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A DISCRETE ¢(p) ALGORITHM DESIGNED TO INCREASE

THE CONVERGENCE SPEED IN SOLVING TRANSPORT-
TYPE PROBLEMS

Marius Marinel STANESCU', Petre STAVREz, Dumitru BOLCU? ,
Sabin RIZESCU*, Marcela URSACHE’

In this article, we propose a discrete algorithm that can be used to solve
transport-type problems. The real improvement brought by applying this original
algorithm consists in obtaining a completely filtered and kind of optimal program,
Jfollowing a small number of steps, comparing with other existing algorithms. The
outcome will be that the computer memory and the implementation costs will be
reduced. The solution is based upon combinatorial methods, and it addresses a
certain  transport capacity X  that is bounded both above and
below (d <X< D) As a concrete example, we also present a (n, m) = (37 3)

numerical application corresponding to a situation of 3 suppliers and 3 of their
beneficiaries.
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1. Introduction

A transport-type problem of classical kind (see [1-2]) usually supposes
that the necessary transport capacities are satisfied, whatever the initial
transportation planning-program is (unlimited capacities). In fact, the most
comprehensive transport-related issues are those with pre-determined transport
capacities. The mathematical model is classical. Further, we add the inequalities:

dia S Xig S Sia > (1)
where x;, represents the transport capacity from the supplier F; to the

beneficiary B,, a = I,_m; i= I,_n ; this capacity cannot be less than d,, (because

the transport must be economically justified), and it cannot be greater than
S, (the maximum transport capacity).
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This is a bilateral kind of linear programming problem having both its
boundaries (the lower and the upper limits) precisely specified.

The inequalities (1) can be brought to the form:

0<u, <D,,u, =x,-d,,D, =8, —d,. (2)

Such a transport-type problem is usually solved out, either by using the
(D) algorithm (see [3]) or by adapting the Dantzig-Wolfe decomposition
algorithm for this case (see for instance [4]). Moreover, in some other kind of
programming models, d and S can be negative (but d < S and thus §—-d >0).

As a remark, if n is “big” then n-m is also “big” (and it becomes even
bigger when m is “big”, too). Even for values of n, m, conveniently chosen, the

ia

value of n-m might be too big to be registered in the computing memory. This
last case can be solved by keeping an (m, n) appropriate matrix in the memory of

the computing device.

Some examples where the Dantzig-Wolfe decomposition algorithm was
adapted for classical transport-type problems can be seen in [5] and [6]. Both of
them approach the case of two close indeed positioned cranes. These two cranes
have to work together by adapting sequences in order to stack freight containers in
a certain harbor. Those sequences require that each crane must not stop because of
any action of the other one and both of them have to work at their maximum
working capacity.

In [7], a decomposition procedure for solving a class of transport-type
problems with a linear fractional objective function is discussed. The technique
provides not only a solution for the primal problem, but also for the dual problem.

The work paper [8] presents an algorithm designed to minimize the necessary
amount of investing expenses designed to increase the working capacity of a
transportation network with many inputs and outputs (complex network). In [8], it is
also given an example of a transportation network for water or gas distribution.

All these papers contain algorithms that require performing a large number of
steps in order to obtain the completely filtered and optimal program. This fact requires
the achievement of some laborious calculus and also, a large computer memory.

In order to eliminate the inconveniences related to linear programming with
bounded variables, we have developed the following discrete algorithm. This new
algorithm can be applied to all classical transport-type problems (technical and/or
economical problems, like those arising from large domains such as constructions,
design and so on) that fit mathematically (in terms of modelling) to such class of
problems.

Classical algorithms used to solve the transport-type problems are based on
concepts like base programs filtering, inserting some compensation variables, and so on
(see for example [12]). All these elements are added to problem restrictions and lead to
a large number of unknown parameteres that require an increase in the computing
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memory and a higher time to solve the problem. The proposed algorithm has the
advantage of avoiding these difficulties.

2. The discrete algorithm

We start by pointing out that the proposed algorithm is a general type one.
It could be applied in any practical model related to whatever transport-type
problem is, with no limitations.

In what follows, we consider a transport-type problem having the
restrictions 0 < x;, < D;,. It is necessary to determine an initially %( completely

filtered program. This program can be directly obtained or we can obtain a basis
program of the system just with the restrictions X >0 and after that, if this
program is not filtered, we can filter it (see for instance [3]).

In the case we are considering, we adjust the method of minimal cost.
Thus, we will have:

a) We consider D, = ixia (i =1,_m) and N, = ixm (a =1,_n) When the
a=l1 i=1

transport cost, denoted by c,,, has to be minimal (compared to the other transport

costs), we shall allocate a merchandise quantity like this
Xia :min{Di’Na’Dia}' (3)
b) We modify D; and respectively N, and we return to a), with another ¢ and
the new D, N (c is the smallest among those remaining, without c¢;, of a).

Thus, we obtain a completely filtered program that can have at most
(m+n—1) positive components, but n-m—(m+n—1) components have the
form:

X b =0; (j,b)eKl(O) or Xy, :Dkd;(k, d)ngo). 4)
0 0

¢) We arrange (m +n— 1) as basic values, denoted by {xia }, (i, a) el (O); first,

0
among them, there will be extracted x;, < D;, and, next, we will choose the rest
0
of them up to (m+n—1) values, from x,. = D,,., in ascending values of costs
0

¢y - The other values x,; = D,; are considered secondary, (r,/)e K go). With this
0

completely filtered program X and with the established K 1(0), K 50)’ we may start
0

the algorithm.



126 M. M. Stanescu, P. Stavre, D. Bolcu, S. Rizescu, Marcela Ursache

Having at our disposal a non-degenerated base program, we want to obtain
an algorithm that, using a small number of "steps", leads us to a base program of
optimal kind (compared with the classical methods of solving the transport-type
problems). This fact is favorable, because the computer memory used in solving
such kind of problems is reduced.

Let f be the associated function of the transport-type problem. For a good
understanding, we shall define the algorithm that makes possible the passing from
the initial step to the next step.

0) We have X, fo, 10 = {(i, a) xig € )g} k), k)
0

1) a) We write Cl(o) = {Cia| (ia) € 1(0)}
(0) RN e
b) We calculate ¢; (izrzr)?[)%()){cm } ¢ jp and we write:

0

K- {( jd), (ib), d #b,i % j;x, =0, x, = o} c KO,
0

—(0
K(z):{(jd)’ (ib)d #b,i# jixy :Djdax(i)b =Dz’b}CK£O)-
0

¢) We write x j, = x;.’—b (o = +1) and we pass to the point 2).

1 0
2) a,) We calcul in | 120
a,) We calculate min_ ¢ g, Cip f=¢ (¢je or cpp).
(jd Yib)eK i
=(0
a,) We calculate max {cjd, c,-b}z ¢ (cjorcp).
(ja)ib)eK?

a,) We calculate min{g(o) —cl(o), —(Z(O) —cl(o)j} = V(O).

—(0 .
10 c( )_ cl(o), then we pass to the point (b, ).

o (390 :
ItV ¢ —c;’ |, then we pass to the point (b, ).
(0)

(b)) We write x = 0" instead of ¢' ’ in X and we pass to (c,).
1 0

=0
(b,) We write x=x—6 instead of ¢ ~ in X and we pass to (¢, ), where x is
1 0 0 0

the upper border D.
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(c¢,) We have (b,). We admit that E(O) =cj. and, thus, x ;. = 0" . We seek for
1

a cycle starting with 7 — x b =Xp (o =) so that we have
1 0

(1) Af0=2c+—20_ where ¢* are the values (c) of the cycle

corresponding to x* and ¢~ are the values (c) of the cycle corresponding to x~ .
0

(c;y) If Afy <0 then we may estimate:

2) r(o) = min{xia

0

included as x;, into the cycle} ;

3) RO = min{Dm _x,
0

(4) 0= min{DjC, #0), R(O)}

With & chosen in this way, we have obtained a new completely filtered
program X and f] = fy+Afg < fy. With X, we resume the algorithm
1 1

if x;, appears into the cycle as x7, };
0

(p =p+L;p= 0). We have removed c .

Remark 1. At this moment, in order to increase the convergence of the
algorithm (by reducing the number of steps to get the optimally completed filtered

program), we shall search all cycles that begin with 6" — xjp, also having
0
Afy <0 and we will choose the one where Af(; <0 has the smallest values.
(c,,) If there is not a cycle with Afy <0, then we make

Ego), Egg)ct = Ego) - {cjc } and we resume the algorithm to )0(, CI(O), Egglt , E(zo)

=(0) —(0
(c,) We have x=x-6. Let be ¢ = Cjcs (j,c)e K(2 ) We write
1 0
Xje =D —0 (because x ;. =D ;.)and wenote x ;. =D .
1 1 1
(c,,) We build the cycles that start with D — x}b (o = +) having Af; <0,

0
each of them. If these exist, we choose €, then through (4) we shall obtain a new
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program X with fj = fo+60Af) < fo. We remove ¢ and we resume the
1

algorithm.
(c,,) If a cycle with Afy <0 does not exist, then we bring up to date

Eg)), E(zoa)ct =E(20) - {cjc } With the new data )1(’ CI(O), fl(o)’ Egoa)ct , We resume
the algorithm.
3) If after the wupdates made at (c,)(c,,) Wwe obtain

—(0 —(0
K ©) =0, K ©) =®, then we bring Cl(o) up-to-date, or specifically:

lact...act 2act...act

0 Zc_{ )

lact — ~1

With the new brought-to-date X, C (0) the algorithm will be resumed.
0

lact’

Proposition If all values x;, € X are fixed, namely Cl(ggt aer =@, then
=1

STOP X is a completely filtered and optimal program (or for p >0, if
0

C(O) =@, then X is optimal).
0

lact...act

Proof. No matter what the case b,) or b,) is, the equality f] = f + Afy
must remain in place and if Afy <0, then f]<f,, meaning that

Zc+ - Zc_ <0.
In the case b,), a cycle starts with g+ _, X =x;-0 (0>0) and in
1 0
that cycle, we shall have a vertex fulfilling x,,— @ as well as x,,+6 (noted by
0 0

x~ and x* respectively).
0 0
For {xrs_e} we insert the condition x,,—6 >0 or x,; =6 , or being
0 0 0

def
even more specific: 6 < min{xm} =,
0

For { X5+ ,9} we insert the conditionx,;+6<D,, (V)(r, s) , and
0 0
def
0 < D, —x,s , namely: g < min{])m - xm} = g0,
0 0
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But 8=x je (or 8 = x,; ) so the conditions (2), (3), (4) are fulfilled.
1 1

—(0) —(0 —(0
If 6 =0, then we make Kg ),Kga)ct :Kg )—{cjc} and we resume the
algorithm.
We shall proceed in the same way as we did in the cases b,) and c,).
Because x ;. =D ;. —0, it results that x;, =x;,+6, and in the ongoing
1 1 0

cycle, we will only have the terms x,,—86, x,,+6. If we put the conditions:
0 0
Xje20,x,5-020,x;,+0 <D, x,+0<D,, then the relations (2), (3), (4)
1 0 0 0
will result again.

Jb>

3. Numerical Applications

Remark 2. In order to understand better how the algorithm steps are
checked, and not to load the paper with a large volume of calculus, we shall
consider a simple numerical application.

In addition, choosing a different number of suppliers and beneficiaries is
not relevant for transport-type problems. Anyway, our discrete algorithm presents
a general situation in which n and m can take any integer values.

To justify the choice of a "small" example as a numerical application and
somehow, to highlight a certain advantage of the proposed algorithm (small
number of variables and reduced working time) compared with classical
algorithms, we have to point out that the number of variables in the case we will
choose (for m =n=3) is actually equal to m-n, meaning 9 for our algorithm.
This is quite an improvement comparing to the classical case where, to this
number, the compensation variables m + n, meaning 6, are added, resulting in a
total number of 15 variables. If m and » increase, the number of variables in the
classical variant, increase almost exponentially (for example, if we consider the
parameters m =3 and n =5, for the proposed algorithm, we have to deal with 15
variables which is considerably better than for the classical situation where we
have to deal with 23 variables).

Problems of such kind might indeed be balanced or not. When the problem
is not balanced, it can always be solved as a balanced one by imaginary adding a
supplier or, depending on the case, a beneficiary, in order to take over the
remaining amount of ,,supply” that will never actually be ,,supplied” or ,,demand”
that, in fact, will never be ,,demanded”.

In the following table (T ), we give the data of a transport-type problem

(balanced), with the restrictions 0<x, <D, . We have considered the situation of



130 M. M. Stanescu, P. Stavre, D. Bolcu, S. Rizescu, Marcela Ursache

three suppliers F, and three beneficiaries B, (i,a = l,_3) Each and every cell of the

. . [ c . .
table contains the ratio ( ~ J , the numbers c,, meaning the unitary transport costs.

ia

B, B, B, Dispogable
B 2 3 4 15
3 13 1
T 7 4 7 9 10 =
10 2 10
By 4 8 1 20
9 15 12
Necessary 20 13 12 45
3 12
- —
= 10 gt Juf
T l fo=154
7 «— 1~ 12

Indeed, we have obtained a completely filtered program X , because there
0

are (m+n—1) components 0 < x;, < Dj,, and the other secondary values are 0
or D. We can write:

0 ¥, £, =154 1 ={(21),(12) (31, (62, (63} K" ={(13) (22} (23), &1 = (1)}

Obviously, we can organize K go) by any couple (ia) that satisfies the

equality: x;, = D;,. For (ia)=(21) and for (ia)=(33) as well, we will show
0
how the algorithm works:

1(0)) a) We write CI(O)(D) = {Cll = 2, Clo2 = 5, 31 = 4, C3p = 8, 33 = 1}

(0)

b) We choose C(l) =8 =cy,. Itresults that K, = {(22 , E(O) =0,
0 32 1 2

¢) We write x3, = x5, =17 (o = +1).

1 0
200y a,) We calculate mini(o){cw ,Ci) } =T=cpy.
(3a)i2)eki
a,) We calculate ~ max 0){C3a ,CiD } Because on the line 3 and column 2, a
(3a)(i2)el<§

—(0 .
secondary value beyond the upper border (K (2 ) = CD) does not exist, we choose:
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¢,) X35 =07, x3, =17 that generate a cycle, so we have:
1 1

Afy=6(71-8+4-4)=-1<0.
We calculate: (%) = min{l, 10} =1, RO - min{2, 7}=2 and §=min{2,1,2}=1.
A new completely filtered program X = results  with

f1=So +1-Afy =153, where:

3 [ 12
SR £ =153
!
8 12

With X', we resume the algorithm
1

o) X i, 10 ={21).61).02),22) 63 K= {03} 23) &) =)

2
(and here Kgl) can be K g) ={(33)}
1(1)) a) We write Cl(l) = {621 = 4, c31 = 4, Clp = 5, Cyy = 7, 33 = 1}
b) Cl(l) = ¢y =7. Itresults that E?) =1{(23)} Eg) = .
¢) We write xp, =x5, =17 (o ==£1)

2 1
20) a,) We calculate  min 1){02‘1 ,cin}=9=cys.
(2a)i2)ek1
a,) maxi(l){ch ,Ci }= ®.
(2a)i2)ek 2
It results that o = —; X9y =175 xp3 =607

2

Because &7 — 1~ does not accomplish a complete algorithm and on the
line of x,, =1, respectively on its column do not exist (c) secondary values

. . -1 -
different from cy3 =9, we may write: Kga)ct = Kg ) —{022}2 ®. Because

K ga)ct =0, K (2) = @, we bring up-to-date C 1(1), or being even more specifically:
1 1
Cl(a)ct = Cl( ) —{eanf=lei1 =4 c1p =5.c31 =4, ¢33 =1}

1 (alc)t

)Cl) )I(,C(l) .

lact>
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b el —socn =8V - &V - )

lact

¢) We write xj, =127 (o = +1),
2

2(1)) al) mini(l){cla,ciz}:4=cl3.

(1a)i2)ek1
a,) max {cla, CiZ}:Cll =2 (because (1 l)ef(zl)).
(1a)i2)ek

a,) minfd—5=—1,-(2-5)=3}=—1=c;3 —¢c;p =¥V, Westep to 5,).

b,) We write x;3 =0" = ¢|) x5 =127 (6 =)
2 2

But #" — 127 does not achieve a cycle with Af; <0. We will fix this.

(1) (1)

We bring up-to-date ES}U or, more specific: K =K,  —le31=0.
p lact.act lact 13

(1)

Because Ez ={(11)} has an element on the line of x;, =12, we may
continue:
10

D@ X Clll KL o =0 K = (00)

lact® ** lact.act

b) C(l) =5=cj,. We write x;, =127,

lact
2
— . .
2%‘) Because K ga)ct.act =® we may step right to a,) and it results that
1 = 2.
b,) We write xj; =x13 =373 xjp = x, =127,
2 1 2 1
We have formed a cycle:
3= 7zt
T 1

A =85-2+4-7I=0.
ot & 4
We calculate:
min3,1}=1=U; minf13-9,13-12}=1= RY; g =minjpy, =3.,0), RO |=1.
It results a new completely filtered program )2( with f> = f; =153.
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2 13
X 10

g 12

and we resume the algorithm. (We have considered cj, as fixed, because

0 = xp5 =1). We have eliminated ¢ j, =¢j;.
We have X, 1(2), Kl(z) # O, ng) = @, because only (m -n- 1) =5 basic
2
values do exist ( X is already a filtered base program).

We resume the algorithm and we immediately obtain that

C 2) =® STOP, X is kind of optimal and identical with X, because
2 1

lact.act.act

J1 =712 = fmin =153.

R

Fig. 1. The optimal allocation graphs X, X .
1 2

4. Conclusions
In X,(FB,),(F3B;) are saturated (at maximum capacity) and in X,
1 2

(FBy), (F,B;), (F3B;) are saturated (at maximum capacity). From an
economical point of view (see for instance [9-16]) we will choose the path
allocation that fits the best, considering the spreading of transport capacities.

More else, resuming a linear convex connection between X and X, we
1 2

can find more other optimal allocations (diversifying the optimal allocations). We
will retain the only value that does fit with different more other requests
(spreading of capacities).
24+a 13-a O
X=aX+(1-a)X={10-a a 0| aclo1]
: 2 8 0 12

If we want only integer-numbers solutions, the only optimal programs will

be X and X .
1 2
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Remark 3. If after X is obtained, we take into account that
2

c3=9,c13=4 will be eliminated, then it will directly result that

C 1(22 tactact = P » s0 any other step will be simply unnecessary to be done.
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