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SHARP APPROXIMANTS FOR THE ERROR FUNCTION VIA COSINE
HYPERBOLIC POLYNOMIALS EXPANSION

Gabriel Bercu!, Citilina Nenitescu?, Alina-Mihaela Patriciu®

The aim of this paper is to provide new refinements for the error function using
cosine hyperbolic, respectively mized cosine polynomials expansion for even functions.
These approzimants are designed to be very accurate in large neighborhoods of the origin.

Then we use them in unidimensional heat flow theory.
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1. Introduction and Motivation

The error function er f is a special function. It is frequently used in probability theory
and statistical computations, mathematical physics, mathematical models in biology.
The error function is related to the function expression for a Gaussian distribution

and has the form
2
erf(z) = — /exp(—tg)dt.
T
v )

The error function may be looked up in the tables given in standard texts on statistics,
but it is convenient for computation to have it in analytical function form. Reviews of ap-
proximations of the error function have been given by Karlsson and Bjerle [9] or Abramowitz
and Stegun [1].

In the study of the error function two fundamental aspects are approached. The first
aspect refers to the establishment of some bounds for the error function. The second aspect
is to approximate the error function with different analytical functions.

Finding sharp bounds for the error function have attracted the attention of many

researches in the recent past. We refer to [1] - [15] and closely related references therein.

I Habil. Associate Professor, Dunirea de Jos University of Galati, 111 Domneascs Street, 800201 Galati,
Romania, e-mail: gabriel.bercu@ugal.ro

2 PhD Student, Doctoral School of Applied Sciences, National University of Science and Tech-
nology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania, e-mail:
catalina.nenitescu@stud.fsa.upb.ro

3 Lecturer, Dunirea de Jos University of Galati, 111 Domneasca Street, 800201 Galati, Romania, e-mail:

alina.patriciu@ugal.ro

125



126 Gabriel Bercu, Catalina Nenitescu, Alina-Mihaela Patriciu

Pélya [12] proved that the inequality

4 2
erf (z) < \/1 — exp (—33)
T
holds for all > 0.

Neuman’s inequalities assert that

& (f) < erf () <

2z exp(—22) + 2
VT 3
hold for all z > 0.
In order to approximate the error function with different analytical functions, Hastings

[6] suggested some expressions, of which the simplest are

erf () ~1— (a1t + ast® + ast®) exp(—2?),0 < z

where
1
t=———, a1 = 0.3480242, as = —0.0958798, a3z = 0.7478556, ay = 0.47047
1+ a4
and
erf(z) ~1— (1+az+ asz? + aza’® + a4m4)74 ,
where

a1 = 0.278393, as = 0.230389, a3 = 0.000972, a4 = 0.078108.

The absolute error ¢ () is shown to be less 2 x 107° and 5 x 10~%, respectively.

Norton [11] obtained the following approximation

0.8
222 + 1.2 (/2
1—exp<—x+ 2(:”[) >;0<x<2.7
erf (z) ~

-1+ fexp (—2?); o >27
T

with absolute error |e (z)| < 8.07 x 1073, for all z > 0.

In this work we deepen the study of the error function started in a previous article

[3].
The first idea is that the function exp (—xQ) is even, so it can be expanded as hyper-

bolic cosine polynomials
exp (—2*) =1—a—b+acoshz + beosh2z + ...,

and
exp (—x2) =1—a—b—c+acoshx + bcosh2x 4 ccosh3x + ... .

The second idea is to expand the function exp (—a?) as mized cosine polynomials
exp (—x2) =a+bcosx + ccoshx + dcos2x + ecosh 2z + fcos3x + gcosh3x + ... .

In the following we present our algorithm for the first expansion. We introduce the

function Fy (z) by
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Fy(x)=1—a—b+ acoshz + bcosh 2z.

The power series expansion of exp (—xz) — Fy (z) near 0 is

2% 1
2 (-5 -2 1)+t (—22—;+2>+O(x6)-

In order to increase the speed of the function Fj(x) approximating exp (75172), we

vanish the first coefficients as follows:

—%—%—1:0
fifzib+lfo
24 3 2
20 7
and we obtain a = -3 and b = 5
Therefore we have
13 20 7 47 347 97
2y - 2 4 Zeoshar — —cosh2r = —— 26 8 _ 10 4 9 (£12) .
exp (—2) = 5+ 5 cosha — Geosh 20 = —a® 4 9565 — iage O ()

Using the same algorithm, we find

211 2 4 4
exp (fxz) ~ 15 + ?9 coshx — 1—3 cosh 2z + 9—; cosh 3z = %xsf
79 . 77101 o
- 0
75600° T 39018800° T O ")
and
e (—x2) + @ — micosx — @coshx + @cos%ﬂ—i—
*P 36 100 20 40
37187 55 409 46469
h2 A 3 - h3 = 14
2600 COSMAT T 52 9089 T g COSOT = T org 17600
9500051 ¢ 362727023 g

_ 20
135501456000° 1333s27ssnas000” O )

2. Main Results

In this section we will prove our approximations of the error function using cosine

hyperbolic polynomials expansion for the function exp (—1‘2).

Theorem 2.1. The double inequality

211 2 4 4
) T — ?9 sinhz + % sinh 2z — —2770 sinh 3z < —\/ZEerf (x) < "
< 1—3x — @ sinh x + l sinh 2x
2 3 12

hold for all x > 0.
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Proof. For the right-hand side of inequality (1), we consider the function

1 2 7
f1:(0,00) = R, f1 () = ﬁerf (z) — —Bx + % sinh z — — sinh 2.
2 2 3 12
The function f; has the derivative
13 20 7
fi(z) = exp(—2?) — 5+ 5 coshz — G cosh 2.
We have to prove that fi (z) < 0 for all > 0 or, equivalently,
1 2
exp(—z?) < ?3 - 30 coshx + gcosh 2z, for all z > 0.
Since
2 —
? - ? coshz + %cosh2x = Teosh @ Q?S)COth + 16 >0

for all x > 0, we can log the above inequality and it remains to be shown that
13 20 7
—22 < log <2 -3 coshz + 5 cosh2x> ,

for all z € (0, 00).

The function

13 20 7
f2:(0,00) = R, fo (z) = —2* — log (2 iy coshzx + 5 cosh 2:r>
has the derivatives
40sinh x — 14 sinh 2z

= -2
—40 cosh x + 7 cosh 22 + 39 v

f3 (@)

and
@ —16sinh* (g) (98 cosh? z — 504 cosh z + 688)
2 (z) =

(=40 cosh 2 + 7 cosh 2z + 39)*

We notice that f2(2) < 0 for all > 0, hence f} is strictly decreasing on (0,00). As
15 (x) = 0, it follows that f5 < 0 on (0,00). Then f3 is strictly decreasing on (0, c0). Since
f2(0) = 0, finally we find fo < 0 on (0, 00).

For the proof of left-hand side of inequality (1), we introduce the function

211 29 43 47
f3:(0,00) = R, f5(z) = gerf (x) — 52 + 5 sinhz — %0 sinh 2z 4+ 770 sinh 3z.
The derivative of the function f3 is
211 2 4 4
f4 (x) = exp(—2?) — 5 + 59 coshz — 1—3 cosh 2z + 9—(7] cosh 3z.

We have to prove that fi (z) > 0 on (0,00) or, equivalently,

211 29 43 47

exp(—x?) > BB o cosha + 10 cosh 2z — 9 cosh 3z.
Since the only positive root of the function
211 29 43 47
fa(z) = STRANE) coshx + 0 cosh 2z — %0 cosh 3z

is x ~ 1.13381 and f4 () > 0 only on (0, 1.13381), it remains to prove that f§ > 0 only for
z € (0,1.13381).
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We find

29 43 47
352) () = =2z exp(—2?) + 5 sinhx — 5 sinh 2x + 30 sinh 3z,

2 4
353) (z) = (42% — 2) exp(—2?) + ?9 coshx — ? cosh 2z + 1—; cosh 3z,

29 172 141
354) (z) = (—8953 + 12z) exp(—2?) + 5 sinhz — =5 sinh 2z + 10 sinh 3z,
1
f§5) () = m exp(—2?)(160z* — 48022 + 145 exp(z?) cosh z —

—688 exp(x?) cosh 2 + 423 exp(z?) cosh 3z 4 120),

?EG) (x) = % exp(—x?)(—3202° + 16002 + 145 exp(z?) sinh z —
—1376 exp(z?) sinh 22 4 1269 exp(x?) sinh 3z — 12002)
and
f§7) () = %0 exp(—z?) (6402° — 4800z* 4 7200z* + 145 exp(z*) cosh z—

—2752 exp(2?) cosh 22 + 3807 exp(z?) cosh 3z — 1200)

= liO exp(—x2) [160x2 (4;54 — 3022 + 45) + 145 (exp(xz) cosh - — 1) n

+2752 exp(z?) (cosh 3z — cosh 2z) + 1055 (exp(2?) cosh 3z — 1)]
Since the equation
42" — 302> +45=0

has the roots

1/ 1/
=3 15 — 3v/5 ~ 1.4397739 and x5 = 3 15 4 3V/5 ~ 2.329603

4ot —302° +45>0
for 2 € (0, 1) = (0,1.4397739) > (0.1.13381) we obtain £\ > 0 on (0,1.13381). Hence f{*
is strictly increasing on (0,1.13381). As f?EG) (0) = 0, it follows that f?EG) > 0 on (0,1.13381).
Continuing the algorithm, finally we find f; > 0 on (0,1.13381).

and

The proof of Theorem 2.1 is complete. O

In the following we will prove that our bounds for the error function are more precise

than Neuman’s inequalities on large neighbourhoods of the origin.

Proposition 2.1. (i) The inequality

13 20 7

R 3 sinh z + 2 sinh 2z < g (exp(_xQ) + 2)
holds for every x € [0,1.08201].

(ii) The inequality

211 29 43 47 22
18 x B sinh x + 20 sSin €T 270 sinh 3z = T exp < 3 )
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holds for every x € [0, 1.22449].

Proof. (i) We introduce the function g : [0,00) — R,
13

2
g(z) = ?x — 30 sinh x + % sinh 2z — %(exp (—x2) + 2) '

In order to find all positive critical points, first we calculate ¢’ (x):
1 1
g (x) = 3 exp(—2?) (227 — 1) + 6 (—40 cosh  + 7 cosh 22 + 35) .

The positive roots of the derivative ¢’ are z = 0 and z ~ 0.908029.

Evaluate g (x) at the critical points:
g(0) = 0,9 (0.908029) = ~0.010647 and lim g (z) = oo,

The equation g (z) = 0 has the positive roots: z = 0 and = ~ 1.08201.
Summarizing the results, we obtain that g (z) <0 for all z € [0,1.08201].
(ii) We consider the function h : [0,00) = R,

21 29 43 47 x?

h(xz)= =~ ?sinhx + 20 sinh 2z — ﬁsinth - xexp(—g).

The first derivative of h is

2
, z 2 4 29 43 47 211
= ——) | z2*—1] — — cosh — cosh 2z — — cosh —.

b (x) = exp( 3 ) (33: ) 5 COS x + 1o Cosh 2z — o5 cos 3z + 13

The positive roots of the first derivative h’ are x = 0 and = ~ 1.049665.

Evaluate h (z) at the critical points:

h(0) =0,h(1.049665) = 0.019944 and lim h(x) = —occ.

T—00
The equation h (z) = 0 has the positive roots: z = 0 and z ~ 1.22449.
Finally, we find that h (z) > 0 for all z € [0,1.22449].
This completes the proof.

We also improve the Pdlya’s inequality as follows.

Proposition 2.2. The inequality

2 (13 20 7 422
ﬁ (2a: — Esinhx + 12sinh2x) < \/1 — exp (—j;)

holds for every x € [0,0.707118].

Proof. We define the function p : (0,00) — R,

4z? 4(13 20 7 ?
p(z) = exp (ﬂ_) 71+; <2z381nhx+1281nh2x) .

The first derivative of function p () is

, 8x 4z? (—39 + 40 cosh x — 7 cosh 2z) (78x — 80 sinh  + 7 sinh 2x)
p(z) = exp - or

and has the positive roots: ;1 = 0 and = = 0.583826.
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Since p’ (0.5) ~ —0.00610245 and p' (1) ~ 0.484477, it follows that p’ < 0 on
[0,0.583826] and p’ > 0 on (0.583826,00). Then p is strictly decreasing on [0, 0.583826]
and p is strictly increasing on (0.583826, co).

Evaluate p (x) at critical points:
p(0) =0, (0.583826) ~ —0.00168491 and lim p(z) = oo.
Tr—r00

The positive roots of the function p are: 1 = 0 and x5 ~ 0.707118.

Summarizing the results, we find that p (x) < 0 for all € [0,0.707118] and p (z) > 0
for all x € (0.707118, 00).

This completes the proof. O

3. Approximation to six decimals of precision for erf(z) on a large neigh-

bourhood of the origin

In the following we derive approximation to six decimals of precision for the function
erf (z) on a large neighbourhood of the origin. Using the mized cosine series of the function

exp (—x2), we find

14335 22461 4139
gerf (33) =+ TI‘ — W sinx — 20 blnh$+
1 4
+% sin 2z + % sinh 2z — % sin 3x — 270090 sinh 3z =
46469 . 9500951 4. 362727023 ., .
_ oY _ DO v 0 .
1101264000° T 7alorsaTsa000° ~ 2ssazrasznisdone” TO ()

Therefore, we consider the function € : (0,00) — R,

e(x) = erf(z)+ =l Mﬁx - %sinx - @sinhx—i— @sin%:—i—
N Vv \U 36 100 20 80
37187 55 9
+ 5200 sinh 22 — ﬁsini’)x ~ 2700 sinh3x> .
The derivative of ¢ (z) is
2 2 22461
e (z) = N exp(—x?) + 7= <_10g cosz + % cos 2z — 2—; cos 3z —
4139 coshz + ST187 cosh 2z — 409 cosh 3z + 14535 .
0 900 36

The roots of the function &’ (z) on the interval [0,00) are x = 0 and x ~ 0.5189134.
Then we partition the domain [0,00) into intervals with endpoints at the critical points:
[0,0.5189134] and [0.5189134, c0). Since &’ (0.5) > 0 and €’ (1) < 0, it follows that &’ > 0 on
[0,0.5189134] and ¢’ < 0 on [0.5189134, o). Then the function e () is strictly increasing on
[0,0.5189134] and is strictly decreasing on [0.5189134, c0).

Summarizing the results, we obtain that the function ¢ (z) has the maximum value
maxe (z) ~ 4 x 1072 at 2 ~ 0.5189134.
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We also have ¢ (0.992) ~ —9.91852 x 1076, £ (1.155) ~ —9.40334 x 107°, £ (1.355) ~
—9.8332 x 107%.

Therefore we find the following approximation to six, five and respectively four dec-
imals of precision for the error function erf (z) on large neighbourhoods of the origin:
(0,0.992), (0.1.155) and respectively (0,1.355): erf (z) ~ 0 (z), where

0(z) =

2 14335 +22461 . +4139 inh 83 . 9
36 1 oo SR 50 Sinhz — = sin 2z

2
—737187 sinh 2z + E sin 3z + 409 ( )
5200 156 227 T 9700

sinh 3m>

with the absolute error |e (z)| = |erf (z) — 6 (z)| < 9.91852 x 1076 on the interval (0,0.992),
le (x)| < 9.40334 x 1075 on the interval (0,1.155) and respectively |e (z)| < 9.8322 x 10~*
on the interval (0,1.355).

4. Application

As an example to apply the error function, one case is considered for the unidimen-
sional heat flow equation.

Consider the case of the nonstationary flux in an agriculture field due to the sun.
Suppose that the initial distribution of temperature on the field is given by T (z,0) = T,
and the superficial temperature T is constant [5].

Consider the origin be on the surface of the field such that the positive end for x axis
points inward the field. We can express T as a function of z and time ¢, T (z, t).

From heat flow theory, it is known that T (x,t) should satisfy the heat conduction
equation:

20T T
or?2  ot’
where a? = k, known as thermal diffusivity.
The initial conditions are T'(0,t) = T, and T (z,0) = 1.
Using the substitution V (u) = T (z,t), where u = u (z,t) = —£~, the heat conduction

2a+/t’
equation can be expressed as an ordinary single variable second - order differential equations:

d*v dV (u)
-9
du? Y

which has the solution
V (u) = Cy / exp (—p2) dp + Cs,
0

C; and Cy being integration constants.
Therefore, the temperature distribution T (x,t) can be express in terms of the error

function by

T (2,t) = Cy + Caerf (2;‘;/9 .
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Applying the initial conditions, finally we find

T
T(x,t)= (T —Ts)erf | ——= | + Ts.
(w.0) = (1~ Tyerf (572 ) 4.
Expressing T (z,t) in terms of our approximation for the error function, we obtain
the following approximate solution

T (x,t) ~ (Ty — T}) 0 (2;\/%) + T,

where 2;7\/% < 1.355.
The distance z is in meters, the temperature is in Kelvin, and time is measured in
seconds. The field temperature is Ty = 285° K, surface temperature is T, = 300° K, and the

thermal conductivity value is k = a? = 0.003m?/s.

5. Conclusions

In our work we expand the function exp (—xz) as hyperbolic cosine polynomials and
respectively as mized cosine polynomials in order to obtain sharp approximations for the
error function. Using the cosine hyperbolic polynomials expansion, we find the double
inequality (1). Our new bounds for the error function improve Neuman’s inequalities on
large neighborhoods of the origin. Using the mized cosine polynomials, we provide the
approximation (2) for the error function. Our approximation has simple expression with
acceptable deviation for engineering calculations. The approximate error function is used as

a solution for the unidimensional heat flow equation.
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