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EMPIRICAL ANALYSIS OF IEEE754, FIXED-POINT AND
POSIT IN LOW PRECISION MACHINE LEARNING

S, tefan-Dan Cioĉırlan, Teodor-Andrei Neacs,u, Răzvan-Victor Rughinis,3

Deep neural networks have changed the current algorithms’ results
in applications such as object classification, image segmentation or nat-
ural language processing. To increase their accuracy, they became more
complex and more costly in terms of storage, computation time and en-
ergy consumption. This paper attacks the problem of storage and presents
the advantages of using different number representations as fixed-point and
posit numbers for deep neural network inference. The deep neural networks
were trained using the proposed framework Low Precision Machine Learn-
ing (LPML) with 32-bit IEEE754. The storage was first optimized by the
usage of knowledge distillation and then by modifying layer by layer the
number representation together with the precision. The first significant re-
sults were made by modifying the number representation of the network but
keeping the same precision per layer. For a 2-layer network (2LayerNet)
using 16-bit Posit, the accuracy is 93.45%, close to 93.47%, the accuracy
for using 32-bit IEEE754. Using the 8-bit Posit decreases the accuracy by
1.29%, but at the same time, it reduces the storage space by 75%. The
usage of fixed point representation showed a small tolerance in the number
of bits used for the fractional part. Using a 4-4 bit fixed point (4 bits for
the integer part and 4 bits for the fractional part) reduces the storage used
by 75% but decreases accuracy as low as 67.21%. When at least 8 bits are
used for the fractional part, the results are similar to the 32-bit IEEE754.
To increase accuracy before reducing precision, knowledge distillation was
used. A ResNet18 network gained an 0.87% increase in accuracy by using
a ResNet34 as a professor. By changing the number representation sys-
tem and precision per layer, the storage was reduced by 43.47%, and the
accuracy decreased by 0.26%. In conclusion, with the usage of knowledge
distillation and change of number representation and precision per layer,
the Resnet18 network had 66.75% smaller storage space than the ResNet34
professor network by losing only 1.38% in accuracy.

Keywords: Number representation systems, IEEE754, Machine Learning,
Knowledge Distillation, Posit

1. Introduction

Artificial intelligence is identified as the solution to problems for which
classical algorithmic produce primitive results. The subfield of artificial intel-
ligence that has aroused major interest from the perspective of both research
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and industry is represented by deep learning [6]. The core of this type of arti-
ficial intelligence is represented by deep neural networks. As the difficulty of
solving problems using neural networks increases, they have become progres-
sively more complex from an architectural point of view. This complexity in
deep neural networks translates into the number of layers used in their archi-
tecture. If the number of layers increases, by default, the number of neural
network parameters increases, which leads to an increase in the memory re-
quired for their storage. In addition, the running of such deep models must
be performed on systems with high computational power. This paper aims
to solve the problem of memory and running time of deep neural networks.
The approach to solving this problem involves changing the classical numerical
representation used by deep neural networks (32-bit IEEE754), applying the
methods of knowledge distillation on complex neural networks and using a vari-
able precision for each layer. We propose a framework (LPML-Low Precision
Machine Learning Framework) for machine learning that can handle IEEE754
and other number representation systems such as Fixed-Point and Posit. In
terms of precision, the framework can use 8-bit, 16-bit, and 32-bit Posit and
Fixed-Point [13] with any bit configuration for the integer and fractional part.
The experiment will be performed on two deep neural network architectures:
a fully connected neural network and a ResNet18 [5] network. Training these
networks using variable precision for each layer is an idea already tested in [8].
The resulting neural network architecture (including the precision obtained for
each layer) will be used to create a new model that will be driven by a neural
network teacher using the methods of knowledge distillation. In the end, we
will get a reduced neural network from the perspective of the memory used,
and its accuracy will be minimally degraded. The ideas tested from [8] and
[9] will be combined to improve the solution. The improvement brought is
that the architecture used for the knowledge distillation will contain a student
with variable precision for each layer (in the article the student used a uniform
precision). In addition, deep neural networks will use Fixed-Point and Posit
number representation systems to represent data, gradients, and weights. The
solution to this problem is divided into three stages: building a machine learn-
ing framework that allows using Fixed-Point and Posit, training the neural
networks obtained using knowledge distillation and determining the optimal
accuracy for each layer.

2. Background

Deep neural networks are the best solution when it comes to computer
vision. These neural networks produce impressive results in classifying, seg-
menting and detecting objects. In recent years, these neural networks, in ad-
dition to increasing the number of layers, may contain parallel layer structures
such as the inception type in the article [14]. With this increasing complexity,
systems need more and more computing power and storage memory.
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The best-known number representation system in deep neural networks
is the 32-bit IEEE754 floating-point. For constrained systems (embedded sys-
tems, systems used in IoT) in terms of memory and processing power, the
use of the IEEE754 number representation system can lead to a significant
increase in response time and costs. This impediment leads to the use of less
complex neural networks (built using a small number of layers) to maintain a
short response time. To solve this problem, a major interest has been directed
towards the use of the fixed-point number representation system because the
computational effort is significantly reduced and the hardware implementa-
tion is simpler. Another number representation system whose computational
effort is similar to IEEE754 but has a better dynamic range and produces a
better accuracy is posit. The posit number representation system introduced
by John L. Gustafson and Isaac Yonemoto [4] has produced superior results
to the IEEE754 floating-point in the field of deep neural networks, but the
hardware support for it is still under development [2].

Reducing memory and increasing the inference speed in neural networks
has been a topic of interest for researchers in both cloud computing and em-
bedded systems. Thus, numerous articles have been written in this field. Next
it will be presented the ideas in the articles that provide important results for
the problem and represent the starting points for a solution.

In the article [10] it is presented the benefits of the quantization operation
in deep neural networks for low-power embedded systems. This operation is
performed on a trained neural network that uses 32-bit IEEE754 floating-point
and involves optimum conversion to 8-bit or 16-bit integers of the weights so
that accuracy is not significantly impaired. In general, the weights of the deep
neural networks have a zero-centered weight distribution similar to a Gauss
distribution, and the quantization operation maintains this property. The
authors of this article have developed the MicroAI framework which, com-
pared to the existing frameworks for embedded systems: MicroLM, emlearn,
microTVM, offers quantization operation, easy modification of architectures
that uses convolution operations and the possibility of launching on a larger
family of embedded systems. The article [12] presents the trade-offs between
the complexity of deep neural networks and the resulting accuracy. The mem-
ory used by deep neural networks can be reduced either by training directly
using a low precision of the parameters or by using the quantization operation
presented in the previous article. The number representation used by neural
networks in this article is fixed-point and the main idea is to use mathematical
analysis to determine the boundaries between fixed-point numbers in order
to reduce the noise produced by quantization operations. It details the rela-
tionship between the cost of representing the parameters and the accuracy of
the network: deep neural networks may be reduced in terms of the precision
of the parameters, but after a certain precision, the accuracy will deteriorate
significantly.
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The previous articles had as a solution for the reduction of memory in
deep neural networks the use of fixed-point representation of parameters. An-
other solution is addressed in the article [1] where the parameters will use the
posit number representation system proposed in [4]. The posit is a new type
of number representation that seeks to solve the shortcomings of IEEE 754
floating-point standard. The most impressive advantages of posit would be:
they can represent a wider range using fewer bits, they produce superior arith-
metic accuracy, they do not produce overflow, underflow or NaN type error
and the hardware for the implementation of posit computers are less complex.
The article [1] uses the posit number representation system to represent data,
gradients, and weights in deep neural networks. The detailed comparison be-
tween IEEE754 floating-point, fixed-point and posit is based on the elements
EMAC (Exact Multiply and Accumulated) because in neural networks each
neuron performs a function that gathers the weights multiplied by the in-
put. For the 3 types of number representation system the same deep neural
network architecture is used but the EMACs will be different for each type.
The results show that the posit produces important results for deep neural
networks with low precision (less than 8 bits) compared to those produced
using IEEE754 floating-point and fixed-point. In terms of energy consumed,
posit and floating-point are much more expensive compared to fixed-point but
fixed-point performance is the lowest.

The article [8] raises the issue of reducing the precision of parameters in
layer-level neural networks. This article shows that each layer has a different
tolerance for changing the precision of the parameters depending on their posi-
tion in the neural network architecture. The result of this article shows that the
choice of a certain precision for each layer produces a superior result in terms
of accuracy compared to deep neural networks that use a constant precision
for all layers. These results were obtained using already trained deep neural
networks and the weights of these networks use the 32-bit IEEE754. Memory
reduction using such an approach will be achieved by finding the minimum
precision required for each layer. In order to obtain the above specifications,
the precision of each layer of the deep neural network will be modified in turn.
The concept of knowledge transfer has been detailed in the article [3] and is
based on a teacher-student architecture: the teacher will be a deep neural net-
work already trained and the student is represented by a model with another
architecture that will ”take over” knowledge from the teacher. An important
benefit of this learning technique is that the learning process for the student
neural network will take place in a significantly short time. The idea behind
this article is that if we have a trained model but want to build another model
with a different architecture, the new model can transfer knowledge from the
trained one without the need for training from scratch. This teacher-student
architecture was used in the ImageNet competition where less complex neural
networks were teachers for the student deep neural network. In the article [9]
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teacher-student architecture is used to transfer knowledge from a deep neural
network to a low-layer network so the student neural network will be reduced.
The teacher neural network will have a 32-bit IEEE754 number representation
system and the student neural network will also use IEEE754 but the preci-
sion will be decreased uniformly. The article proposes three methods to distil
knowledge between teacher and student:
(1) The teacher and the student are trained simultaneously: for each example

of training, the result of the teacher network being taken into account
when training the student.

(2) The teacher is already trained and the student is the neural network that
will be trained which implies that the backward propagation will be car-
ried out only on the student network.

(3) This method is similar to the previous one, except that the student neural
network will initially have an accuracy of 32 bits and this will be reduced
until the desired result is reached.

Compared to deep neural network training with low precision, the use of the
methods outlined above can significantly improve accuracy. The disadvantages
of this approach would be the use of an additional deep neural network and
the computational cost that will be increased because forward propagation
will also be performed by the teacher network (if method 1 is used it will be
necessary to propagate back to the teacher network as well).

3. Framework Architecture

3.1. Datasets

The input data sets for LPML are MNIST and CIFAR10 were chosen.
MNIST is a data set that contains handwritten images, which means that the
number of classes is 10. Images use a single colour channel (grayscale) and are
28 × 28 × 1. The MNIST data set is divided into 60000 images representing
the training set and 10000 images to be used for testing. CIFAR10 is a set
of images that contain various objects or animals. The number of possible
classes is 10 and these are airplanes, cars, birds, cats, deer, dogs, frogs, horses,
boats and trucks. The images use 3 colour channels (RGB) and their size is
32× 32× 3. The CIFAR10 data set is divided into 50000 images for training
and 10000 images that will be used for testing.

3.2. LPML Framework

Low-Precision Machine Learning (LPML) is a framework which offers the
possibility of using three number representation systems (IEEE754, Posit and
Fixed-Point) to produce deep neural networks. The networks can be trained
classic or using the process of knowledge distillation. After training, LPML
can optimise the precision for every layer with the option of using a different
number representation system than the one used for training. To obtain these
functionalities LPML implemented the components presented in Figure ??:
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Figure 1. Architecture of LPML framework

non-weighted layers, weighted layers, activation functions, loss functions, op-
timizers, weight initialisation and conversion functions. The conversion func-
tions are necessary for layer precision optimisation, while the other components
are used for classical training and knowledge distillation training under uni-
form precision. With time the palette of options inside the components might
increase to adapt to a higher number of deep neural network models, but for
current analysis and scope, they are sufficient. The LPML framework uses
the SoftPosit Python package for Posit and the fixedpoint Python package
for Fixed-Point. The data, weights and gradients are stored as NumPy arrays.
This has the advantage of adding future number representation systems as Ob-
ject types but has the disadvantage of running single-threaded on CPU. The
API for creating deep neural networks is similar to the PyTorch framework [11]
(LPML copies the architecture of PyTorch). TensorFlow and PyTorch models
can be converted to LPML framework easily. For the functions where the pow-
er/exponential or the logarithm operations are needed Posit and Fixed-Point
are converted to IEEE754 the operation is done on IEEE754 and the result is
converted back.

The classic training process of LPML is presented in Figure ??. The
input is shown in black, representing the data set, the desired deep neural
network model and the number representation system used. The data set is
divided into training samples (red) and test samples (blue). LPML use the
training samples to produce a trained model which uses the specified number
representation system. The model will go through benchmarks which evaluate
the storage size, accuracy, training time, and inference time. The resulting
model has a uniform precision.
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Figure 2. Training and evaluation using LPML (Low Precision
Machine Learning).
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Figure 3. Training and evaluation using knowledge distillation

Knowledge distillation [7] is a technique used for training small deep
neural networks with the help of larger networks. The LPML approach for
knowledge distillation is presented in Figure ??. The data set is similarly
parted into train samples (red) and test samples (blue). The knowledge distil-
lation process takes as input the train samples together with the desired deep
neural network family (eg. Resnet) and attributes for the teacher and the
student networks (number of layers, layer types, NRS). The teacher network
is considered the larger network from which the smaller network (student)
learns. The benchmarks applied to the resulting networks offer details about
their storage size, training time, inference time, and accuracy. The interest-
ing aspect of knowledge distillation training is that the accuracy of the small
model is higher than if it was trained classically. There are multiple ways of
using knowledge distillation, but for the experiments and evaluations proposed
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Figure 5. LPML Precision optimization architecture

the one where the teacher and student are training in the same was chosen.
The method is presented in Figure ??. The next loss function is used:

L(x;WT ,WA) = αH(y, pT ) + βH(y, pA) + γH(zT , pA) (1)

The values for the hyper-parameters are α = 1, β = 0.5, γ = 0.5. Knowl-
edge distillation can be integrated with precision optimisation so the student
network will use a uniform lower precision NRS. Given the results from [9] a
more simple and modular process was chosen where knowledge distillation and
precision optimisation are different stages of the pipeline.

LPML’s precision optimisation reduces the storage size of deep neural
networks by using different number representation systems with configurable
precision. It can change the data, the weights, and the gradients of a network
independently for every layer. The palette of number representation systems
is formed out of: single-precision IEEE754, 8 bits Posit with exponent size 0
(es = 0), 16 bits Posit with es = 1, 32 bits Posit with es = 2 and configurable
Fixed-Point. The process of layer precision optimisation is presented in Figure
??. The test samples are taken out of the data set. The LPML receives the
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Figure 6. LPML pipeline architecture

trained model and the desired number representation system to be used for
layer precision optimisation. The framework produces a network converted
to the highest precision of the NRS. The layer index is initialised with the
index of the second layer (the first and the last layer are kept at the highest
precision possible) and current precision with the highest precision possible.
The accuracy of the model is computed using the test samples. If the accuracy
degradation (initial model accuracy minus current model accuracy) is lower
than the accuracy threshold the precision decrease, the layer keeps its value
and a new model is generated. Otherwise, the precision increase to the previous
value for the current layer, the previous model is regenerated, then the layer
index is increased and the precision resets to the highest possible value. This
process runs until it arrives at the last layer, and then the resulting model
passes through benchmarks for accuracy, storage size, and inference time.

Figure ?? presents the pipeline for knowledge distillation training and
layer precision optimisation. The data set is divided into train samples (red)
and test samples (blue). The Train sample is used together with the parameters
for deep neural network family, teacher attributes and student attributes to
produce the student model. The student network goes through the process
of layer precision optimisation. The benchmarks use the resulting model for
computing the storage size, accuracy and inference time.

4. Results

For the first LPML evaluation, the MNIST data set is used for train-
ing a neural network formed out of two fully connected layers followed by a
logSoftmax layer. The learning rate of 0.01, the batch size of 64, and the
number of epochs 3 were used for training. The time results for forward and
backward propagation are presented in Table ??. The total time for Posit and
Fixed-Point was estimated. The software overhead is too high for doing feasi-
ble training using other number representation systems than IEEE754. From
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Table 1. Forward and Backward Propagation Time

Number
Representation
system

Precision Forward
Propagation
(one)

Forward
Propagation
(total)

Backward
Propagation
(one)

Backward
Propagation
(total)

IEEE754 32 0.0006s 13.1s 0.0006s 12.6s
Posit 8 43.2s 33.75h 74.5s 58.20h
Posit 16 42.6s 29.25h 73.9s 57.73h
Fixed-Point 4-4 455s 355h 878s 685h
Fixed-Point 8-8 460s 359h 899s 702h

Table 2. Accuracy and memory reduction for different number
representation systems on simple network

Number representation system Precision Accuracy ∆ Acc Memory reduction
IEEE754(8,23) 32 93.47% +0.00% 0%

Posit(8,0) 8 92.18% -1.29% 75%
Posit(16,1) 16 93.45% -0.02% 50%
Posit(32,2) 32 93.62% +0.15% 0%

Fixed-Point(4,4) 8 67.21% -26.26% 75%
Fixed-Point(4,8) 12 93.28% -0.19% 62.5%
Fixed-Point(8,8) 16 93.42% -0.05% 50%

this point on Posit and Fixed-Point were used only for inference and precision
optimisation. A consistent improvement of the software version of Posit or
Fixed-Point or a hardware implementation can reopen the subject of training.
The LPML framework is ready for this and can be used.

The IEEE754 resulting network has an accuracy of 93.47%. Uniform
precision conversion was used for the fully connected layers and the results
are presented in Table ??. The Fixed-Point number representation system
can show the boundaries of neural networks. The decrease to 4 bits for the
fraction part produces an accuracy degradation of 26.26%, incomparable with
the decrease of the integer part to 4 bits (0.19% accuracy degradation). In the
tests going to 2 bits for integer parts degrades the accuracy below 50%. This
validates that Fixed-Point is more sensitive to fraction size than integer size in
neural networks. Posit has better results than Fixed-Point even on this small
network with the same precision. The interesting result is that Posit(32,2)
increases the accuracy of the network by 0.15%. Posit(16,1) reduce the memory
used for the fully connected layers by 50% with an accuracy degradation as
small as 0.02%. Posit(8,0) offer a solution for a high reduction of memory
(75%) with a cost on accuracy of 1.29%. Given the bad performance of Fixed-
Point for LPML even on a small network, but also in the next experiments
their result was omitted. The next LPML experiments present the usage of
Posit and IEEE754.
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Table 3. Accuracy for ResNet18 on different training methods

Method Layer Precision Accuracy Memory reduction
Classic 32-32-32-32-32-32-32-32-32-32 94.11% 0%
KD 32-32-32-32-32-32-32-32-32-32 94.98% 0%

KD+PO 32-32-32-16-16-16-16-8-8-32 93.85% 43.47%

To test LPML knowledge distillation training and layer precision opti-
misation the CIFAR-10 data set, the ADAM optimizer, the learning rate of
0.005 and the accuracy threshold of 2% were used. The deep neural network
family is Resnet, Resnet34 is the teacher network and Resnet18 is the student
network. The increase of accuracy for knowledge distillation training versus
classic training is validated in Table ?? with a value of 0.87%. The usage of
layer precision optimisation on the knowledge distillation trained model has
an accuracy degradation of 0.26% compared to the classic training a reduc-
tion of memory for fully connected layers and convolutional layers of 43.47%.
Resnet34 has an accuracy of 95.23% classic trained. The Resnet18 trained
with knowledge distillation and layer precision optimisation reduces the stor-
age size for fully connected layers and convolutional layers with 66.75% for a
degradation in accuracy of 1.38%. The Resnet18 trained with knowledge dis-
tillation without layer precision optimisation reduces the storage for the same
layers by 41.19% with degradation in accuracy as small as 0.25%. The usage of
knowledge distillation and layer precision optimisation can reduce the storage
space of a deep neural network by half with a degradation close to 1%.

5. Conclusion

LPML framework offers a way of training deep neural networks with Posit
and Fixed-Point. Given the current software and hardware implementations,
this type of training is inefficient regarding computation time. Posit is five
times, and Fixed-Point is six times orders of magnitude slower. Fixed-Point
might be used for inference and storage on energy-constraint devices. The
results on small networks show an accuracy degradation of 0.19% for a storage
size reduction of 62.5% for fully connected layers. Posit offers a better trade-off
for accuracy. On a small network with two fully connected layers followed by
one LogSoftmax layer, 16-bit Posit (es = 1) reduces the fully connected size
by 50% with a loss in accuracy of 0.02%.

For the deep neural networks, the LPML knowledge distillation training
combined with layer precision optimisation reduces the size of a Resnet34
network by 66.75% with a loss of 1.38% in accuracy or without layer precision
optimisation, a size reduction of 41.19% with a loss of only 0.25%.

The accuracy increase for knowledge distillation training was validated by
0.87% on a Resnet18 trained with a Resnet34 versus a classic trained Resnet18.
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The use of layer precision optimisation reduces the size of fully connected and
convolutional layers by 43.47% with a loss of 1.13%.
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