U.P.B. Sci. Bull., Series A, Vol. 84, Iss. 2, 2022 ISSN 1223-7027

DEEP NEURAL NETWORKS AS A TOOL TO ESTIMATION
OF COSMIC RADIATION DOSE RECEIVED ON FLIGHT

Ayberk YILMAZ!, Hatice YILMAZ ALAN?, Ozlem FAYDASICOK?, Lidya
AMON SUSAM?, Riiya SAMLI®, Baki AKKUS®, Aydin EROL’, Ertan
GUDEKLI®, Cisem Ilayda INCI®, Mehmet Erhan EMIRHAN!?

Cosmic radiation is an ionizing radiation produced when primary protons
and o. particles from outside the solar system interact with components of the earth's
atmosphere. Cosmic radiation is a general term for radiation produced by high-
energy subatomic particles from outer space and, more importantly, secondary
(ionizing) radiation from the sun and high-energy subatomic particles that react
with nitrogen, oxygen, and other elements in the atmosphere. In this study, Deep
Neural Networks (DNNs) via Multilayer Perceptrons (MLPs) were used to estimate
the radiation doses due to cosmic radiation for different domestic flights related
with Istanbul and Ankara Airports in Turkey. Dose values were calculated with the
CARI-7A program and DNNs. The parameters for calculating dose rates are
latitude, longitude and depth. The results obtained compared and discussed.

Keywords: aircrew, cosmic radiation, flight, machine learning, deep learning,
multilayer perceptrons.
1. Introduction

The Cosmic radiation term was known as radiation from space [1,2].
Cosmic rays with high-energy move through space and most of them sooner or
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later reaches the Earth’s surface. They travel nearly at the speed of light. Galactic
and solar are two kinds of cosmic rays. The remnants of supernovas shown the
reason of galactic cosmic rays and by the powerful explosions of massive stars at
the last stages charged particles accelerated and Earth exposed to these radiations
all the time. One other kind is the solar cosmic radiation where electrons, protons
and helium nuclei emitted from the Sun in two ways either from solar wind or
from magnetic fields on the Sun’s surface. As it is known The Earth shielded by a
magnetic field and mainly most of these radiations caused by galactic and solar
based bounce from the poles. But some of these cosmic radiations still manage to
reach the Earth and exposed by people. Averagely, people are exposed to around
3.5 mSv of radiation per year [1,3,4] where only 10% of this amount comes from
cosmic radiation. Airplane passengers are exposed to high levels of cosmic
radiation [2,5] during a flight at higher altitudes, latitudes and especially if they
fly too frequently or fly longer destinations. That’s why there are many programs
[6] written to calculate the total cosmic dose received during a flight. These
programs [3,6] are mainly used for aircrew not to cause high levels of cosmic
dose and this is one of the top majority safety standards to keep them healthy.
Up until now the programs such as AVIDOS, CARI-7, EPCARD.Net, FDOScalc,
JISCARD, PANDOCA, PCAIRE, EXPACS, and SIEVERT
[3,6,7,8,9,10,11,12,13,14] coded were based on mostly Monte Carlo simulation
techniques, or some analytical solutions or semi-empirical measurements. There
are publications where these methods used to calculate the exposed cosmic dose
on flight for different destinations [15-19]. In this publication, Deep Neural
Networks (DNNs) via Multilayer Perceptrons (MLPs) were used to estimate the
cosmic radiation doses for different domestic flights related with Istanbul and
Ankara Airports in Turkey. Besides DNNs, just to make a correct comparison in
between, a well-known program CARI-7A [8] is used to calculate the dose values
as well. The parameters used for calculating dose rates are latitude, longitude, and
depth. The results obtained from this work is compared and discussed in the
following.

2. Methods and theoretical calculations

In this study, the cosmic radiation dose received during flights was
calculated using the CARI-7A program. The estimated value of this dose was
obtained by means of machine learning method (MLPs).

2.1 Calculation of dose at aviation altitudes by CARI7-A

The received cosmic radiation dose (effective dose) for any flight vary
with latitude, longitude and altitude. Various models have been developed to
calculate the Cosmic radiation dose in aviation [20]. The computer program



Deep neural networks as a tool to estimation of cosmic radiation dose received on flight 189

CARI-7A, developed by the Federal Aviation Administration's (FAA's) Civil
Aviation and Space Medical Institute, calculates the effective dose of galactic
cosmic radiation by a crewmember or the passengers can be calculated [21].
CARI-7A calculates the theorical cosmic radiation dose (effective dose), taking
into account flight route information, flight time, altitude and position (latitude
and longitude). The program takes into account solar activity and the effects of
geomagnetic field on galactic cosmic radiation levels for the user-selected date.
The heliocentric potential is used for the precise calculation, thereby allowing the
program to adjust for changes in galactic radiation levels that occur with changes
in solar activity. In the calculations, heliocentric potential (HP) modulated ISO
local interstellar GCR spectrum (LIS) was used for the GCR model [22-25].
Radiation dose calculated in pSv unit according to ICRP Pub.103 effective dose
[26].

2.2 Machine learning and Scikit-Learn

Machine Learning is an artificial intelligence application in which
methods that make inferences from existing data using mathematical and
statistical methods and make predictions about the unknown with these inferences
are developed. Machine learning teaches computers to think and act like humans,
and to improve their performance by making decisions with appropriate data and
algorithms for new applications similar to applications that computers have
experienced before, with minimal human intervention [27-29]. Scikit-learn is a
Python-based library used to build machine learning models. This library focuses
on machine learning tools including mathematical, statistical and general-purpose
algorithms [30]. It contains many learning algorithms for machine learning tasks
that include classification, regression, dimensionality reduction, and clustering. It
also provides modules to extract features, manipulate data, and evaluate models. It
is compatible with NumPy and SciPy and it can easily work with different Python
libraries. NumPy extends Python to support efficient operations on large arrays
and multidimensional matrices [31]. Matplotlib provides modules for
visualization tools [32] and SciPy provides modules for scientific calculations
[33]. Scikit-learn is licensed under a simplified BSD license and is distributed
under many Linux distributions that encourage academic and commercial use.

2.3 Artificial neural network (ANN), multi-layer perceptrons (MLPs)
and deep neural network (DNN)

Artificial intelligence has been defined in the scientific world as the ability
of a computer or a computer-aided machine to perform tasks related to higher
logical processes, usually human qualities (finding a solution, learning from the
past experiences and generalization) [34]. Artificial intelligence technologies
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consist of expert systems, fuzzy logic artificial, neural networks, machine learning
and genetic algorithms. In machine learning, relationships between inputs and
outputs of events are usually learned using examples. Artificial neural network
(ANN) is a structure imitating the learning path of the human brain; learning,
remembering, generalizing, basic functions such as generating new data from the
data collected by generalization. ANN is an information processing structure
which inspired by biological nervous systems, such as the human brain. Typically,
an ANN consists of three main layers, each of which has several interconnected
parallel processing units, called neurons (shortly nodes). These are the input layer,
the output layer, and between them the hidden layers that can consist of one or
more layers [35]. ANN learns the relation between input and output variables by
examining (training) the previously recorded data. Basically, from incoming
connections, a neuron takes input and combines the input, usually performs a non-
linear operation, and then finally outputs the results [36-38]. An ANN involves
multiple layers of some processing units called neurons. These neurons perform
two functions which are the collection of inputs and the generation of an output.
This ANN can be used to decide the learning type to adjust the weights with
changes in parameters [39]. When constructing a functional model of the
biological neuron, there are three essential components. First, the synapses of the
neuron modeled by weight. The strength of the connection between an input and a
neuron is specified by the value of the weight. Negative weight values reflect
inhibitory links, while positive values indicate stimulating links. The next two
components model the actual activity within the neuronal cell. An aggregator
summarizes all altered entries based on their respective weight. This activity is
called linear combination. Finally, an activation function controls the amplitude of
the neuron's output, where an acceptable range of output is usually between 0 and
1 or between -1 and 1. ANN is an intensive tool to solve many problems due to its
features such as nonlinearity, information processing, learning and adaptation.
There are two main categories of neural network architecture depending on the
type of connections between neurons, forward neural networks and recurrent
neural networks. If there is no feedback across the network from the outputs of the
neurons to the inputs, the network is called a feed forward neural network. Feed
forward neural networks are divided into two categories depending on the number
of layers, single layer or multilayer. The Multilayer Perceptrons (MLPs) model is
a type of neural network [40]. MLP is known as a class of feed forward artificial
neural network (ANN) [41]. MLPs models are basic deep neural networks and
consist of a series of fully connected layers. Each new layer is a nonlinear
function of the weighted sum of all outputs from the previous one. MLP machine
learning methods are used to meet the high computing power requirements of
modern deep learning architectures. MLP has a supervised learning technique
called backpropagation for training [42,43]. MLPs are suitable for tabular
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datasets, classification prediction problems and regression prediction problems.
Deep neural network (DNN) model is a powerful machine learning and artificial
intelligence tool. A deep neural network (DNN) is a multilayer artificial neural
network (ANN) between the input and output layers. DNN is used to model
complex nonlinear relationships. "Deep" is used to refer to functions that are more
complex in terms of the number of layers and units in a single layer. Creating
more accurate models using additional and larger layers makes it possible to
capture higher-level patterns in large data sets [44-47]. One type of the popular of
DNN is Multi-Layer Perceptrons (MLPs) [48].

2.3.1 Evaluation metrics

Model performance evaluation for The Estimation of dose rates have been
conducted using accuracy. Statistical metrics are used to evaluate the results of
prediction models and to compare these models with each other [49]. MSE (Mean
Squared Error), RMSE (Root Mean Squared Error), MAE (Mean absolute error)
and R? (R-Squared) metrics can be expressed as below equations (1-4). In the

formulas, n, actual, estimated, actual g, estimated are the number of data, the
actual values, the estimated values, the mean of the actual values and the mean of
the estimated values, respectively.

MSE = i ", (actual. — estimated,)* (1)
RMSE = -».‘llli %N (actual; — estimated;)? (2)
MAEFE = iz?qlacrmii — estimated,; | 3)
pZ— 11— IR, (actual;—estimate d;)* )
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2.3.2 Datasets

Thirty-six different domestic flights relating to Istanbul and Ankara
Airports in Turkey were investigated. Detailed record of a flight's location and
flight data obtained from Flightradar24 [50]. In the CARI-7A program, the
instantaneous dose rate during the flight and the total effective dose were
calculated by using the flight time, latitude, longitude and altitude values. A total
of 3057 instances and 4 attributes were used in the process of developing models
with each machine learning method used. Cosmic radiation dose estimation via
machine learning was done by (MLPs). Latitude, longitude and depth were used
as inputs to the developed models, and target is the dose rate. ReLu (Rectified
Linear Unit), hyperbolic tangent and logistic sigmoidal were used as activation
functions. A stratified k-cross validation approach (k=5,10 and 20) and random
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sampling approach (training set size is 66%) were used for splitting the dataset
into train data and test data to develop a MLPs model. The models were evaluated
using four indicators: MSE (Mean Squared Error), RMSE (Root Mean Squared
Error), MAE (Mean absolute error) and R? (R-Squared).

3. Results

A Deep Neural Networks (DNNs) and CARI-7A program was used to
calculate the effective dose form cosmic radiation for 36 domestic flights in
Turkey. Additionally, percentage contribution of the dose from each particle to
the total dose for the domestic flights were calculated. Percentage contribution of
the dose from each particle are given in Appendix 1. Route data were obtained
from the Flight24 site to calculate the effective doses received for 36 selected
domestic flights. These data are: ascending and descending time, flight levels and
flight time, origin and destination airports at each level information for each
flight. Flight times vary between 48 and 127 minutes for domestic flights related
with Ankara and Istanbul Airport. In this study, Deep Neural Networks (DNNs)
via Multilayer Perceptrons (MLPs) were used to estimate the radiation doses due
to cosmic radiation for different domestic flights. For 36 flights, Multilayer
Perceptrons results details (number of cross validations, name of the activation
function, number of hidden layers etc...) and evaluation metrics results are
presented in Table 1. Four metrics were used to evaluate the accuracy of the
MLPs model. In MLP method 3 different activation function used for the
calculated effective doses: hyperbolic tangent, logistic sigmoidal, Rectified Linear
Unit (RELU). When Table 1 examined, it is seen that the best result was obtained
for Model 27. In addition, when learning time and testing time are taken into
account, the closest results to Model 27 were obtained in Model 2. These results
were marked as bold in Table 1. CARI-7A program was another method used in
this study. CARI-7A is a program that calculates the effective radiation doses
received by the passengers and aircrew members during flight. The program
requires user input such as attitude, longitude, altitude, flight duration time, the
date of the flight, geographic locations of starting airports and geographic
locations of landing airports. Result of calculation 27 and CARI-7A for the
domestic flights are given in Table 2. In Table 2, it is seen that the effective dose
values calculated for one-way flights for both methods ranged from 0.3 puSv to 3.5
uSv. The effective dose results obtained for each flight one by the code CARI-7A
are presented as a histogram in at Appendix 2. It can be seen that MLPs method
and CARI-7A are in good agreement in Table 2.

Another important parameter in calculating the dose value in flights is the
latitude parameter. The view of effective dose rate values against latitude and
depth parameters is presented in  Fig. 1. The results of two separate methods used
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to calculate the effective dose are shown in Fig. 2. Fig. 3 shows the comparison of
effective doses calculated for maximum and minimum of solar cycles.

Table 1
Summary of Multilayer Perceptrons (MLPs) calculation and metrics.
" Metrics
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1 5 65 | ReLu | 3-Cross 20.275 0.081 | 0.001 | 0.028 | 0.016 | 0.999
validation
2 5 65 | ReLu | 10°CTOS | 4351 | 0.105 | 0.000 [ 0.017 | 0.011 | 1.000
validation
3 5 65 | ReLu | 20Cr0S 193950 | 0.130 | 0.000 [ 0.019 |0.011 | 1.000
validation

4 5 65 ReLu Random 52.559 0.118 | 0.000 | 0.017 | 0.011 | 1.000

5-Cross

5 5 65 | tanh TOSS 18.904 | 0.074 | 0.000 | 0.020 | 0.015 | 1.000
validation

6 5 65 | tanh 10-Cross | 56 458 | 0.114 | 0.000 | 0.018 | 0.013 | 1.000
validation

7 5 65 |tanh | 20°CT0S o903 | 0.142 | 0.000 | 0.019 | 0.014 | 1.000
validation

8 5 65 | tanh | Random | 48.007 | 0.101 | 0.000 | 0.018 | 0.013 | 1.000

9 |5 65 | logistic | 2SO |'53418 | 0.098 | 0.002 | 0,039 | 0.024 | 0.999
validation

10 |5 65 | logistic | 10-CTOSS | 118646 | 0.102 | 0.001 | 0.036 |0.022 | 0.999
validation
.. 20-Cross

11 |5 65 | logistic o 194.924 | 0.125 | 0.001 | 0.038 | 0.022 | 0.999
validation

12 |5 65 | logistic | Random | 116.031 | 0.091 | 0.001 | 0.036 | 0.022 | 0.999

13 |5 100 | ReLy | >-Cross 30.495 | 0.145 | 0.001 | 0.027 | 0.015 | 0.999
validation

14 |5 100 |ReLu | 10°CT0sS o5 946 | 0201 | 0.000 | 0.017 | 0.010 | 1.000
validation

15 5 100 | ReLu 20-Cross 148.111 | 0.188 | 0.000 | 0.021 0.012 | 1.000
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validation

16 |5 | 100 | ReLu | Random | 57.603 | 0.136 | 0.000 | 0.017 | 0.010 | 1.000

17 |5 100 |tanh | >COSS 26281 | 0.104 | 0.000 | 0.022 | 0.016 | 1.000
validation

18 |5 100 |tanh | 19CS 150419 | 0110 | 0.000 | 0.021 | 0.014 | 1.000
validation
20-Cross

19 |5 |100 | tanh Cross 1101585 | 0.137 | 0,000 | 0.020 | 0.013 | 1.000
validation

20 |5 | 100 |@nh | Random | 65291 | 0.133 | 0.000 | 0.021 | 0.014 | 1.000

20 |5 [ 100 | logistic | >C | 89613 | 0.119 | 0.001 | 0.034 | 0.022 | 0.999
validation

2 |5 100 | logistic | "0CT9% | 160738 | 0.127 | 0.001 | 0.031 | 0.019 | 0.999
validation
. 20-Cross

23 |5 100 | logistic | 2251 1394692 |0.270 | 0.001 | 0.032 | 0.019 | 0.999
validation

24 5 100 | logistic | Random 145.656 | 0.132 | 0.001 | 0.031 0.019 | 0.999

5-Cross

25 |5 150 | ReLu TOSE 39.491 | 0.161 | 0.000 | 0.014 | 0.008 | 1.000
validation

2% |5 150 | ReLu | 10-CrOSS | g3 495 10240 | 0.000 | 0.014 | 0.008 | 1.000
validation

27 |5 150 | ReLu | 20-CT0SS | 150323 | 0.248 | 0.000 | 0.013 | 0.008 | 1.000
validation

28 |5 150 | ReLu | Random | 77.934 | 0.186 | 0.000 | 0.014 | 0.008 | 1.000

29 |5 150 | tanh >Cross | 43456 | 0.140 | 0,002 | 0.048 | 0.037 | 0.998
validation

30 |5 150 | tanh 10-Cross | ¢5 791 | 0.177 | 0.001 | 0.025 | 0.019 | 1.000
validation
20-Cross

31 |5 150 | tanh T 195298 | 0.242 | 0.001 | 0.034 | 0.027 | 0.999
validation

32 |5 150 |tanh | Random | 96.674 | 0.184 | 0.001 | 0.025 | 0.019 | 1.000

33 |5 150 | logistic | >°57% 193371 | 0.154 | 0.001 | 0.029 | 0.019 | 0.999
validation

34 |5 | 150 | togistic | 1€ 1189472 | 0.170 | 0.001 | 0.028 | 0.019 | 0.999
validation
L. 20-Cross

35 |5 150 | logistic 1! 395.112 | 0.222 | 0.001 | 0.028 | 0.018 | 0.999
validation

36 5 150 | logistic | Random 259.505 | 0.241 | 0.001 | 0.028 | 0.019 | 0.999
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37 |5 200 | ReLu | >-Cross 80.163 | 0.365 | 0.000 | 0.016 | 0.010 | 1.000
validation
38 |5 | 200 | Reru | 1O-CTOSS 13y 993 | 0276 | 0.000 | 0.014 | 0.008 | 1.000
validation
20-Cross
39 |5 200 | ReLu o 315.987 | 0.346 | 0.001 | 0.027 | 0.012 | 1.000
validation
40 |5 200 | ReLu | Random | 315.987 | 0.346 | 0.001 | 0.027 | 0.012 | 1.000
41 |5 200 | tanh >-Cross 138.267 | 0.287 | 0.001 | 0.033 | 0.024 | 0.999
validation
42 |5 1200 |tanh | 10-COSS 35049 | 0218 | 0.001 | 0,035 | 0.027 | 0.999
validation
20-Cross
43 |5 200 | tanh 1o 225221 | 0.263 | 0.001 | 0.030 | 0.024 | 0.999
validation
44 |5 200 | tanh Random | 131.164 | 0.219 | 0.001 | 0.035 | 0.027 | 0.999
45 |5 200 |logistic | 2C | 140.166 | 0.185 | 0.001 | 0.038 | 0.024 | 0.999
validation
46 |5 200 | logistic | 19CT95 | 1905378 | 1.797 | 0.001 | 0.035 | 0.021 | 0.999
validation
.. 20-Cross
47 |5 200 | logistic 1o 2786.237 | 1.316 | 0.001 | 0.031 | 0.019 | 0.999
validation
48 |5 200 | logistic | Random | 229.509 | 0.160 | 0.001 | 0.035 | 0.021 | 0.999
Table 2
Effective Dose (uSv) obtained by Model 27 and CARI-7A for the domestic flights.
Domestic Flights
- g E | E g g
5|2 Q| E = |8 5 g
0 g o 2|3 | «5| E8| Ex|Ex |Ex | EX
= E 2 3 E|lS |S5 Qg qzlag | s |52
20 3 £ e > | < =SB 00| 0S| 0SS | 0& 0 S
5 & 2 2 gy Sl s~ |59 s |35 5 N
a 8 = s | 2 c| @ g | & & &
ERES 5 |5 |5 |5 |5
= s |z |8 |2 |2
Effective Dose (uSv)
1 | Adana Ankara | 2020-1221| 70| 07| 07| 06| 06| 07 06| 0.7
2 | Adana Istanbul | 2020-12-18| 102| 1.8 1.8 17| 16| 18 17| 1.8
3| Ankara Istanbul | 2020-12-17| 74| 05| 05| 05| 05| 05 05| 05
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4 | Ankara Istanbul 2020-12-19 59| 0.5 0.5 0.5 0.4 0.5 0.4 0.5
5 | Ankara Izmir 2020-12-17 721 1.2 1.2 1.2 1.1 1.3 1.2 1.3
6 | Antakya Istanbul 2020-12-21| 127 2.8 2.8 2.7 2.5 2.8 2.6 2.8
7| Antalya Ankara 2020-12-21 64| 0.7 0.7 0.7 0.6 0.7 0.7 0.7
8 | Antalya Istanbul 2020-12-19 68| 0.9 0.9 0.8 0.8 0.9 0.8 0.9
9 | Canakkale Ankara 2020-12-23 541 1.1 1.1 1.1 1.0 1.2 1.1 1.2
10| Dalaman Ankara 2020-12-20| 53| 1.4] 14 14] 13 1.4 1.3 1.4
11| Dalaman Istanbul 2020-12-18 751 1.5 1.6 1.5 1.4 1.5 1.4 1.5
12| Antalya Istanbul 2020-12-18 73| 1.0 1.0 1.0 0.9 1.1 1.0 1.1
13 | Gaziantep Istanbul 2020-12-14 80| 3.0 3.0 3.0 2.7 3.1 2.8 3.1
14 | 1gdir Ankara 2020-12-21| 107| 3.3 3.2 3.1 2.9 33 3.0 33
15 | Istanbul Ankara 2020-12-21 48| 0.6 0.6 0.6 0.5 0.6 0.6 0.6
16 | Izmir Ankara 2020-12-22 68| 1.1 1.1 1.0 0.9 1.1 1.0 1.1
17 | Izmir Istanbul 2020-12-19 60| 0.3 0.3 0.3 0.3 0.3 0.3 0.3
18 | Izmir Ankara 2020-12-21 55| 1.2 1.2 1.2 1.1 1.2 1.1 1.2
19 | Istanbul Antalya 2020-12-18 571 0.9 0.9 0.9 0.8 0.9 0.9 0.9
20 | Istanbul Ankara 2020-12-18 51| 0.6 0.6 0.6 0.6 0.6 0.6 0.6
21 | Istanbul Izmir 2020-12-17 63| 0.5 0.5 0.5 0.5 0.5 0.5 0.5
22 | Istanbul Antalya 2020-12-18 700 1.1 1.1 1.0 0.9 1.1 1.0 1.1
23 | Istanbul Adana 2020-12-18 721 1.7 1.7 1.7 1.5 1.8 1.6 1.8
24 | Istanbul Bodrum 2020-12-14 58] 1.1 1.1 1.1 1.0 1.1 1.0 1.1
25 | Istanbul Dalaman | 2020-12-20 54| 0.8 0.8 0.8 0.7 0.8 0.8 0.8
26 | Istanbul Trabzon 2020-12-18 80| 2.9 2.9 2.8 2.5 2.9 2.7 2.9
27 | Kahramanmaras | Ankara 2020-12-21| 48| 09| 0.9 09| 0.8 0.9 0.9 0.9
28 | Kars Ankara 2020-12-18 75| 2.8 2.8 2.7 2.5 2.9 2.6 2.9
29 | Kayseri Istanbul 2020-12-23 82| 1.6 1.6 1.5 1.4 1.6 1.5 1.6
30 | Amasya Istanbul 2020-12-25 69| 1.8 1.8 1.8 1.6 1.9 1.7 1.9
31 | Nevsehir Istanbul 2020-12-16 62| 1.3 1.3 1.3 1.2 1.3 1.2 1.3
32 | Samsun Ankara 2020-12-22| 54| 05| 05 05| 04 0.5 0.5 0.5
33 | Samsun Istanbul 2020-12-23 88| 1.3 1.3 1.2 1.1 1.3 1.2 1.3
34| Trabzon Ankara 2020-12-21| 58] 1.9] 1.9 19| 17 2.0 1.8 2.0
35| Trabzon Ankara 2020-12-22 701 1.7 1.7 1.6 1.5 1.7 1.6 1.7
36 | Trabzon Istanbul 2020-12-20| 100| 3.5 34 33 3.0 3.5 3.2 3.5

The view of effective dose rate values against latitude and depth

parameters is presented in Fig 1.
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Fig. 1. A) 3-dimensional view of effective dose rates depending on latitude and depth.

B) Projection of 3-dimensional surface

The results of two separate methods used to calculate the effective dose
are shown in Figure 2. Figure 3 shows the comparison of effective doses

calculated for maximum and minimum of solar cycles.
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Fig. 2. Comparison of the calculated effective
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Fig. 3. Comparison of effective doses calculated for maximum and minimum of solar cycles
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4. Conclusion

Cosmic radiation doses received on aboard an aircraft are higher than on
the ground level. Aircrew can receive an effective dose of several millisievert per
year as a result of their occupation. It is important for frequent flyers and flight
crew members to monitor the dose values they receive and adjust the flight
frequency accordingly in order to reduce the health risks that may occur. In this
present study, effective dose values from cosmic radiation were calculated with
CARI-7A and DNN. This study has proposed that machine learning method and
different algorithms could be used to evaluate cosmic radiation dose received
during a flight. The calculated dose values obtained by the CARI-7A program and
the models developed by the DNN were compared and seen that they were in
good agreement. As a result, DNN approach is a useful and powerful tool for
estimation of the effective dose values.
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Appendix 1
Percentage contribution of the dose from each particle to the total dose
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