexive spaces
X. Furthermore there are examples for which F = {f;} and G = {g;} are not
pairable for X* even in Hilbert space setting; see Example 4.2 [1].
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At the continue we study some conditions under which a (Banach) pair Bessel
(frame) for X induces a (Banach) pair Bessel (frame) for X*. But at first we state
some lemmas.

Lemma 4.1. Let ¢ be an (unconditional) BK-space and U : X — £ be a bounded
operator. Then there is an (unconditional) (-Bessel H = {h;} C X* such that
U(f)=A{(f, hi)} for every f € X. The Bessel bound of H = {h;} is |U||.

Proof. We prove the unconditional case; the proof of general case is in a similar
way. Let o be a permutation of I. Since ¢ is a BK-space, the coordinate functionals
{ni} C £* are continuous. Thus h,@;y := U*n,(;)’s are bounded functionals for all
i € I. Hence {hq(;} C X*. For f € X,

U(f) ={Uf,ni)t = {{f£,Uni)} = {(f, ha) }-
and

{<f7 ha(z)>} - {<f7 U*na(z)>} = {<Uf7 na(z)>}

On the other hand since ¢ is an unconditional BK-space

(s ho@) I = IRCU om0 I = KU £, mad I = [[U £
Then for all f € X and permutation o of I,

s Bo@) M= IUCHT < TN

Hence H = {h;} C is an unconditional ¢-Bessel for X with bound ||U].
U

Lemma 4.2. [9, 12, 13] For a sequence H = {h;} C X, the followings are equivalent.

(1) >_ h; converges unconditionally.
(2) > hi, converges for every {h;, } C {h;}.
(3) > hj, converges weakly for every {h;, } C {h;}.

Theorem 4.3. Let ¢ be a BK-space, F = {f;} € X and G = {¢;} € X*. Also
assume that T : £ — X is a bounded operator.

(1) If (G, F) and (F,G) are pair Bessels for X and X* respectively, then Shq =
Sar. In this situation, (G, F) is a pair frame for X if and only if (F, Q) is a
pair frame for X*.

(2) (G, F) is an unconditional pair frame (Bessel) for X if and only if (F,G) is
an unconditional pair frame (Bessel) for X*. Then Shqo = Sar.

(3) Suppose that (G,T) is a Banach pair frame (Bessel) for X w.r.t. £. Then
there exists a family H = {h;} C X* such that (H,U¢) is a Banach pair frame
(Bessel) for X* w.r.t. £* with pair frame (Bessel) operator UtUg = Siq-

(4) Let £ and ¢* be Schauder sequence spaces. (G.F) is an (£,0*)-pair frame
(Bessel) for X if and only if (F,G) is an (¢*,0)-pair frame (Bessel) for X*.
Then Sp. = Sar.

Proof. The pair Bessel case of the claims are included here. Since the invertibility
of adjoin of an operator is equivalent to the invertibility of the operator, itself, the
pair frame case of the claims can be concluded conveniently.
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(1). Since (G, F') and (F,G) are pair Bessels for X and X* respectively, then Sr¢g
and Sgp are well defined and for f € X and g € X*,

(Sra(f),9) = O (90 fig) =Y {9 fisg) =D {f,9)(fir 9)

= (f,Scr(9))-
Thus S%o = Sar.
(2). We restate the proof from [7]. The Lemma 4.2 is used frequently. (G, F) is an
unconditional pair Bessel for X if and only if > (f, g;) fi converges unconditionally
for all f € X. This is equivalent to the weak convergence of each of its subseries.

Equivalently, for every {f;, } C {fi} and {g;,} C {9:},

<Z<f7 gik>fik7g> =(f Z<fik7g>gik>a

for f € X and g € X*. This means that ) (fi.,g)gi, converges weakly for every
g € X*. Namely > (fi, g)gi; converges unconditionally for all g € X*. This leads to
the fact that (F,G) being an unconditional pair Bessel for X*.

(3). Suppose that (G,T) is a Banach pair Bessel for X w.r.t. £. So we get
bounded operators T : X* — ¢* and Ug, : £* — X*. {* is a BK-space, by Lemma
2.2. Using Lemma 4.1 for #* and the bounded operator T : X* — ¢*, the £*-Bessel
H = {h;} ¢ X** =X can be obtained such that for every g € X*,

T*(9) = {{g, hi)} = Un(g).
Therefore
Ste = (TUg)" =UgT" = UsUn

and (H,U{) is a Banach pair Bessel for X* w.r.t. ¢* with the pair Bessel operator
UtUp = Stq.

(4). Assume that (G, F') is an (¢, £*)-pair Bessel for X. Then G = {¢;} and F' = {f;}
are Bessels w.r.t. ¢ and ¢*, respectively. Consequently by Theorem 3.14, (F,G) is
an (£*,0)-pair Bessel for X*. The proof of the converse is the same. ]

Corollary 4.4. Let { be a BK-space, F' = {f;} C X and G = {g;} C X*. Assume
that T : ¢ — X 4s a bounded operator.

(1) Suppose that (G,F) and (F,G) are pair Bessels for X and X* respectively.
Then (G, F) is a Schauder frame for X if and only if (F,G) is a Schauder
frame for X*.

(2) (G, F) is an unconditional Schauder frame for X if and only if (F,G) is an
unconditional Schauder frame for X*

(3) Suppose that (G,T) is a Banach frame for X w.r.t. ¢. Then there exists a
family H = {h;} C X* such that (H,Tg) is a Banach frame for X* w.r.t. £*.

(4) Let € and £* be Schauder sequence spaces. (G, F) is an (£,0%)-atomic decom-
position for X if and only if (F,G) is an (£*,£)-atomic decomposition for X*.

Proof. Only put S = I in the Theorem 4.3. O

Considering the above arguments, we can speak about adjoint or conjugate
of pair frames for the dual (conjugate) of a Banach spaces.

Proposition 4.5. Let ¢ be a BK-space, F = {f;} C X and G = {g;} C X*. Suppose
that T : £ — X is a bounded operator and V,W are bounded operators on X.
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(1) If (G,F) ( (G,T) ) is an (unconditional) pair Bessel (Banach pair Bessel
w.r.t. L), then {W*g;},{AV f:i}) ( {W*g;},VT) ) is an (unconditional) pair
Bessel (Banach pair Bessel w.r.t. £).

(2) If V,W are invertible and (G, F) ( (G,T) ) is an (unconditional) pair frame
(Banach pair frame w.r.t. £), then {W*g:},{V fi}) ( {(W*¢;},VT) ) is an

(unconditional) pair frame (Banach pair frame w.r.t. £).

Proof. We prove the assertion in the unconditional setting. Let f € X and o be a
permutation of I. In the pair Bessel case, we have

VSW(f) - VSUW(f) = Z<Wf? ga(z)>VfU(z) - Z<fa W*gO'(’L)>VfO'(Z)
In the Banach pair Bessel case, let T, be a permutation of 1. Then
VSW(f) =VSW(f) =VI({W [, 900))}) = VIe({{f, W go(i)) })-

The above relations prove assertion (1). The assertion (2) is a result of invertibility
of VSW, when V and W are invertible. ]
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