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DEEP NEURAL NETWORKS AS A TOOL TO ESTIMATION 
OF COSMIC RADIATION DOSE RECEIVED ON FLIGHT 
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AMON SUSAM4, Rüya ŞAMLI5, Baki AKKUŞ6, Aydın EROL7, Ertan 

GÜDEKLİ8, Çisem İlayda İNCİ9, Mehmet Erhan EMİRHAN10 

Cosmic radiation is an ionizing radiation produced when primary protons 
and α particles from outside the solar system interact with components of the earth's 
atmosphere. Cosmic radiation is a general term for radiation produced by high-
energy subatomic particles from outer space and, more importantly, secondary 
(ionizing) radiation from the sun and high-energy subatomic particles that react 
with nitrogen, oxygen, and other elements in the atmosphere. In this study, Deep 
Neural Networks (DNNs) via Multilayer Perceptrons (MLPs) were used to estimate 
the radiation doses due to cosmic radiation for different domestic flights related 
with Istanbul and Ankara Airports in Turkey. Dose values were calculated with the 
CARI-7A program and DNNs. The parameters for calculating dose rates are 
latitude, longitude and depth. The results obtained compared and discussed. 

Keywords: aircrew, cosmic radiation, flight, machine learning, deep learning, 
multilayer perceptrons. 

1. Introduction 
The Cosmic radiation term was known as radiation from space [1,2]. 

Cosmic rays with high-energy move through space and most of them sooner or 
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later reaches the Earth’s surface. They travel nearly at the speed of light. Galactic 
and solar are two kinds of cosmic rays. The remnants of supernovas shown the 
reason of galactic cosmic rays and by the powerful explosions of massive stars at 
the last stages charged particles accelerated and Earth exposed to these radiations 
all the time. One other kind is the solar cosmic radiation where electrons, protons 
and helium nuclei emitted from the Sun in two ways either from solar wind or 
from magnetic fields on the Sun’s surface. As it is known The Earth shielded by a 
magnetic field and mainly most of these radiations caused by galactic and solar 
based bounce from the poles. But some of these cosmic radiations still manage to 
reach the Earth and exposed by people. Averagely, people are exposed to around 
3.5 mSv of radiation per year [1,3,4] where only 10% of this amount comes from 
cosmic radiation. Airplane passengers are exposed to high levels of cosmic 
radiation [2,5] during a flight at higher altitudes, latitudes and especially if they 
fly too frequently or fly longer destinations. That’s why there are many programs 
[6] written to calculate the total cosmic dose received during a flight. These 
programs [3,6] are mainly used for aircrew not to cause high levels of cosmic 
dose and this is one of the top majority safety standards to keep them healthy.     
Up until now the programs such as AVIDOS, CARI-7, EPCARD.Net, FDOScalc, 
JISCARD, PANDOCA, PCAIRE, EXPACS, and SIEVERT 
[3,6,7,8,9,10,11,12,13,14] coded were based on mostly Monte Carlo simulation 
techniques, or some analytical solutions or semi-empirical measurements. There 
are publications where these methods used to calculate the exposed cosmic dose 
on flight for different destinations [15-19]. In this publication, Deep Neural 
Networks (DNNs) via Multilayer Perceptrons (MLPs) were used to estimate the 
cosmic radiation doses for different domestic flights related with Istanbul and 
Ankara Airports in Turkey. Besides DNNs, just to make a correct comparison in 
between, a well-known program CARI-7A [8] is used to calculate the dose values 
as well. The parameters used for calculating dose rates are latitude, longitude, and 
depth. The results obtained from this work is compared and discussed in the 
following. 

2. Methods and theoretical calculations 

In this study, the cosmic radiation dose received during flights was 
calculated using the CARI-7A program. The estimated value of this dose was 
obtained by means of machine learning method (MLPs). 

2.1 Calculation of dose at aviation altitudes by CARI7-A 

The received cosmic radiation dose (effective dose) for any flight vary 
with latitude, longitude and altitude. Various models have been developed to 
calculate the Cosmic radiation dose in aviation [20]. The computer program 
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CARI-7A, developed by the Federal Aviation Administration's (FAA's) Civil 
Aviation and Space Medical Institute, calculates the effective dose of galactic 
cosmic radiation by a crewmember or the passengers can be calculated [21]. 
CARI-7A calculates the theorical cosmic radiation dose (effective dose), taking 
into account flight route information, flight time, altitude and position (latitude 
and longitude). The program takes into account solar activity and the effects of 
geomagnetic field on galactic cosmic radiation levels for the user-selected date. 
The heliocentric potential is used for the precise calculation, thereby allowing the 
program to adjust for changes in galactic radiation levels that occur with changes 
in solar activity. In the calculations, heliocentric potential (HP) modulated ISO 
local interstellar GCR spectrum (LIS) was used for the GCR model [22-25]. 
Radiation dose calculated in µSv unit according to ICRP Pub.103 effective dose 
[26]. 

2.2 Machine learning and Scikit-Learn 

 Machine Learning is an artificial intelligence application in which 
methods that make inferences from existing data using mathematical and 
statistical methods and make predictions about the unknown with these inferences 
are developed. Machine learning teaches computers to think and act like humans, 
and to improve their performance by making decisions with appropriate data and 
algorithms for new applications similar to applications that computers have 
experienced before, with minimal human intervention [27-29]. Scikit-learn is a 
Python-based library used to build machine learning models. This library focuses 
on machine learning tools including mathematical, statistical and general-purpose 
algorithms [30]. It contains many learning algorithms for machine learning tasks 
that include classification, regression, dimensionality reduction, and clustering. It 
also provides modules to extract features, manipulate data, and evaluate models. It 
is compatible with NumPy and SciPy and it can easily work with different Python 
libraries. NumPy extends Python to support efficient operations on large arrays 
and multidimensional matrices [31]. Matplotlib provides modules for 
visualization tools [32] and SciPy provides modules for scientific calculations 
[33]. Scikit-learn is licensed under a simplified BSD license and is distributed 
under many Linux distributions that encourage academic and commercial use.   

2.3 Artificial neural network (ANN), multi-layer perceptrons (MLPs) 
and deep neural network (DNN)  

Artificial intelligence has been defined in the scientific world as the ability 
of a computer or a computer-aided machine to perform tasks related to higher 
logical processes, usually human qualities (finding a solution, learning from the 
past experiences and generalization) [34]. Artificial intelligence technologies 
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consist of expert systems, fuzzy logic artificial, neural networks, machine learning 
and genetic algorithms. In machine learning, relationships between inputs and 
outputs of events are usually learned using examples. Artificial neural network 
(ANN) is a structure imitating the learning path of the human brain; learning, 
remembering, generalizing, basic functions such as generating new data from the 
data collected by generalization. ANN is an information processing structure 
which inspired by biological nervous systems, such as the human brain. Typically, 
an ANN consists of three main layers, each of which has several interconnected 
parallel processing units, called neurons (shortly nodes). These are the input layer, 
the output layer, and between them the hidden layers that can consist of one or 
more layers [35]. ANN learns the relation between input and output variables by 
examining (training) the previously recorded data. Basically, from incoming 
connections, a neuron takes input and combines the input, usually performs a non-
linear operation, and then finally outputs the results [36-38]. An ANN involves 
multiple layers of some processing units called neurons. These neurons perform 
two functions which are the collection of inputs and the generation of an output. 
This ANN can be used to decide the learning type to adjust the weights with 
changes in parameters [39]. When constructing a functional model of the 
biological neuron, there are three essential components. First, the synapses of the 
neuron modeled by weight. The strength of the connection between an input and a 
neuron is specified by the value of the weight. Negative weight values reflect 
inhibitory links, while positive values indicate stimulating links. The next two 
components model the actual activity within the neuronal cell. An aggregator 
summarizes all altered entries based on their respective weight. This activity is 
called linear combination. Finally, an activation function controls the amplitude of 
the neuron's output, where an acceptable range of output is usually between 0 and 
1 or between -1 and 1. ANN is an intensive tool to solve many problems due to its 
features such as nonlinearity, information processing, learning and adaptation. 
There are two main categories of neural network architecture depending on the 
type of connections between neurons, forward neural networks and recurrent 
neural networks. If there is no feedback across the network from the outputs of the 
neurons to the inputs, the network is called a feed forward neural network. Feed 
forward neural networks are divided into two categories depending on the number 
of layers, single layer or multilayer. The Multilayer Perceptrons (MLPs) model is 
a type of neural network [40]. MLP is known as a class of feed forward artificial 
neural network (ANN) [41]. MLPs models are basic deep neural networks and 
consist of a series of fully connected layers. Each new layer is a nonlinear 
function of the weighted sum of all outputs from the previous one. MLP machine 
learning methods are used to meet the high computing power requirements of 
modern deep learning architectures. MLP has a supervised learning technique 
called backpropagation for training [42,43]. MLPs are suitable for tabular 
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datasets, classification prediction problems and regression prediction problems. 
Deep neural network (DNN) model is a powerful machine learning and artificial 
intelligence tool. A deep neural network (DNN) is a multilayer artificial neural 
network (ANN) between the input and output layers. DNN is used to model 
complex nonlinear relationships. "Deep" is used to refer to functions that are more 
complex in terms of the number of layers and units in a single layer. Creating 
more accurate models using additional and larger layers makes it possible to 
capture higher-level patterns in large data sets [44-47]. One type of the popular of 
DNN is Multi-Layer Perceptrons (MLPs) [48]. 

2.3.1 Evaluation metrics 

Model performance evaluation for The Estimation of dose rates have been 
conducted using accuracy. Statistical metrics are used to evaluate the results of 
prediction models and to compare these models with each other [49]. MSE (Mean 
Squared Error), RMSE (Root Mean Squared Error), MAE (Mean absolute error) 
and R2 (R-Squared) metrics can be expressed as below equations (1-4). In the 

formulas, n, actual, estimated, actual  and estimated  are the number of data, the 
actual values, the estimated values, the mean of the actual values and the mean of 
the estimated values, respectively. 
                                                             (1) 

                                                                   (2) 

                            (3) 

                                                                                (4) 

2.3.2 Datasets 

 Thirty-six different domestic flights relating to Istanbul and Ankara 
Airports in Turkey were investigated. Detailed record of a flight's location and 
flight data obtained from Flightradar24 [50]. In the CARI-7A program, the 
instantaneous dose rate during the flight and the total effective dose were 
calculated by using the flight time, latitude, longitude and altitude values. A total 
of 3057 instances and 4 attributes were used in the process of developing models 
with each machine learning method used. Cosmic radiation dose estimation via 
machine learning was done by (MLPs). Latitude, longitude and depth were used 
as inputs to the developed models, and target is the dose rate. ReLu (Rectified 
Linear Unit), hyperbolic tangent and logistic sigmoidal were used as activation 
functions. A stratified k-cross validation approach (k=5,10 and 20) and random 



192                                                     Ayberk Yilmaz et al. 

sampling approach (training set size is 66%) were used for splitting the dataset 
into train data and test data to develop a MLPs model. The models were evaluated 
using four indicators: MSE (Mean Squared Error), RMSE (Root Mean Squared 
Error), MAE (Mean absolute error) and R2 (R-Squared).  

3. Results 

A Deep Neural Networks (DNNs) and CARI-7A program was used to 
calculate the effective dose form cosmic radiation for 36 domestic flights in 
Turkey. Additionally, percentage contribution of the dose from each particle to 
the total dose for the domestic flights were calculated. Percentage contribution of 
the dose from each particle are given in Appendix 1. Route data were obtained 
from the Flight24 site to calculate the effective doses received for 36 selected 
domestic flights. These data are: ascending and descending time, flight levels and 
flight time, origin and destination airports at each level information for each 
flight. Flight times vary between 48 and 127 minutes for domestic flights related 
with Ankara and Istanbul Airport. In this study, Deep Neural Networks (DNNs) 
via Multilayer Perceptrons (MLPs) were used to estimate the radiation doses due 
to cosmic radiation for different domestic flights. For 36 flights, Multilayer 
Perceptrons results details (number of cross validations, name of the activation 
function, number of hidden layers etc...) and evaluation metrics results are 
presented in Table 1. Four metrics were used to evaluate the accuracy of the 
MLPs model. In MLP method 3 different activation function used for the 
calculated effective doses: hyperbolic tangent, logistic sigmoidal, Rectified Linear 
Unit (RELU). When Table 1 examined, it is seen that the best result was obtained 
for Model 27. In addition, when learning time and testing time are taken into 
account, the closest results to Model 27 were obtained in Model 2. These results 
were marked as bold in Table 1. CARI-7A program was another method used in 
this study. CARI-7A is a program that calculates the effective radiation doses 
received by the passengers and aircrew members during flight. The program 
requires user input such as attitude, longitude, altitude, flight duration time, the 
date of the flight, geographic locations of starting airports and geographic 
locations of landing airports. Result of calculation 27 and CARI-7A for the 
domestic flights are given in Table 2. In Table 2, it is seen that the effective dose 
values calculated for one-way flights for both methods ranged from 0.3 µSv to 3.5 
µSv. The effective dose results obtained for each flight one by the code CARI-7A 
are presented as a histogram in at Appendix 2. It can be seen that MLPs method 
and CARI-7A are in good agreement in Table 2.  

Another important parameter in calculating the dose value in flights is the 
latitude parameter. The view of effective dose rate values against latitude and 
depth parameters is presented in   Fig. 1. The results of two separate methods used 
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to calculate the effective dose are shown in Fig. 2. Fig. 3 shows the comparison of 
effective doses calculated for maximum and minimum of solar cycles. 

Table 1 
Summary of Multilayer Perceptrons (MLPs) calculation and metrics. 
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Metrics 

MSE RMSE MAE R2 

1 5 65 ReLu 5-Cross 
validation 

20.275 0.081 0.001 0.028 0.016 0.999 

2 5 65 ReLu 10-Cross 
validation 44.321 0.105 0.000 0.017 0.011 1.000 

3 5 65 ReLu 20-Cross 
validation 93.952 0.130 0.000 0.019 0.011 1.000 

4 5 65 ReLu Random 52.559 0.118 0.000 0.017 0.011 1.000 

5 5 65 tanh 5-Cross 
validation 18.904 0.074 0.000 0.020 0.015 1.000 

6 5 65 tanh 10-Cross 
validation 58.428 0.114 0.000 0.018 0.013 1.000 

7 5 65 tanh 20-Cross 
validation 98.993 0.142 0.000 0.019 0.014 1.000 

8 5 65 tanh Random 48.007 0.101 0.000 0.018 0.013 1.000 

9 5 65 logistic 5-Cross 
validation 53.418 0.098 0.002 0.039 0.024 0.999 

10 5 65 logistic 10-Cross 
validation 118.646 0.102 0.001 0.036 0.022 0.999 

11 5 65 logistic 20-Cross 
validation 194.924 0.125 0.001 0.038 0.022 0.999 

12 5 65 logistic Random 116.031 0.091 0.001 0.036 0.022 0.999 

13 5 100 ReLu 5-Cross 
validation 30.495 0.145 0.001 0.027 0.015 0.999 

14 5 100 ReLu 10-Cross 
validation 95.746 0.201 0.000 0.017 0.010 1.000 

15 5 100 ReLu 20-Cross 148.111 0.188 0.000 0.021 0.012 1.000 
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validation 

16 5 100 ReLu Random 57.603 0.136 0.000 0.017 0.010 1.000 

17 5 100 tanh 5-Cross 
validation 26.281 0.104 0.000 0.022 0.016 1.000 

18 5 100 tanh 10-Cross 
validation 50.419 0.110 0.000 0.021 0.014 1.000 

19 5 100 tanh 20-Cross 
validation 101.585 0.137 0.000 0.020 0.013 1.000 

20 5 100 tanh Random 65.291 0.133 0.000 0.021 0.014 1.000 

21 5 100 logistic 5-Cross 
validation 89.613 0.119 0.001 0.034 0.022 0.999 

22 5 100 logistic 10-Cross 
validation 160.738 0.127 0.001 0.031 0.019 0.999 

23 5 100 logistic 20-Cross 
validation 394.692 0.270 0.001 0.032 0.019 0.999 

24 5 100 logistic Random 145.656 0.132 0.001 0.031 0.019 0.999 

25 5 150 ReLu 5-Cross 
validation 39.491 0.161 0.000 0.014 0.008 1.000 

26 5 150 ReLu 10-Cross 
validation 83.475 0.240 0.000 0.014 0.008 1.000 

27 5 150 ReLu 20-Cross 
validation 170.323 0.248 0.000 0.013 0.008 1.000 

28 5 150 ReLu Random 77.934 0.186 0.000 0.014 0.008 1.000 

29 5 150 tanh 5-Cross 
validation 43.456 0.140 0.002 0.048 0.037 0.998 

30 5 150 tanh 10-Cross 
validation 85.791 0.177 0.001 0.025 0.019 1.000 

31 5 150 tanh 20-Cross 
validation 195.298 0.242 0.001 0.034 0.027 0.999 

32 5 150 tanh Random 96.674 0.184 0.001 0.025 0.019 1.000 

33 5 150 logistic 5-Cross 
validation 93.371 0.154 0.001 0.029 0.019 0.999 

34 5 150 logistic 10-Cross 
validation 189.472 0.170 0.001 0.028 0.019 0.999 

35 5 150 logistic 20-Cross 
validation 395.112 0.222 0.001 0.028 0.018 0.999 

36 5 150 logistic Random 259.505 0.241 0.001 0.028 0.019 0.999 
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37 5 200 ReLu 5-Cross 
validation 80.163 0.365 0.000 0.016 0.010 1.000 

38 5 200 ReLu 10-Cross 
validation 131.773 0.276 0.000 0.014 0.008 1.000 

39 5 200 ReLu 20-Cross 
validation 315.987 0.346 0.001 0.027 0.012 1.000 

40 5 200 ReLu Random 315.987 0.346 0.001 0.027 0.012 1.000 

41 5 200 tanh 5-Cross 
validation 138.267 0.287 0.001 0.033 0.024 0.999 

42 5 200 tanh 10-Cross 
validation 132.749 0.218 0.001 0.035 0.027 0.999 

43 5 200 tanh 20-Cross 
validation 225.221 0.263 0.001 0.030 0.024 0.999 

44 5 200 tanh Random 131.164 0.219 0.001 0.035 0.027 0.999 

45 5 200 logistic 5-Cross 
validation 140.166 0.185 0.001 0.038 0.024 0.999 

46 5 200 logistic 10-Cross 
validation 1905.378 1.797 0.001 0.035 0.021 0.999 

47 5 200 logistic 20-Cross 
validation 2786.237 1.316 0.001 0.031 0.019 0.999 

48 5 200 logistic Random 229.509 0.160 0.001 0.035 0.021 0.999 

 

Table 2 
Effective Dose (µSv) obtained by Model 27 and CARI-7A for the domestic flights. 
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Effective Dose (µSv) 

1 Adana Ankara 2020-12-21 70 0.7 0.7 0.6 0.6 0.7 0.6 0.7 
2 Adana Istanbul 2020-12-18 102 1.8 1.8 1.7 1.6 1.8 1.7 1.8 
3 Ankara Istanbul 2020-12-17 74 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
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4 Ankara Istanbul 2020-12-19 59 0.5 0.5 0.5 0.4 0.5 0.4 0.5 
5 Ankara Izmir 2020-12-17 72 1.2 1.2 1.2 1.1 1.3 1.2 1.3 
6 Antakya Istanbul 2020-12-21 127 2.8 2.8 2.7 2.5 2.8 2.6 2.8 
7 Antalya Ankara 2020-12-21 64 0.7 0.7 0.7 0.6 0.7 0.7 0.7 
8 Antalya Istanbul 2020-12-19 68 0.9 0.9 0.8 0.8 0.9 0.8 0.9 
9 Canakkale Ankara 2020-12-23 54 1.1 1.1 1.1 1.0 1.2 1.1 1.2 

10 Dalaman Ankara 2020-12-20 53 1.4 1.4 1.4 1.3 1.4 1.3 1.4 
11 Dalaman Istanbul 2020-12-18 75 1.5 1.6 1.5 1.4 1.5 1.4 1.5 
12 Antalya Istanbul 2020-12-18 73 1.0 1.0 1.0 0.9 1.1 1.0 1.1 
13 Gaziantep Istanbul 2020-12-14 80 3.0 3.0 3.0 2.7 3.1 2.8 3.1 
14 Igdir Ankara 2020-12-21 107 3.3 3.2 3.1 2.9 3.3 3.0 3.3 
15 Istanbul Ankara 2020-12-21 48 0.6 0.6 0.6 0.5 0.6 0.6 0.6 
16 Izmir Ankara 2020-12-22 68 1.1 1.1 1.0 0.9 1.1 1.0 1.1 
17 Izmir Istanbul 2020-12-19 60 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
18 Izmir Ankara 2020-12-21 55 1.2 1.2 1.2 1.1 1.2 1.1 1.2 
19 Istanbul Antalya 2020-12-18 57 0.9 0.9 0.9 0.8 0.9 0.9 0.9 
20 Istanbul Ankara 2020-12-18 51 0.6 0.6 0.6 0.6 0.6 0.6 0.6 
21 Istanbul Izmir 2020-12-17 63 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
22 Istanbul Antalya 2020-12-18 70 1.1 1.1 1.0 0.9 1.1 1.0 1.1 
23 Istanbul Adana 2020-12-18 72 1.7 1.7 1.7 1.5 1.8 1.6 1.8 
24 Istanbul Bodrum 2020-12-14 58 1.1 1.1 1.1 1.0 1.1 1.0 1.1 
25 Istanbul Dalaman 2020-12-20 54 0.8 0.8 0.8 0.7 0.8 0.8 0.8 
26 Istanbul Trabzon 2020-12-18 80 2.9 2.9 2.8 2.5 2.9 2.7 2.9 
27 Kahramanmaras Ankara 2020-12-21 48 0.9 0.9 0.9 0.8 0.9 0.9 0.9 
28 Kars Ankara 2020-12-18 75 2.8 2.8 2.7 2.5 2.9 2.6 2.9 
29 Kayseri Istanbul 2020-12-23 82 1.6 1.6 1.5 1.4 1.6 1.5 1.6 
30 Amasya Istanbul 2020-12-25 69 1.8 1.8 1.8 1.6 1.9 1.7 1.9 
31 Nevsehir Istanbul 2020-12-16 62 1.3 1.3 1.3 1.2 1.3 1.2 1.3 
32 Samsun Ankara 2020-12-22 54 0.5 0.5 0.5 0.4 0.5 0.5 0.5 
33 Samsun Istanbul 2020-12-23 88 1.3 1.3 1.2 1.1 1.3 1.2 1.3 
34 Trabzon Ankara 2020-12-21 58 1.9 1.9 1.9 1.7 2.0 1.8 2.0 
35 Trabzon Ankara 2020-12-22 70 1.7 1.7 1.6 1.5 1.7 1.6 1.7 
36 Trabzon Istanbul 2020-12-20 100 3.5 3.4 3.3 3.0 3.5 3.2 3.5 

 
The view of effective dose rate values against latitude and depth 

parameters is presented in Fig 1. 
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Fig. 1.  A) 3-dimensional view of effective dose rates depending on latitude and depth. 

                                            B) Projection of 3-dimensional surface 
The results of two separate methods used to calculate the effective dose 

are shown in Figure 2. Figure 3 shows the comparison of effective doses 
calculated for maximum and minimum of solar cycles. 

 

 
Fig. 2.  Comparison of the calculated effective  

 
Fig. 3. Comparison of effective doses calculated for maximum and minimum of solar cycles 
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4. Conclusion 

 Cosmic radiation doses received on aboard an aircraft are higher than on 
the ground level. Aircrew can receive an effective dose of several millisievert per 
year as a result of their occupation. It is important for frequent flyers and flight 
crew members to monitor the dose values they receive and adjust the flight 
frequency accordingly in order to reduce the health risks that may occur. In this 
present study, effective dose values from cosmic radiation were calculated with 
CARI-7A and DNN. This study has proposed that machine learning method and 
different algorithms could be used to evaluate cosmic radiation dose received 
during a flight. The calculated dose values obtained by the CARI-7A program and 
the models developed by the DNN were compared and seen that they were in 
good agreement. As a result, DNN approach is a useful and powerful tool for 
estimation of the effective dose values. 
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Appendix 1 
 

Percentage contribution of the dose from each particle to the total dose 
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1 45.1 17.0 10.3 4.5 4.3 4.3 13.8 0.1 0.1 0.2 0.0 0.1 0.2 
2 43.3 17.8 11.2 5.0 3.3 3.3 14.8 0.1 0.1 0.3 0.0 0.2 0.4 
3 48.5 15.2 8.9 3.9 4.6 4.6 13.6 0.1 0.1 0.2 0.0 0.1 0.1 
4 49.3 14.9 8.6 3.8 4.6 4.6 13.5 0.1 0.1 0.2 0.0 0.1 0.1 
5 44.4 17.4 10.8 4.8 3.4 3.4 14.7 0.1 0.1 0.3 0.0 0.2 0.3 
6 41.4 18.4 12.0 5.3 3.0 3.0 15.3 0.1 0.1 0.3 0.0 0.3 0.6 
7 44.3 17.3 10.7 4.7 4.0 4.0 14.2 0.1 0.1 0.3 0.0 0.2 0.3 
8 44.9 17.1 10.5 4.6 3.8 3.8 14.3 0.1 0.1 0.3 0.0 0.2 0.3 
9 45.7 16.8 10.4 4.6 3.3 3.3 15.0 0.1 0.1 0.3 0.0 0.2 0.3 

10 41.2 18.1 12.0 5.3 2.9 2.9 15.7 0.1 0.1 0.3 0.0 0.4 0.8 
11 42.8 16.8 10.7 4.7 4.7 4.7 14.4 0.1 0.1 0.3 0.0 0.3 0.4 
12 44.7 17.3 10.6 4.7 3.8 3.8 14.2 0.1 0.1 0.3 0.0 0.2 0.3 
13 42.4 17.8 11.6 5.1 2.6 2.6 16.0 0.1 0.1 0.3 0.0 0.4 0.7 
14 43.2 17.4 11.3 5.0 2.7 2.7 16.0 0.1 0.1 0.3 0.0 0.4 0.6 
15 49.0 15.3 9.0 3.9 4.1 4.1 13.8 0.1 0.1 0.3 0.0 0.1 0.1 
16 44.2 17.4 10.9 4.8 3.5 3.5 14.6 0.1 0.1 0.3 0.0 0.2 0.3 
17 48.5 14.8 8.6 3.8 5.4 5.4 12.8 0.1 0.1 0.2 0.0 0.1 0.1 
18 42.7 17.7 11.4 5.0 3.1 3.1 15.3 0.1 0.1 0.3 0.0 0.3 0.6 
19 45.5 17.0 10.4 4.6 3.6 3.6 14.3 0.1 0.1 0.3 0.0 0.2 0.2 
20 47.3 16.0 9.6 4.2 3.8 3.8 14.4 0.1 0.1 0.3 0.0 0.2 0.2 
21 49.5 14.9 8.5 3.8 4.7 4.7 13.2 0.1 0.1 0.2 0.0 0.1 0.1 
22 44.5 16.0 9.7 4.3 5.7 5.7 13.2 0.1 0.1 0.2 0.0 0.2 0.2 
23 44.5 17.3 10.9 4.8 3.1 3.1 15.1 0.1 0.1 0.3 0.0 0.2 0.4 
24 43.7 17.2 11.0 4.8 3.2 3.2 15.3 0.1 0.1 0.3 0.0 0.3 0.5 
25 45.2 17.1 10.5 4.6 3.8 3.8 14.2 0.1 0.1 0.3 0.0 0.2 0.2 
26 44.4 16.5 10.7 4.7 2.6 2.6 16.6 0.1 0.1 0.3 0.0 0.4 0.7 
27 44.4 17.5 10.8 4.8 3.5 3.5 14.5 0.1 0.1 0.3 0.0 0.2 0.3 
28 42.6 17.4 11.5 5.0 2.6 2.6 16.2 0.1 0.1 0.3 0.0 0.4 0.8 
29 45.7 16.9 10.4 4.6 3.3 3.3 14.8 0.1 0.1 0.3 0.0 0.2 0.3 
30 45.2 16.8 10.6 4.7 3.0 3.0 15.5 0.1 0.1 0.3 0.0 0.3 0.4 
31 44.8 17.0 10.7 4.7 3.2 3.2 15.2 0.1 0.1 0.3 0.0 0.3 0.4 
32 49.9 14.8 8.5 3.7 4.6 4.6 13.4 0.1 0.1 0.2 0.0 0.1 0.1 
33 47.8 15.9 9.5 4.2 3.6 3.6 14.5 0.1 0.1 0.3 0.0 0.2 0.2 
34 44.1 17.0 11.0 4.8 2.7 2.7 16.0 0.1 0.1 0.3 0.0 0.4 0.6 
35 46.0 16.7 10.3 4.5 3.1 3.1 15.2 0.1 0.1 0.3 0.0 0.2 0.3 
36 43.2 16.9 11.2 4.9 2.6 2.6 16.6 0.1 0.1 0.3 0.0 0.5 0.8 

MEAN 45.1 16.8 10.4 4.6 3.6 3.6 14.7 0.1 0.1 0.3 0.0 0.2 0.4 
SD(σ) 2.3 1.0 1.0 0.4 0.8 0.8 1.0 0.0 0.0 0.0 0.0 0.1 0.2 
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Appendix 2 
 
 

 
 

Frequency distribution of the effective dose values according to the number 
 
 


