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FAST NUMERICAL SOLVING USING A SINGLE CELL OF A FIRST
ORDER PARTIAL DIFFERENTIAL EQUATION WITH A NONLINEAR
SOURCE TERM

Maty BLUMENFELD?

The numerical integration of Partial Differential Equations (PDE) is based
on the idea - accepted unanimously - that this can be done by dividing the
integration domain into a great number of elements. This approach can insure the
obtaining of results having a good level of accuracy, which improves when the
number of elements increases. This paper explores an opposite idea: solve a PDE
with a satisfactory level of accuracy, using a SINGLE CELL equal to the whole
quite large domain of integration.

In the author’s book [1] dedicated to numerical integration of PDEs, the obtaining
the solution is based on the use of complete polynomial functions with increasing
degrees (39,5M,71) called CONCORDANT FUNCTIONS (CF). The consequence of
increasing the degree of CF is a reduction of the number of elements necessary to
obtain a chosen level of accuracy. In this paper the author presents a method —
based on [1] - which allows obtaining a numerical solution for PDEs including a
NONLINEAR source term, using a SINGLE CELL (element). The method leads,
when the solution is smooth, to results with a good precision obtained in a very
short time. When the solution shows discontinuities, the procedure based on a
“single-cell” is not always entirely successful.

1. Introduction

The numerical integration of Partial Differential Equations (PDE) is based
on the idea - accepted unanimously - that this can be done by dividing the
integration domain (supposed here rectangular) into a great number of elements.
This approach can insure the obtaining of results having a good level of accuracy,
which improves when the number of elements increases.

The time necessary to find a solution with a reasonable accuracy is —
usually - not an impediment, especially for the linear PDEs. Instead, for the
nonlinear PDEs this can be a hindrance, especially for the problems where
duration for the solving constitutes a priority.

The author of this paper has published in 2015 a book [1] dedicated to this
topic, which can be free downloaded from the site blumenfeld.ro. Taking
advantage of this, in order to simplify the exposure, this article makes several
references to the book [1]. Among other topics, in [1] has been developed a
special approach meant to improve the accuracy: the obtaining of the numeric
solution based on the use of complete polynomial functions with increasing
degrees called CONCORDANT FUNCTIONS (CF). The integration of some two-
dimensional PDEs has been performed using a 3" degree CF with 10 terms, a 5™
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degree CF with 21 terms or a 7" degree CF with 36 terms. The consequence of
increasing the degree of CF was a reduction of the number of elements necessary
to obtain a chosen level of accuracy. Because — as it was shown in [1] - to increase
the degree of CF is not a difficult problem, it may be raised the question: “is it not
possible to find - for a given PDE - a CF that can lead to the result having a
reasonable precision, using a single cel/”? The present paper tries to find the
answer to this question for a PDE with a NONLINEAR source term, whose
nonlinearity is due to a term depending on the unknown function. Obviously, this
approach is the opposite to that stated above in the first paragraph (“the idea -
accepted unanimously - that the numeric integration has to be performed by
dividing the domain into great number of elements”).

2. A brief description of what the method can do
To incite interest of the reader, let us consider a straightforward first order
PDE

%, N -
M(PDE)—M8X+Nay+P¢+QF(¢)+W(x,y) 0 (1.1)

including the constant coefficients M,N,P,Q, a nonlinear source term F[¢(x, y)]
and a known polynomial W(X,y). Let consider the particular case
264’(6’;’ y)+2a¢g(y’ y)—3¢(x, Y)+ (00 y)f —4-7x-9y—4x2-10xy+7y*=0 (1.2)
This PDE must be integrated on a quite large two-dimensional square domain
[(B=2)x(H=2)], with the following boundary conditions
-along x axis (y=0) : Y(x)=¢(x,y=0)=2-0.3x
-along y axis (x=0) : Q(y)=¢(x=0,y)=2-04y

The numerical integration was performed twice:
1. With a mesh 40 x 40 = 1600 elements?, leading to a Target Value
b, (x=2,y =2)=4.21481 and a graph given in Fig.1.1.
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Fig.1.1 Solution using 1600 elements Fig.1.2 Solution using 1 cell

2 Using the method developed in [1]
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2. Using a single cell and a Concordant Function obtained by binding a six degree
CF and a seven degree CF. This procedure leads to z;(x =2,y =2)=4.21503 and

a graph given in Fig.1.2. The “single-cell” has been divided - this time only for
the graphic representation purpose - in (20 x 20) elements.

The two graphs are quite similar (obviously not identical). Nevertheless,
the difference between two target values given above is very small. Supposing
¢; as the reference value, the relative error of the single-cell computation is

—¢; 421503 -4.21481
o 4.21481

This example is a choice made by the author leading to good results, meant
to draw the reader to this unusual approach. As it will result later on, for other
cases the error is much greater.

In fact, the important difference is between the times spent for obtaining
the two solutions. Supposing that To is the time necessary to solve the non-
linearity of a cell, the total time used to obtain zr with the “single-cell” method is
approximately (5...6)To. Using the same method developed in [1] with 1600
elements, the duration will be for this case around 1600To. The relationship
between the two durations, though largely approximate, is nevertheless
conclusive.

On the other hand - in some particular cases - finding the target values
with the single-cell method raises special developments that are described below.
In these cases the procedure is not always entirely successful.

Relativeerror = a =4.83x107° , therefore -0.00483 %.

3. The Concordant Functions and the Target Residual

Although the reader is supposed to download [1], it is useful to highlight
two concepts that are mostly used below.

a. The Concordant Function , noted CF, is a complete polynomial of a
given degree. For instance a third degree CF is given by
CF3=CF310 =C, + C,x+C,y +C,x* +Coxy + C,y* +C,x° + Cx’y + Coxy* +Cy°  (3.1)

It was noted either as CF3 - according to the third degree - or CF310 -
including the number of terms. The function CF3 can be written as the product
between two matrices

¢=CF3=CF310 =[X Y@ ]*[cz], (3.2)
where [X‘O)Y(O’]:[l Xy xXxy vy X2 xPy xy? y3] (3.3
[CZ]3=[C1 C, G, C, G C C; Gy C Clo]T (3.4)

Using this notation, the derivatives of [¢] can be written as
[0/ ax]= o[ X @Y @ ]<[cz]ls ax =[o[x @Y @1 ax[*[cz] = [x @Y @ [*[cz] (3.5)
[0/ 8y]=a[x @Y @ <[cz]lr oy =[o[x ¥ @1y [<[cz] =[x Y @ ]*[cz] (3.6)
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where [XOY©@]=a[XOY@]/ax=[0 10 2xy 0 3x 2xy y> 0] (3.7)

[XOY®]=g[xOv©@ljay=[0 01 0x2y 0x®2xy 3y?] (3.8)
Besides CF3=CF310 here are also used: CF4=CF415 (four degree — 15 terms),
CF5=CF521 (five degree — 21 terms), CF6=CF628 ( six degree — 28 terms),
CF7=CF735 (seven degree — 36 terms).

b. The Target Residual, noted also Rest . As George W. Collins I, wrote
in his book [8]: “A numerical solution to a differential equation is of little use if
there is no estimate of its accuracy. However, ... the formal estimate of the
truncation error is often more difficult than finding the solution”.

The method developed in [1] avoids the “difficult” estimation of the error
by controlling the accuracy of the computation using the RESIDUAL, which is
the difference between a result obtained by computation and the theoretical
result. In fact, the control is performed at the end of the computation taking the
form of the Target Residual, which results by replacing the three Target
unknowns in the PDE

= X 8_(1) X @ X X
Res; =M (axl““ (ayl”) (@) +QxF[0) +W(x,yr)  (39)

If, incidentally, the Target unknowns are the exact solutions, the Target
Residual is null. Otherwise, the value of the Residual is different from zero, being
a sure indication of the global accuracy, namely of the error due to all three
Target unknowns.

4. The “two steps” procedure
The hypothesis on which is based the numerical integration developed in
[1] is: ,,the solution z=¢ is a CF having a certain degree”. Because this ,,certain

degree” is not known at the start, the computation will begin with the numerical
integration using all five CFs mentioned above, called ,,STEP 1”. This integration
has the role to furnish an initial cluster of information, on which is based the main
computation ( ,,STEP 27).
4.1. Step 1: Preliminary Computation with 5 different CFs

Suppose the PDE
25(1)(;; y)+28¢((;;’ y)+8(1>(x, y)+6(0(x,y)f* -4-7x-9y-4x*-10xy+7y*=0 (4.1)
that must be integrated on a large two-dimensional square domain [(B=2)x(H=2)],
with the boundary conditions
-along x axis (y=0) : Y(x)=¢(x,y=0)=2-0.3x 4.2)
-along y axis (x=0) : Q(y)=d(x=0,y)=2-04y (4.3
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The PDE includes a nonlinear source term (¢(x,y))* depending on the
unknown function ¢(x, y)~z(x,y). Instead of dividing the domain in small

elements, the integration will be performed using a single cell having the
dimensions (2x2). The method described in [1] is based on the the use of a
Concordant Function having a degree selected by the user. Here, the first step of
the computation is based on five CFs with increasing degrees (3,4,5,6 and 7). The
methodology described in [1] remains generally the same, with two minor
modifications concerning the input boundary conditions data and the way to
choose the equations for obtaining the Target unknows corresponding to the five
CFs. Not to distract the reader from the main aspects of the calculation, these two
issues will be dealt with in the Appendix B.

The five computations with the different CFs performed for (4.1) using
one cell, lead to the results given in the rows 1...5 from the Table 1. They include
three main parameters connected to the Target point T (noted using z=¢): the

function z, and the two first derivatives (6z/dx), and (6z/dy), . Besides them, in
the last column is given the Target Residual, computed with rel. (3.9).

Table 1
Target Function Target Target Target
z, Derivative | Derivative | Residual
Row cF Valie | Errorvs | (@2/0x) | (ezldy), Resr

CF3or CF310 | 2.15841 | -36.1 1.96623 | -0.0592413 | -25.30

CF4 or CF415 | 259722 | -231 2.03892 | 0.0456926 | -16.22

CF5or CF521 | 2.98673 | -11.6 2.01215 | 0.0705908 | -8.180

CF6 or CF628 | 3.08211 | -8.75 1.98461 | 0.0677592 | -6.228

CF7or CF735 | 3.79999 | 125 1.87473 | 0.0622218 | 9.164
Values corresponding to the computation with 25x25=625 elements

6 | CF3 or CF310 | 3.37800 | - | 1.93617 | 0.0674984 | 0.01334

The similar results obtained with CF3 by dividing the same domain in
25%25 = 625 elements, are given in the last row of Table 1. The reference value
of the Target Function thus resulted is

¢T(625e|ements) = 337800 (44)

obtained with a Target Residual=0.01334; this can be considered as a satisfactory
result.

g |w(N| -

The values of z; obtained using the five CFs, given in the third column of
the Table 3.1, are represented in the Fig.3.1. Their values — connected by straight
lines - are measured in the ordinate of the graph, while the abscissas noted
3,4,5,6,7 are supposed to identify the five CFs. On the same graph is represented
the reference value (4.4). As it results from Fig.3.1, the line between CF6 and CF7
intersects the value (4.4), therefore a satisfactory value of ¢, can be found in this
interval. But “where ?”, is not yet clear. An answer to this question may be
obtained using the Target Residual.
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Fig.3.1 Target value (different CFs) Fig.3.2 Target Residual (different CFs)

The values of the Target Residual given in the last column of Table 3.1 —
obtained straightforwardly while performing the five CFs computations - are
represented in Fig.3.2, following a similar procedure as that used for Fig.3.1.
These values are rather distant and show that the results of the five calculations
are quite inaccurate. It may be, nevertheless, observed that in the interval between
CF6 and CF7, a line connecting their two values intersects Target Residual=0.
The fact that in the same interval where is expected a good value for ¢, , the

target residual changes the sign (from Res6= -6.228 for CF6 to Res7= 9.164 for
CF7) is not accidental. This fact indicates the possibility to obtain - with a single
cell - a credible value of the Target function for a PDE with a nonlinear term. But
the path is still uncertain and not yet usable. However, it opens a way towards the
Step 2, which is the second procedure meant to solve the problem.

4.2. Step 2: Improving the solution by binding two different CFs

Let consider in Fig.3.3 two CFs, between which the Target Residual
changes the sign. The two Target Residuals will be noted® as Ry (index L for Left)
and Rr (index R for Right). Though the interval between two CFs has no physical
meaning, two CFs will be represented using a fictitious abscissa notedn, that is

considered as variable between n, =0 and n, =1
0<n<1 (4.5)
Between these extreme two values, we assume that the Target Residual

varies continuously, following an unknown path, therefore somewhere within the
range 0<n<1 the path goes through Rest=0. Because there is no information

concerning the supposed trail, we accept the rough hypothesis that the residual
varies linearly withn , according to

Res(n)=Res, +(Res; —Res )n (4.6)

3 Asin Fig.3.2, between CF6 (Rest=-6.228 ) and CF7 (Rest=9.164 )
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Res,

The Target Residual becomes null for My=—""—"— 4.7
Res, —Res,
Using the values given in Table 3.1 it results
Mo = -6.228 / (-6.228-9.164) = 0.4046 (4.8)

The Target Residual is given by (3.9), ¢ being replaced by z. In the same
time the target values are replaced using (2.2), (2.5), (2.6), while for the nonlinear
source term (F(¢)), is used rel. (5.3.2), page 63 from [1]

[Res], =M [X®Y @] [cz]+ N [x @y @] [cz]+ P[x @y @] [cz]+

+Q[X Y O [CFT+W (x; v, )
Accepting that L corresponds here to CF6 and R to CF7, it results the
following Residuals that can be computed after the Step 1 is done

[Res]. ., =[ M[xoy@] sN[xOy®] +p[xOy©]] [cz6]+
Y -I(Degree6) (410)

(4.9)

QX OY O] e [CFE]+W (x;, v )

[Res]: nign =[ M[xoyo@] in[x@y®] p[xOy©@] ] | [cz7]+
' I (Degree7) (411)

+ Q [X (O)Y © ]T,(Degree7) [CF 7]+W (XT ’ yT )

Accepting that all the parameters involved vary also linearly, it results — based
on relations similar to (4.6) - the following target values that correspond to n,

(2)ro =2, +(z5 =2 )M, (4.12)
B335 @19
ERERCC) -
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Replacing in these relations the values given in the rows (4) an (5) of
Table 3.1 it results
2,,=3.08211+ (4.79999-3.08211) x 0.4046=3.372564248 (4.12,a)

(09 x),, =1.98461 + (1.87473 -1.98461) x 0.4046 =1.94016 (4.13,3)
(6/0y),, =0.0677592 +(0.062221 —0.067759 ) x 0.4046 = 0.06551876 7 (4.14,a)

If these values are compared to those obtained with 25x25=625 elements
(see Table 3.1), it results the errors:
(2,0 —¢: )/ ¢ =(4.372598-3.378)/3.378 = -1.6x10°® namely 0.16 %

((ez10x), — (201 &x); )1(691 x), =(1.93617-1.94016)/1.94016=-2x 10" namely 0.2 %
((0z12y),, (@07 0y); )09/ o), =(0.06749-0.065518)/0.065518=3x10" namely 0.3%

These errors are surprising, taking into account the ratio between the
numbers of elements used in each computation. According to (3.9), the Target
Residual that corresponds to n,is

Rest=2x1.94016 + 2x0.0655187 + 8x3.37256424+ 6x(4.372564248)* +Wr= 0.1

The actual Target Residual is not zero, as it was supposed above. This
means that the linearity hypothesis (4.6) is not strictly confirmed, but,
nevertheless, the value of the Target Residual is satisfactory and the value of zt is
surprisingly good.

Remark. In fact choosing L and R as neighbor CFs is not compulsory. If L
and R are chosen better, this could probable improve the result by reducing the
errors. This is a detail that was not developed by the author, in order not to divert
the reader's attention from the main subject of the article.

**k*k

Actually, the procedure used above for the Step 2 can be greatly
simplified. After calculating m,from relation (4.7), we observe that all the
computations that follow can be based on a new Concordant Function, which may
be obtained by binding the two [Cz] (L and R) corresponding to the interval
considered (see (3.2)). The binding can also be made linearly, according to a
relation similar to (4.6), where n is replaced by n,

[Cz]élgr:ge}d = [CZ]L + [[CZ]R - [CZ]L]no (4.15)

Using [Cz]binded all the target parameters can be computed straightforwardly
according to (3.2), (3.5), (3.6)
2 =[x OY O] [ealieks (0010x), =[x Y O} ezl (@01 ay ) =[x OY O] [czl,

More than that, an overall drawing of the variation of the function z(x,y)
may by obtained dividing the domain in a convenient number of nodes. This
allows now to compare this “single-cell” solution (Fig 3.4) with (Fig 3.5) where is
drawn the “many-elements” solution (if the last graph is available).
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Fig.3.4 Solution with a single cell Fig.3.5 Solution with 25x25 elements

Using [Cz]5/) it becomes also possible to have a global look of the

variation of the residual, which can be obtained with the same meshing. In the
Fig.3.6 it is given a graph of the residual, viewed from the Target. As it results in
the area near the Target (x>1.5, y>1.5) the variation is close to a plane
corresponding to Res(x,y) = 0. This is to be expected, because the main ecuations
for obtaining the unknowns were connected to the Target. Far from the Target, the
variation of the residual it's getting further from zero.
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Fig.3.6 Residual (View from Target) Fig.3.7. Target Residual (different CFs)

Example 1. The PDE

od(x, y) ., ad(x,y) -
2 ~ +2 y +10 (x, y)+5cos d(x, y) (416

—45+3.7x+4.6y+38x*+1.2xy+4.5y*=0
must be integrated on a large two-dimensional square domain [(B=1.6)x(H=1.6)],
with the boundary conditions
-along x axis (y=0) : P(X)=d(x,y=0)=4+3x-3x* (4.17)
-along y axis (x=0) : Q(Y)=d(x=0,y)=4+2y-2Y? (4.18)
Solution. Step 1. After the five compulsory integrations with 1 cell, the resulted
Target Residuals values are represented in the Fig.3.7. If the five values of the
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Residuals are linked with straight lines, it results that Res=0 cuts 4 times these

lines, therefore the Step 2 procedure has to be applied to all four intervals.
Table 2

Values for (B=1.6;H=1.6) obtained with 1 element by binding two CFs
CF Mo Target Target Target Target
Function 7 Deriv. (62/8X)T Deriv. (62/6y)T Residual
[C ]{3/4 0.625 1.56208 -1.72877 -1.96522 0.876
Zlhinded
[C ]{4/5 0.603 1.69062 -2.12030 -2.47606 -0.284
Zlhinded
[C ]{5/6 0.767 1.66641 -1.94212 -2.44678 0.00899
Zlhinded
[C ]{6/7 0.255 1.77423 -2.04693 -2.621678 -0.00506
Zlhinded
Values corresponding to the computation with 20x10=200 elements
CF3 | | 176680 | -2.13544 | -2.51652 | -0.00968

Step 2.1f the procedure developed for the Step 2 is applied, one obtains the results
given in Table 2. From the 4 solutions found as possible analyzing Fig 3.7, it may
be retained the solution that corresponds to the minimum absolute value of the
Target Residual, which is 0.00506 obtained from the row of [cz]8/} .. In the same

row is given the Target value which is zr=1.77423. If this value is compared to
¢; =1.76655, it results that the error of this fast computation is
Error zr= (1.77423-1.76665)/1.76665= 4.29x10° which means 0.429 %.
An overview of the whole solution results by representing the graph
obtained using the [cz]¢7., (Fig. 3.8) and the graph corresponding to the 200

binded
{6/7}

elements mesh (Fig.3.9). The coefficients of [Cz]binded can be found in Appendix
A, therefore the reader can easily verify himself the similarity of the two graphs.

Fig.3.8 Solution with a single cell Fig.3.9 Solution with 25x25 elements

Example 2. The PDE

ad) ad) 2 2 3 2 2 3
2—=4+3—=L450+2In(p+1)-2-3x—y—-4xX" =-3xy-2y - X" —2X°y—4xy- -2
x oy ¢ (0+1) y y—-2y y y y (4.19)

—2xt =3y — xR —Axy® -3yt = 2x° — Xty —4xPyP —6xPyR - 2xyt — ¥
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has to be integrated on a two-dimensional rectangular domain [(B=1)x(H=1.2)],
with the boundary conditions
-along x axis (y=0) : Y(X)=d(X,y=0)=2+3x-3x° (4.20)
-along y axis (x=0) : Q(Y)=0(x=0,y)=2—-4y+4y? (4.21)
Solution. Step 1. After the five initial integrations with 1 cell, one obtains the
values given in Table 3, from which it results that the neighbor CFs change the
sign twice, between CF3 / CF4 and CF5 / CF®6.
Step 2. The procedure developed for the Step 2 is applied, nevertheless, to all 4
intervals leading to the results given in Table 3. From them are retained those that
correspond to the minimum value of the Target Residual, namely [czJ¥/¢),. In the
last row of the same table are also given the results obtained using 24x16=384
elements. If the Target values are compared it results that the error of this fast
computation is

Error zr= (8.30651-8.33245)/ 8.33245= -3.11x10° which means 0.311 %.
Remark. It was established above that two tests are enough, namely
N, =0.699 and n, =0.508 . Using the procedure for Step 2 also for the other two

cases allow observing that, although n, does not respect the limits (4.5), the
values resulting from the binding procedure are pretty good. Actually, here
[Cz]i'5!, gives the best results for zr, though it does not respect (4.5). This fact
was observed also in other cases; therefore all four tests were usually used.

Table 3
Values for (B=0.8;H=1.6) obtained with 1 element by binding two CFs
CF Mo Target Target Target Target
Function z | Deriv. (6z1ox), | Deriv. (6z/dy), | Residual
[C ]{3/4 0.699 8.16188 10.5220 17.0487 2.89x10?
Zhyinded
[C ]{4/5 1.147 8.32708 11.1676 16.3206 2.49%10°
Zhinded
[CZ]{S/G 0.508 8.30651 11.1718 16.3545 2.13x10*
binded
[CZ]{6/7 -6.982 8.74934 10.4174 16.0878 1.20x10%®
binded
Values corresponding to the computation with 24x16=384 elements
cF3 | * | 833245 | 11.2485 | 16.2685 | 00312

Remark. It was established above that two tests are enough, namely
N, =0.699 and n, =0.508 . Using the procedure for Step 2 also for the other two
cases allow observing that, although n, does not respect the limits (4.5), the
values resulting from the binding procedure are pretty good. Actually, here
[Cz]i!5!, gives the best results for zr, though it does not respect (4.5). This fact
was observed also in other cases; therefore all four tests were usually used.



250 Maty Blumenfeld

S
SRR
R
IR
THutk
>
>

O

SRS
SROSS

RRuie e et s et

RRERECE TSRS SISO W SR

RS OSES TSSOSO S N R
AN “:::‘::‘ = \\\\\\\%\w&‘t&
ANNNASSY

Fig.3.10 Solution with a single cell Fig.3.11 Solution with 24x16 elements

An overview of the whole solution results by comparing the graph
obtained using the [czJ5¢l , (Fig. 3.10) and the graph corresponding to the 384

elements mesh (Fig.3.11). The coefficients of [cz]56} , can be found in Appendix A,
therefore the reader can easily verify himself the similarity of the two graphs. In
Fig.3.12 is represented the general variation of the residual. From it follows that
away from the target the variation is influenced by the initial conditions, while

near the target it approaches the plane corresponding to Res (x, y) = 0.

T

vl [x

Fig.3.12 Residual (View from Target)

5. Perturbations and their consequences

5.1 Unexpected appearance of a perturbation

The quite similar drawings from Figs. 1.1 and 1.2 is an impulse to try to increase
the integration range. If the integration range increases to B = H = 10, the “two-
steps” final results obtained using one cell are given in first 4 rows of Table 4.
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Table 4
Values for (B=10;H=10) obtained with 1 element by binding two CFs
CF Mo Target Target Target Target
Function z | Deriv. (62/6X)T Deriv. (62/8y)T Residual
[C ]{3/4 1.066 9.62529 0.68019 -0.11285 0.00743
Zlhinded
[Cz]é‘l./s ’ 0.714 | 9.62529 0.68026 -0.12738 -0.00613
Inde
lc ]{5/6 0.233 9.62433 0.68059 -0.12799 -0.254
Zlhinded
[C ]{6/7 -0.160 9.64339 0.67455 -0.11797 4.98
Zlhinded
Values corresponding to the computation with 80x80=6400 elements
CF3 | * | 962524 | 068026 | -0.11273 | -0.00613

Taking into account the absolute value of the Target residual, the results

corresponding to [Cz]\’5! | are considered the best. The variation of the function

z(x,y) with a single cell is given in Fig.5.1. Because the dimensions of the domain
are so great, it is necessary to verify the results with the ordinary procedure,
namely to use a mesh. The results obtained with 80x80=6400 elements are also
given in the last row of Table 4. Comparing these values to those corresponding to

[Cz]'! . it results a surprisingly matching. The error of the Target value is*
Error z1=(9.62529-9.62524)/ 9.62524=5.19x10° namely 5.19x10* %.

Fig.5.1 Solution with a single cell ~ Fig.5.2 Solution with 80x80 elements

The graph of z(x,y) obtained with 6400 elements represented in Fig.5.2
constitutes an unpleasant surprise: except the Target values, which — as it was
seen above - coincide, there are great differences between this graph and that
given in Fig.5.1. The most important is the perturbation (discontinuity) that
appears in the North-West quasi-triangular area of Fig.5.2 (x<5,y>2.5), which is
totally ignored in Fig.5.1.

4 The very good results obtained for B=H =10 (and also beyond this value) can be explained by the
fact that the nonlinear term enters Step 1 in the range of the degrees testing (3,4,5,6,7) used for
the Concordant function .
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3.2 Finding the existence of a perturbation

A large part of Chapter 3 from [1] was dedicated to the “perturbations” in
the graph of the function, of its derivatives or of the residuals, produced by “the
boundary conditions imposed by the user on a (possible) “calm and gentle”
solution”. The perturbations can be produced also by other causes, such as
unexpected discontinuities of the function or its derivatives. As a result of the
presence of the perturbations, an increase of the target errors was observed. These
errors were eliminated in [1] by removing the perturbations from the target area,
which can be achieved by modifying the ratio between the numbers of
elements used along the x-axis, respectively y.

It is obvious that this procedure - which requires many elements - can not
be used if the calculation is done with a single cell. Instead, becomes compulsory
to inform the user about this circumstance and of its consequences.

The aim of this paragraph is to find a fast methodology to detect the
existence of a perturbation. In the above example the perturbation was observed
only after solving the PDE with 6400 elements (Fig.5.2), because the perturbation
was totally ignored by the "single-cell method" (Fig.5.1). This omission can be
easily explained analyzing the information that is furnished to the “single cell”
procedure and the conditions imposed by the system of equations:

1. The information furnished as input represent the boundary conditions,
namely the values of the function - imposed by the user - along the axes x and y
that remain unmodified till the end of the computation. The perturbation near the
axis y appears in Fig.5.2 (when y>2.5) as a sudden discontinuity of the function,
without any other outside intervention.

2. The system of equations imposes a lot of conditions (See Appendix B),
but they are all connected to the target point. Consequently, the target results fit
with those obtained using a large number of elements, but the “binded CF” can
not ensure a rigorous representation of the z (x, y) path in the areas away from the
target.

The method analyzed here tries to find a single binded CF to describe a
complicated phenomenon that develops on a quite large domain. In some cases
the graphic agreement between “single-cell ” and “many-elements” solutions may
be possible as it happened in the examples examined until now®; in other cases,
when some perturbations appear far from the Target, one may obtain reliable
results only on a limited part of the domain or not at all.

5 See Figs.3.4 and 3.5 or Figs.3.8 and 3.9
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Table 5
Values for (B=4.30;H=4.30) obtained with 1 element by binding two CFs
CF Mo Target Target Target Target Maximum
Function z., Deriv. (62/6X)T Deriv. (62/8y)T Residual Reiﬁlecitlal
[C ]{3/4 1.937 6.03032 0.78865 -0.08751 0.373 114.56
Zlhinded
[C ]{4/5 0.346 6.02277 0.79931 -0.07716 -0.385 119.82
Zlhinded
[CZ]{SIG 0.7418 6.02401 0.79867 -0.07723 -0.254 111.58
binded
[CZ]{6/7 -0.243 6.03015 0.79472 -0.07680 0.388 111.13
binded
Table 6
Values for (B=4.29;H=4.29) obtained with 1 element by binding two CFs
CF Mo Target Target Target Target | Maximum
Function 7. Deriv. (az/ax)T Deriv. (az/ay)T Residual ReTs‘ieci;JaI
[C ]{3/4 1.564 0.38645 0.33947 100.88 -0.121 6.3x10°
Zlhinded
[CZ]{4/5 -3x10% 8.22x10* -6.67916 107.41 3x10™8 1.4x10°
binded
[CZ]{s/e 1 1.47x10° -2x108 2x10° 3x10"° 2x10%
binded
(/7 4x10% 2.39x10° -2x108 2x10° 3x10' 3x10%
[C]inded

There are many possibilities to choose a "check parameter” that indicate
the existence of a perturbation. The author has chosen one that is easy to use but is
not always very effective: the maximum (absolute) value of the Residual across
the entire integration domain. For start, based on fig.5.3 a test is made for a
domain limited to B=H=4.30. The results do not indicate any perturbation and
seem to be credible (see Table 5, last column). Instead, when the target is a little
changed to B = H = 4.29, the results become suddenly incoherent and, obviously,
can not be taken into account (Table 6). Even without looking at the other values
that are also alarming, the Maximum Residual test, which increases more than
1,000 times, seems appropriate to lead to the decision to quit the computation and
inform the user accordingly.

Example 3. The PDE
4?+2%+3¢—9.9C052(|)—2.8—3.7X—4.6y—3.8X2 ~1.2xy-45y*=0 (5.1)
X

must be integrated on a two-dimensional square domain [(B=1)x(H=1)], with the
boundary conditions

-along x axis (y=0) : Y(x)=d(X,y=0)=2+3x-3x° (5.2)
-along y axis (x=0) : Q(Y)=0(x=0,y)=2+4y—4y? (5.3)
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The second step of the computation leads to the results given in Table 7.

The Concordant Function [Cz]&S!, is given in Appendix A. Based on it, the
variation of z(x,y) is represented in Fig.5.1. The conclusion based on all the
results obtained is: “the computation is valid”.

Table 7

Values for (B=1;H=1) obtained with 1 element by binding two CFs

CF Mo Target Target Target Target

Function z Deriv. (6ZI6X)T Deriv. (az/ay)T Residual

[C ]{3/4 -0.117 4.20267 0.69466 -0.00336 -0.0338
Zhinded

[C ]{4/5 0.746 4.17016 0.57847 0.64248 0.1365
Zhinded

[C ]{5/6 -1.354 4.21902 0.41850 0.53138 0.2529
Zlhinded

[C ]{6/7 1.568 4.38891 0.02702 0.12674 0.1267
Zlhinded

Values corresponding to the computation with 10x20=200 elements
CF3 | * | 417381 | 0.52380 | 0.63825 | -0.0158

In order to have a confirmation, the verification of the results obtained
with of 10x20=200 elements, leads to the values given in the last row of Table 7.
The error of the Target value that corresponds is
Error z1=(5.17016-4.17381)/4.17381= -8.74x10™* namely -0.0874 %.

This value confirms the validity of the results.

Fig.5.3 Solution with a single cell  Fig.5.4 Solution with 10x20 elements

However, the comparison between the graphs of z (x, y) obtained with a
single cell (Fig.5.3) and with 200 elements (Fig.5.4) indicates the existence of a
perturbation. This perturbation is not signaled - as is now expected according the
previous thorough analysis - by the “single-cell” method. But the perturbation is
not close to the target, so it does not influence the results obtained above or the
conclusion about the validity of the calculation.
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Table 8
Values for (B=1;H=0.5703) obtained with 1 element by binding two CFs
CF Mo Target Target Target Maximum
Function 7 Deriv. (62/6X)T Deriv. (62/6y)T Residual
(Test)
[C ]{3/4 -2.041 4.06318 -0.11772 0.36924 29.67
Zlhinded
[C ]{4/5 -2.399 3.97391 0.38731 0.45446 29.67
Zlhinded
[C ]{5/6 -3.704 4.05911 0.27957 0.05332 29.67
Zlhinded
[C ]{6/7 344.8 5.49205 419714 -20.9683 3980.4
Zlhinded
Values corresponding to the computation with 10x20=200 elements
CF3 | * | 123889 | -1.99379 | 6.13487 | *
Table 9
Values for (B=1;H=0.5702) obtained with 1 element by binding two CFs
CF Target Target Target Maximum
Function 7 Deriv. (az/ ax)r Deriv. (az/ay)T Residual
(Test)
[C ]{3/4 6.93750 -6.1x10% 1.2x10% 1.6x10%
Zvinded
[C ]{4/5 3.5x10% -2x10% 2.8x10% 1.8x10%
Zlhinded
[C ]{5/6 -5.1x10% 9.2x10% -5.4%x10% 2.7x10%
Zlhinded
[C ]{6/7 7.5%x10%° -2.9x10% 5.9x10% 2.2x10%
Zlpinded

What happens if the target is changed in the proximity of the perturbation,
namely if the target point becomes (B=1, H=0.5703) ? The values for this test
given in Table 8 are quite normal. The proximity of the perturbation "feels" in the
target values, the error of the function z(B=1,H=0.5703) being more than 200%. If
tried - based on the experience of paragraph 3.2 — a calculation for a very close
target point (B=1, H=0.5702) the result is similar: discontinuities of results that
clearly indicate the occurrence of a perturbation (see Table 9). Some numerical
experiments made by the author have confirmed this behavior.

6. Conclusions on the procedure based on a single cell

The numerical tests made using a “single-cell” - part of which were
disclosed above - represent a basis for a first draft of a procedure to implement the
method. Let begin with the positive aspects connected to the use of the method:

1. A simple first order non-linear PDE can be numerically integrated over
a large domain using only one cell, without resorting to tens or hundreds of
elements.

2. The main result is the Target value zr of the unknown function, which
may be obtained with acceptable or even good precision®, in a very short time.

® The precision may be improved by binding a second time the already binded Concordant
Functions.
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3. The procedure is based on the use of a binded Concordant Function,
which may be considered — if the function z(x,y) has a smooth variation, without
perturbations — as a quasi-analytic solution, valid on all the (quite—large)
integration domain.

The negative aspects are connected with the possible existence of a
perturbation or discontinuity of the function:

1. If a perturbation occurs quite far from the Target its presence does not
affect the value of the Target function, which can be validated by the actual
Residual value; but the quasi-analytic solution is no longer valid on the whole
domain, so must be abandoned.

2. When a perturbation occurs near to the Target, all the computation
based on a single-cell must be abandoned, and the computation continued with
another method.

Taking into account these considerations, it is proposed below a draft for a
program monitoring the computation. The computation starts always using the
“single-cell” method. After finising the “two-steps” procedure the program has to
look for a potential perturbation and to decide between some possible variants:

a. If no perturbation is detected, and the target residual is accepted by the
user, the computation may be considered succesful on all aspects; besides the
Target value, also the quasi-analytical solution is available and may be used.

b. If a perturbation placed far from the Target is detected, only the Target
value zt can be used, obviously if the Target residual is accepted by the user.

c. If a perturbation placed near the Target is detected or the value of the
Target residual is rejected by the user, the procedure based on a “single-cell” has
to be abandoned and the computation must continue with another method. In this
case the only inconvenience is a very short delay, due to initial use of the
"*single cell* method.

Appendix A. Verification of the quasi-analitic solution based on

binded Concordant Functions

The reader may solve the any PDE mentioned below using a convenient
method, with many elements, which can give a graph z(x,y) of the solution. Then
he can compare with the correspondinT solution using the relation

2(x, y) = [X @Y © [*[cz]
[CZL PDE (4.1) PDE (4.16) PDE (4.19) PDE (5.1)

- 2 4 2 2

X 0.3 3 3 3

Y -0.4 2 -4 4

x? 0 4 -2 -3

Xy -5.311299993772749 6.849264811348015 -7.512708174515619 -5.396256898077837
% 0 2 4 )

x3 0 0 0 0
X2y 5.958301368667835 -7.711717436565404 19.2822934496235 6.754373906579559
Xy? 4.234934649939510 -19.51288306117300 | -0.6098420135279419 | 5.790102630444205
% 0 0 0 0
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X 0 0 0 0
X%y | -2.874989612660367 | 8.295844566807396 | -12.18390765788577 | 2.258376389964472
X% | -2.773949504978351 | 8.288054534600711 | -4.769315094015080 | -12.75907144209255
xy? | -1.792543706767099 | 17.92080328731461 | -2.090475145001517 | 4.230362666938873
v 0 0 0 0
X 0 0 0 0
Xy | 0.8780545098646947 | -1.757283860876247 | 3.244524145572669 | -1.129690887907409
x%* | 0.6079563801315699 | -3.551537608065100 | 4.484752633311077 | 2.786845209903647
X% | 0.9649828617150603 | -8.290407354894782 | 0.8214107313336749 | 0.7116417402416660
xy’ | 0.3223773992956812 | -4.335750045919715 | 1.827116095134027 | -1.076521854388049
% 0 0 0 0
X 0 0 0 *
X%y | -0.1520675938622337 | -0.3639551578387353 | 0.1854259380161165 *
x'y?_ | -0.0577995787822082 | 0.9497147338675938 | -1.568590656239227 *
x° | -0.1650506239501214 | -0.9625061382603679 | 0.9499649695895012 *
X2y | -0.1206652944106610 | 2.665528346891400 | -0.9458399622741006 *
xy5 | -0.0273120825036137 | -0.9625061382603679 | 0.1043893077311010 *
¥ 0 0 0 *
X7 O 0 * *
Xy | 0.0112799144284583 | 0.0717381065909952 * *
x%? | 0.0008.502921848936 | 0.0602553262973988 * *
xv® | 0.0118014569079755 | -0.1111270203496452 * *
x%* | 0.008.7327015760803 | -0.2948655774706394 * *
x2° | 0.0062211695348708 | -0.0656443948048216 * *
xy° | 0.0005.913920026163 | 0.134282666933508 * *
y7 0 0 * *

Appendix B. Conditions imposed for obtaining a Concordant Function

with a given D degree
B.1 The number of imposed limit conditions

The number of limit conditions (boundary and initial) that can be imposed
to obtain the coefficients of a Concordant Function depends on its degree noted D.
These conditions may be expressed as two polynomials noted W(x, y =0)along x
axis and Q(x =0, y) along y. Supposing D=3 and using (2.1), the limit conditions
can be connected to the CF according to
W(x,y =0)=CF3(x,y =0)=C, +C,x+C,x* +C,x* (B.1)
Q(x=0,y)=CF3(x=0,y)=C, +C,y+C,y*+C,,y° (B.2)
It results that only 7 conditions can be imposed for a CF of third degree.
For a CF of degree D the number of conditions that can be imposed is
NLim = 2D+1 (B.3)
In contrast to [1], here only the function values (not also the derivatives) of
Y and Q will be used as limit conditions.

B.2 The conditions necessary to obtain a CF of D degree
The total number of conditions for determining unequivocally all the
coefficients of a CF is given by [1]
N, =(D+D)x(D+2)/2 (B.4)
If D=3 then N3=(3+1)x (3+2)/2=10, if D=4 then N4=(4+1)x(4+2)/2=15 and so on.
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For obtaining all the Np unknown coefficients, it is compulsory to use Np
equations that include the Nvrim(A.3) conditions. Therefore there are still necessary
— besides the boundary conditions - the following number of equations

Eco=Np - NLim= (D+1)x(D+2)/2 — (2D+1) = Dx(D-1)/2 (B.5)

To obtain a CF of a chosen D degree are therefore necessary: for
CF3—Ec3=3%2/2=3 equations; for CF4—Ecs=6 eq.; CF5—Ecs=10 eq,;
CF6—Ece=15 eq.; CF7—Ec7=21 eq.

In [1] these equations were selected according to Chapters 8 and 9. Here
the choice is a little changed. From these equations it is maintained the integral of
PDE, to which are added the derivatives of PDE. Consequently, the number of
equations still necessary is:

-for CF3 — 2 first order derivatives (8(PDE)/ dx;a(PDE)/ dy), Totals=2;

-for CF4 — 2 previous derivatives + 3 new second order derivatives
(6*(PDE)/ dx? ; 6*(PDE )/ dy dy; 6°(PDE )/ dy? ), Totals=5;

-for CF5 — 5 previous derivatives + 4 new second order derivatives, Totals=9;

-similarly,for CF6— Totale=9+5 (new)=14 ; for CF7 — Total;=14+6 (new)=20.

If to these “Totals” is added the 1 equation (representing the integral of
PDE) it result the numbers of equations Ecs; Ecs; Ecs and so on. This is the basis
for establishing the necessary number of equations valid also for any degree of CF
greater than D=7 (maximum CF degree used here).

The only special problem is represented by the partial derivatives of the
nonlinear source term F[¢(x,y)] included in (1.1). The basis for calculating

these derivatives was started in [1], relations (9.2.4)... (9.2.7).
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