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HYPERBOLIC POLYNOMIALS EXPANSION
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The aim of this paper is to provide new refinements for the error function using

cosine hyperbolic, respectively mixed cosine polynomials expansion for even functions.

These approximants are designed to be very accurate in large neighborhoods of the origin.

Then we use them in unidimensional heat flow theory.
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1. Introduction and Motivation

The error function erf is a special function. It is frequently used in probability theory

and statistical computations, mathematical physics, mathematical models in biology.

The error function is related to the function expression for a Gaussian distribution

and has the form

erf (x) =
2√
π

x∫
0

exp(−t2)dt.

The error function may be looked up in the tables given in standard texts on statistics,

but it is convenient for computation to have it in analytical function form. Reviews of ap-

proximations of the error function have been given by Karlsson and Bjerle [9] or Abramowitz

and Stegun [1].

In the study of the error function two fundamental aspects are approached. The first

aspect refers to the establishment of some bounds for the error function. The second aspect

is to approximate the error function with different analytical functions.

Finding sharp bounds for the error function have attracted the attention of many

researches in the recent past. We refer to [1] - [15] and closely related references therein.
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Pólya [12] proved that the inequality

erf (x) <

√
1− exp

(
−4x2

π

)
holds for all x > 0.

Neuman’s inequalities assert that

2x√
π
· exp

(
−x2

3

)
≤ erf (x) ≤ 2x√

π
· exp(−x2) + 2

3

hold for all x > 0.

In order to approximate the error function with different analytical functions, Hastings

[6] suggested some expressions, of which the simplest are

erf (x) ≃ 1−
(
a1t+ a2t

2 + a3t
3
)
exp(−x2), 0 ≤ x

where

t =
1

1 + a4x
, a1 = 0.3480242, a2 = −0.0958798, a3 = 0.7478556, a4 = 0.47047

and

erf (x) ≃ 1−
(
1 + a1x+ a2x

2 + a3x
3 + a4x

4
)−4

,

where

a1 = 0.278393, a2 = 0.230389, a3 = 0.000972, a4 = 0.078108.

The absolute error ε (x) is shown to be less 2× 10−5 and 5× 10−4, respectively.

Norton [11] obtained the following approximation

erf (x) ≃


1− exp

(
−
2x2 + 1.2

(
x
√
2
)0.8

2

)
; 0 ≤ x ≤ 2.7

−1 +

√
2

π
exp

(
−x2

)
; x > 2.7

with absolute error |ε (x)| < 8.07× 10−3, for all x ≥ 0.

In this work we deepen the study of the error function started in a previous article

[3].

The first idea is that the function exp
(
−x2

)
is even, so it can be expanded as hyper-

bolic cosine polynomials

exp
(
−x2

)
= 1− a− b+ a coshx+ b cosh 2x+ ...,

and

exp
(
−x2

)
= 1− a− b− c+ a coshx+ b cosh 2x+ c cosh 3x+ ... .

The second idea is to expand the function exp
(
−x2

)
as mixed cosine polynomials

exp
(
−x2

)
= a+ b cosx+ c coshx+ d cos 2x+ e cosh 2x+ f cos 3x+ g cosh 3x+ ... .

In the following we present our algorithm for the first expansion. We introduce the

function F1 (x) by
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F1 (x) = 1− a− b+ a coshx+ b cosh 2x.

The power series expansion of exp
(
−x2

)
− F1 (x) near 0 is

x2
(
−a

2
− 2b− 1

)
+ x4

(
− a

24
− 2b

3
+

1

2

)
+ O

(
x6
)
.

In order to increase the speed of the function F1(x) approximating exp
(
−x2

)
, we

vanish the first coefficients as follows: −a

2
− 2b− 1 = 0

− a

24
− 2b

3
+

1

2
= 0

and we obtain a = −20

3
and b =

7

6
.

Therefore we have

exp
(
−x2

)
− 13

2
+

20

3
coshx− 7

6
cosh 2x = − 47

180
x6 +

347

10080
x8 − 97

11200
x10 + O

(
x12
)
.

Using the same algorithm, we find

exp
(
−x2

)
− 211

18
+

29

2
coshx− 43

10
cosh 2x+

47

90
cosh 3x =

67

672
x8−

− 79

75600
x10 +

77101

39916800
x12 + O

(
x14
)

and

exp
(
−x2

)
+

14335

36
− 22461

100
cosx− 4139

20
coshx+

783

40
cos 2x+

+
37187

2600
cosh 2x− 55

52
cos 3x− 409

900
cosh 3x = − 46469

279417600
x14+

+
9500951

435891456000
x16 − 362727023

133382785536000
x18 + O

(
x20
)
.

2. Main Results

In this section we will prove our approximations of the error function using cosine

hyperbolic polynomials expansion for the function exp
(
−x2

)
.

Theorem 2.1. The double inequality

211

18
x− 29

2
sinhx+

43

20
sinh 2x− 47

270
sinh 3x <

√
π

2
erf (x) <

<
13

2
x− 20

3
sinhx+

7

12
sinh 2x

(1)

hold for all x > 0.
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Proof. For the right-hand side of inequality (1), we consider the function

f1 : (0,∞) → R, f1 (x) =
√
π

2
erf (x)− 13

2
x+

20

3
sinhx− 7

12
sinh 2x.

The function f1 has the derivative

f ′
1 (x) = exp(−x2)− 13

2
+

20

3
coshx− 7

6
cosh 2x.

We have to prove that f ′
1 (x) < 0 for all x > 0 or, equivalently,

exp(−x2) <
13

2
− 20

3
coshx+

7

6
cosh 2x, for all x > 0.

Since

13

2
− 20

3
coshx+

7

6
cosh 2x =

7 cosh2 x− 20 coshx+ 16

3
> 0

for all x > 0, we can log the above inequality and it remains to be shown that

−x2 < log

(
13

2
− 20

3
coshx+

7

6
cosh 2x

)
,

for all x ∈ (0,∞).

The function

f2 : (0,∞) → R, f2 (x) = −x2 − log

(
13

2
− 20

3
coshx+

7

6
cosh 2x

)
has the derivatives

f ′
2 (x) =

40 sinhx− 14 sinh 2x

−40 coshx+ 7 cosh 2x+ 39
− 2x

and

f
(2)
2 (x) =

−16 sinh4
(x
2

) (
98 cosh2 x− 504 coshx+ 688

)
(−40 coshx+ 7 cosh 2x+ 39)

2 .

We notice that f
(2)
2 < 0 for all x > 0, hence f ′

2 is strictly decreasing on (0,∞). As

f ′
2 (x) = 0, it follows that f ′

2 < 0 on (0,∞). Then f2 is strictly decreasing on (0,∞). Since

f2 (0) = 0, finally we find f2 < 0 on (0,∞).

For the proof of left-hand side of inequality (1), we introduce the function

f3 : (0,∞) → R, f3 (x) =
√
π

2
erf (x)− 211

18
x+

29

2
sinhx− 43

20
sinh 2x+

47

270
sinh 3x.

The derivative of the function f3 is

f ′
3 (x) = exp(−x2)− 211

18
+

29

2
coshx− 43

10
cosh 2x+

47

90
cosh 3x.

We have to prove that f ′
3 (x) > 0 on (0,∞) or, equivalently,

exp(−x2) >
211

18
x− 29

2
coshx+

43

10
cosh 2x− 47

90
cosh 3x.

Since the only positive root of the function

f4 (x) =
211

18
x− 29

2
coshx+

43

10
cosh 2x− 47

90
cosh 3x

is x ≈ 1.13381 and f4 (x) > 0 only on (0, 1.13381), it remains to prove that f ′
3 > 0 only for

x ∈ (0, 1.13381).
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We find

f
(2)
3 (x) = −2x exp(−x2) +

29

2
sinhx− 43

5
sinh 2x+

47

30
sinh 3x,

f
(3)
3 (x) =

(
4x2 − 2

)
exp(−x2) +

29

2
coshx− 86

5
cosh 2x+

47

10
cosh 3x,

f
(4)
3 (x) =

(
−8x3 + 12x

)
exp(−x2) +

29

2
sinhx− 172

5
sinh 2x+

141

10
sinh 3x,

f
(5)
3 (x) =

1

10
exp(−x2)(160x4 − 480x2 + 145 exp(x2) coshx−

−688 exp(x2) cosh 2x+ 423 exp(x2) cosh 3x+ 120),

f
(6)
3 (x) =

1

10
exp(−x2)(−320x5 + 1600x3 + 145 exp(x2) sinhx−

−1376 exp(x2) sinh 2x+ 1269 exp(x2) sinh 3x− 1200x)

and

f
(7)
3 (x) =

1

10
exp(−x2)

(
640x6 − 4800x4 + 7200x2 + 145 exp(x2) coshx−

−2752 exp(x2) cosh 2x+ 3807 exp(x2) cosh 3x− 1200
)

=
1

10
exp(−x2)

[
160x2

(
4x4 − 30x2 + 45

)
+ 145

(
exp(x2) coshx− 1

)
+

+2752 exp(x2) (cosh 3x− cosh 2x) + 1055
(
exp(x2) cosh 3x− 1

)]
Since the equation

4x4 − 30x2 + 45 = 0

has the roots

x1 =
1

2

√
15− 3

√
5 ≈ 1.4397739 and x2 =

1

2

√
15 + 3

√
5 ≈ 2.329603

and

4x4 − 30x2 + 45 > 0

for x ∈ (0, x1) = (0, 1.4397739) ⊃ (0.1.13381) we obtain f
(7)
3 > 0 on (0, 1.13381). Hence f

(6)
3

is strictly increasing on (0, 1.13381). As f
(6)
3 (0) = 0, it follows that f

(6)
3 > 0 on (0, 1.13381).

Continuing the algorithm, finally we find f ′
3 > 0 on (0, 1.13381) .

The proof of Theorem 2.1 is complete. □

In the following we will prove that our bounds for the error function are more precise

than Neuman’s inequalities on large neighbourhoods of the origin.

Proposition 2.1. (i) The inequality

13

2
x− 20

3
sinhx+

7

12
sinh 2x ≤ x

3

(
exp(−x2) + 2

)
holds for every x ∈ [0, 1.08201].

(ii) The inequality

211

18
x− 29

2
sinhx+

43

20
sinh 2x− 47

270
sinh 3x ≥ x exp

(
−x2

3

)
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holds for every x ∈ [0, 1.22449].

Proof. (i) We introduce the function g : [0,∞) → R,

g (x) =
13

2
x− 20

3
sinhx+

7

12
sinh 2x− x

3
(exp

(
−x2) + 2

)
.

In order to find all positive critical points, first we calculate g′ (x):

g′ (x) =
1

3
exp(−x2)

(
2x2 − 1

)
+

1

6
(−40 coshx+ 7 cosh 2x+ 35) .

The positive roots of the derivative g′ are x = 0 and x ≈ 0.908029.

Evaluate g (x) at the critical points:

g (0) = 0, g (0.908029) = −0.010647 and lim
x→∞

g (x) = ∞.

The equation g (x) = 0 has the positive roots: x = 0 and x ≈ 1.08201.

Summarizing the results, we obtain that g (x) ≤ 0 for all x ∈ [0, 1.08201].

(ii) We consider the function h : [0,∞) → R,

h (x) =
211

18
x− 29

2
sinhx+

43

20
sinh 2x− 47

270
sinh 3x− x exp(−x2

3
).

The first derivative of h is

h′ (x) = exp(−x2

3
)

(
2

3
x2 − 1

)
− 29

2
coshx+

43

10
cosh 2x− 47

90
cosh 3x+

211

18
.

The positive roots of the first derivative h′ are x = 0 and x ≈ 1.049665.

Evaluate h (x) at the critical points:

h (0) = 0, h (1.049665) = 0.019944 and lim
x→∞

h (x) = −∞.

The equation h (x) = 0 has the positive roots: x = 0 and x ≈ 1.22449.

Finally, we find that h (x) ≥ 0 for all x ∈ [0, 1.22449].

This completes the proof. □

We also improve the Pólya’s inequality as follows.

Proposition 2.2. The inequality

2√
π

(
13

2
x− 20

3
sinhx+

7

12
sinh 2x

)
≤

√
1− exp

(
−4x2

π

)
holds for every x ∈ [0, 0.707118].

Proof. We define the function p : (0,∞) → R,

p (x) = exp

(
−4x2

π

)
− 1 +

4

π

(
13

2
x− 20

3
sinhx+

7

12
sinh 2x

)2

.

The first derivative of function p (x) is

p′ (x) = −8x

π
exp

(
−4x2

π

)
− (−39 + 40 coshx− 7 cosh 2x) (78x− 80 sinhx+ 7 sinh 2x)

9π

and has the positive roots: x1 = 0 and x ≈ 0.583826.
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Since p′ (0.5) ≈ −0.00610245 and p′ (1) ≈ 0.484477, it follows that p′ ≤ 0 on

[0, 0.583826] and p′ > 0 on (0.583826,∞). Then p is strictly decreasing on [0, 0.583826]

and p is strictly increasing on (0.583826,∞).

Evaluate p (x) at critical points:

p (0) = 0, p (0.583826) ≈ −0.00168491 and lim
x→∞

p (x) = ∞.

The positive roots of the function p are: x1 = 0 and x2 ≈ 0.707118.

Summarizing the results, we find that p (x) ≤ 0 for all x ∈ [0, 0.707118] and p (x) > 0

for all x ∈ (0.707118,∞).

This completes the proof. □

3. Approximation to six decimals of precision for erf(x) on a large neigh-

bourhood of the origin

In the following we derive approximation to six decimals of precision for the function

erf (x) on a large neighbourhood of the origin. Using the mixed cosine series of the function

exp
(
−x2

)
, we find

√
π

2
erf (x) +

14335

36
x− 22461

100
sinx− 4139

20
sinhx+

+
783

80
sin 2x+

37187

5200
sinh 2x− 55

156
sin 3x− 409

2700
sinh 3x =

− 46469

4191264000
x15 +

9500951

7410154752000
x17 − 362727023

2534272925184000
x19 + O

(
x21
)
.

Therefore, we consider the function ε : (0,∞) → R,

ε (x) = erf (x) +
2√
π

(
14335

36
x− 22461

100
sinx− 4139

20
sinhx+

783

80
sin 2x+

+
37187

5200
sinh 2x− 55

156
sin 3x− 409

2700
sinh 3x

)
.

The derivative of ε (x) is

ε′ (x) =
2√
π
exp(−x2) +

2√
π

(
−22461

100
cosx+

783

40
cos 2x− 55

52
cos 3x−

−4139

20
coshx+

37187

2600
cosh 2x− 409

900
cosh 3x+

14335

36

)
.

The roots of the function ε′ (x) on the interval [0,∞) are x = 0 and x ≈ 0.5189134.

Then we partition the domain [0,∞) into intervals with endpoints at the critical points:

[0, 0.5189134] and [0.5189134,∞). Since ε′ (0.5) > 0 and ε′ (1) < 0, it follows that ε′ > 0 on

[0, 0.5189134] and ε′ < 0 on [0.5189134,∞). Then the function ε (x) is strictly increasing on

[0, 0.5189134] and is strictly decreasing on [0.5189134,∞).

Summarizing the results, we obtain that the function ε (x) has the maximum value

max ε (x) ≈ 4× 10−9 at x ≈ 0.5189134.
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We also have ε (0.992) ≈ −9.91852× 10−6, ε (1.155) ≈ −9.40334× 10−5, ε (1.355) ≈
−9.8332× 10−4.

Therefore we find the following approximation to six, five and respectively four dec-

imals of precision for the error function erf (x) on large neighbourhoods of the origin:

(0, 0.992), (0.1.155) and respectively (0, 1.355): erf (x) ≈ θ (x), where

θ (x) =
2√
π

(
−14335

36
x+

22461

100
sinx+

4139

20
sinhx− 783

80
sin 2x−

−37187

5200
sinh 2x+

55

156
sin 3x+

409

2700
sinh 3x

) (2)

with the absolute error |ε (x)| = |erf (x)− θ (x)| ≤ 9.91852× 10−6 on the interval (0, 0.992),

|ε (x)| ≤ 9.40334 × 10−5 on the interval (0, 1.155) and respectively |ε (x)| ≤ 9.8322 × 10−4

on the interval (0, 1.355).

4. Application

As an example to apply the error function, one case is considered for the unidimen-

sional heat flow equation.

Consider the case of the nonstationary flux in an agriculture field due to the sun.

Suppose that the initial distribution of temperature on the field is given by T (x, 0) = Tf ,

and the superficial temperature Ts is constant [5].

Consider the origin be on the surface of the field such that the positive end for x axis

points inward the field. We can express T as a function of x and time t, T (x, t).

From heat flow theory, it is known that T (x, t) should satisfy the heat conduction

equation:

a2
∂2T

∂x2
=

∂T

∂t
,

where a2 = k, known as thermal diffusivity.

The initial conditions are T (0, t) = Ts and T (x, 0) = Tf .

Using the substitution V (u) = T (x, t), where u = u (x, t) = x
2a

√
t
, the heat conduction

equation can be expressed as an ordinary single variable second - order differential equations:

d2V

du2
= −2u

dV (u)

du
,

which has the solution

V (u) = C1

∫ u

0

exp
(
−ρ2

)
dρ+ C2,

C1 and C2 being integration constants.

Therefore, the temperature distribution T (x, t) can be express in terms of the error

function by

T (x, t) = C1 + C2erf

(
x

2a
√
t

)
.
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Applying the initial conditions, finally we find

T (x, t) = (Tf − Ts) erf

(
x

2a
√
t

)
+ Ts.

Expressing T (x, t) in terms of our approximation for the error function, we obtain

the following approximate solution

T (x, t) ≈ (Tf − Ts) θ

(
x

2a
√
t

)
+ Ts,

where x
2a

√
t
< 1.355.

The distance x is in meters, the temperature is in Kelvin, and time is measured in

seconds. The field temperature is Tf = 285◦K, surface temperature is Ts = 300◦K, and the

thermal conductivity value is k = a2 = 0.003m2/s.

5. Conclusions

In our work we expand the function exp
(
−x2

)
as hyperbolic cosine polynomials and

respectively as mixed cosine polynomials in order to obtain sharp approximations for the

error function. Using the cosine hyperbolic polynomials expansion, we find the double

inequality (1). Our new bounds for the error function improve Neuman’s inequalities on

large neighborhoods of the origin. Using the mixed cosine polynomials, we provide the

approximation (2) for the error function. Our approximation has simple expression with

acceptable deviation for engineering calculations. The approximate error function is used as

a solution for the unidimensional heat flow equation.

Acknowledgement. This research was financially supported by Dunărea de Jos University
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