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In this paper we study an ODE model on the microRNA - mRNA dynamics.
We prove the existence of two equilibrium points (one with strictly positive compo-
nents) and obtain a biologically consistent, sufficient asymptotic stability condition
for the strictly positive equilibrium.

1. Introduction

In the last decades there was an increased interest in the study of the mRNA-
microRNA dynamics ([3], [1], [2],[10],[9], [11], [12]). In [13] we studied ODE models
on microRNA - mRNA dynamics. Starting from the mathematical model proposed
by Hauser and Zavolan ([7]), in this paper we analyze the dynamics of a one mRNA
- two microRNA species. We obtain results on the nature of the equilibria and on
stability - Theorems 2.1 and 3.1, respectively, as well as on the crosstalking between
the two microRNA species through the mRNA.

Let the following system of differential equations

d

d% = a—pr—BS —y1—y)r+ (1 —v)yr + (o — 1)y

d

% = B8 —y1—wy)r—1iyn (1)
d

% = [B(S—y1—y2) T — 10y

The coeficient « is the rate of transcription of the targeted mRNA, with concentra-
tions x, while the coefficient [ is the association rate to the corresponding microRNA
species (having the concentrations y; and y2). Furthermore, v;, i = 1,2 and u stand
for the elimination rates of the microRNAs and v is the association rate between the
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mRNA and the microRNA species. Naturally, all coefficients are strictly positive,
including S - the total amount of microRNA y; +y» < S. It is assumed that v < vy,
v < V9.

2. Equilibria

By using the same technique as in our previous paper [13], one can show that
the solutions of the associated Cauchy problem to (1) exist and are unique, they are
bounded and the positive octant sz’r is an invariant set.

We start by writing the corresponding algebraic equations defining the equi-
libria (2", y{, y3):

a—pr—B(S -y —yp)r+ v —v)p+2—v)y = 0
BS—yi—y)z—1myr = 0 (2)
B(S—y1—y2)T —12y2 =

From the last two equations in (2) one gets

. BSv2 o
h Bx*(v1 + v2) + vive
v = BSvl N

x
Bx*(v1 + va) + Vi1

By replacing now yj and y4 in the first equation of (2), the following quadratic
equation in x emerges:

Bt + vo)x? — [aB(vy + 1) + BS(v1ve — v(vy + 10)) — pris] @ — avive =0 (3)

This quadratic equation has always two real solutions, one positive and one negative;
hence we obtained the following result.

Theorem 2.1. For every set of strictly positive coeficients o, 8, u, v, vi, Va2 and
S, the system (1) has two equilibrium points, one of them (x*,y*,y*) with strictly
positive components.

Remark 2.1.

(1) Dividing equation (2) by v1ve and by denoting

1 1
7—"_7:77
141 V9

the quadratic equation becomes
pByz® —[afy + BS(L—vy) —pl 2 —a=0. (4)
(2) It is easy to see that

vyl = Vays-
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3. Stability

Our main purpose is to investigate the stability properties of the equilibrium
point with strictly positive components, since it is the relevant one from the biological
perspective. Denote it by (z*,y},y5) - as in Theorem 2.1.

The natural approach is to calculate the Jacobian matrix associated to the vec-
tor field defining (1) at the equilibrium point (x*,y*,3*) and then to check whether
all its three eigenvalues lie in the open complex left half-plane.

In accordance with the equations of system (1), one can easily deduce that

—p—=B(S—y1—y2) Br+ri—v Brt+ra—v
J(z,y1,92) = B(S —y1 —y2) —Br—un —Bx (5)
B(S —y1 — y2) —Bx —Br —vs.
Let A:=S5 —y; — y2 > 0. The characteristic polynomial of J is calculated as
s+pu+pA —Br—vi+v —Pr—-—vat+v
det(sls —J) = —BA s+ Bz + 1 Bx
—BA Bx s+ Bxr+ vy

= (s+pu+ pA) [32 + 28z + 11 +12)s + (Bx+ 11)(Bxr + o) — BQxQ] +
— BA[(=px —va+v)(—v1) + (=Bx —v1 +v)(—12) + (262 — 2v + v1 + 19)s]
=3+ (n+ BA+28x + vy +1)s?+
[1ve + (11 + 12)(Bx + p) + 2Bux + 28Av]) s+ (u— BA)v1ve + (11 + o) (uBx + BAV)

ot p(s) =8 +as® +bs+c. (6)
Applying the Hurwitz criterion to the third order polynomial above (6), one
immediately deduces the necessary and sufficient conditions for p(s) having all three
roots in the open complex left half-plane: @ > 0, b > 0, ¢ > 0 and ab — ¢ > 0.
The first two inequalities are clearly satisfied since all coefficients (but also A) are
strictly positive for all positive values of x,y1,y2. The last inequality follows based
on the same assumptions after simple, straightforward calculations.
Checking the positivity of ¢ requires a slightly more involved argument. Dividing
the inequality ¢ > 0 by v1v9 > 0 and multiplying it by z* > 0 one gets

(n— BA+BAV)T* +yBu(z*)* >0
By replacing now (2*)? from (4), the above inequality becomes
[w—BAQL —w)]a" + [afy + BS(L —vy) —pla" +a >0 (7)
or, equivalently,
[ay+ (S —A)(1 —vy)]Bz" +a >0 (8)
Obviously, S — A > 0 and with the condition vy < 1 the last inequality is verified.

According to the data in [7], this last condition v(v; + 12) < vivs is biologically
consistent. Thus the following results holds:
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Theorem 3.1. For every set of strictly positive coeficients «, B, u, v, v1, V2 and S,
such that v(v1 + v2) < 1 va, the system (1) has an asymptotically stable equilibrium
point (z*,y*,y*) in R3.

4. Numerical examples. Conclusions.

We choose the following set of values for the system coefficients: o = 8, 5 = 3,
vy = 4.64, v = 60.58, v = 0.32, p = 1 and S = 30, within the range of values
indicated by [7].

xy1,y2 - state-space
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F1GURE 1. Typical dynamics in state-space

Solving the polynomial equation (4), one can easily compute the equilibrium
point values: z* = 126.35, yj = 27.55, y5 = 2.11. These are consistent with steady-
state values observed in the simulation results on a sufficiently long time horizon
(Figure 2).

Thus, we conclude that for any set of strictly positive coefficients, system (1)
has a biologically consistent equilibrium point - a relevant fact in the analysis of the
cross-talking modeling in a micro-RNA target network.

Please also note (see Figure 3) that the total amount of the two microRNA
species, y1 + Y2, remains always bounded by S. In other words, A =S —y; —y2 >0
for every y1, y2 on on a given trajectory.
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% y1,y2 - time domain
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FIGURE 2. Time-domain: shorter settling times for y; and ys
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FIGURE 3. Limitation of y; + y»
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An interesting open problem, which will be addressed in the future, is to

prove that the (unique) biologically relevant equilibrium is a global attractor for the
positive octant R%. This can be done in a similar manner as in [4]. Alternatively,
the stability sufficient condition might be relaxed by employing the LMI approach
used in [12].
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