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A NEW CUMULATIVE DISTRIBUTION FUNCTION BASED ON m

EXISTING ONES
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In this note, we present a new cumulative distribution function using sums
and products of m existing cumulative distribution functions. Consequently, some new

functions are discussed with focusing on one of them and providing two practical data
examples.
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1. Introduction

In literature, several transformations exist to obtain a new cumulative distribution
function (cdf) using other(s) well-known cdf(s). The most famous of them is the power
transformation introduced by [4]. Using a cdf F (x), the considered cdf is G(x) = (F (x))α,
α > 0. For extensions and applications, see [5], [13] and [14], and the references therein.
Another popular transformation is the quadratic rank transmutation map (QRTM) intro-
duced by [15], where the considered cdf is G(x) = (1 + λ)F (x) − λ(F (x))2, λ ∈ [−1, 1].
Recent developments can be found in [2, 3], [7] and [8], and the references therein. Mod-
ern ideas include the DUS transformation proposed by [9]: G(x) = 1

e−1 (e
F (x) − 1), the SS

transformation introduced by [10]: G(x) = sin
(
π
2F (x)

)
and the MG transformation studied

by [11]: G(x) = e1−
1

F (x) . Other transformations obtained by compounding can be found in
[16]. An interesting approach is also given by the M transformation developed by [12], where

using two cdfs F1(x) and F2(x), the considered cdf is G(x) = F1(x)+F2(x)
1+F1(x)

. In particular,

[12] showed that the M transformation has great applications in data analysis. With spe-
cific cdfs F1(x) and F2(x), it can better fit practical data in comparison to some exploited
distributions.

In this study, we propose a generalized version of the M transformation, called GM
transformation. It is constructed from sums and products of m cdfs with m ≥ 1. In com-
parison to the M transformation, it offers more possibility of cdf, mainly thanks to more
flexibility on the denominator term. Then new distributions are derived, with the associated
probability density function (pdf). Some mathematical properties of the new distributions
are presented. A statistical study using two practical data sets is given: estimation of pa-
rameters of some of new distributions is performed using the method of maximum likelihood.
We consider the Kolmogorov-Smirnov statistic to compare our models with some existing
models. Better fits are obtained for our distributions.

The note is organized as follows. In Section 2, we present our new transformation.
In Section 3, we apply it with specific well-known distributions, defining the associated pdfs
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and some mathematical properties of these distributions are described. Section 4 is devoted
to a statistical study involving some of our new distributions as models, considering two
practical data examples. A conclusion is given in Section 5.

2. GM transformation

Letm ≥ 1 be an integer, F1(x), . . . , Fm(x) bem cdfs of continuous distribution(s) with
common support and δ1, . . . , δm bem binary numbers, i.e. δk ∈ {0, 1} for any k ∈ {1, . . . ,m}.

We introduce the following transformation of F1(x), . . . , Fm(x):

G(x) =

m∑
k=1

Fk(x)

m− 1 +
m∏

k=1

(Fk(x))δk
, (1)

with the imposed value δm = 0 in the special case where m = 1. The support of G(x) is the
common one of F1(x), . . . , Fm(x).

The role of δ1, . . . , δm is to activate or not the chosen cdfs in the product in the
denominator. For examples, taking m = 2, δ1 = 1, and δ2 = 1, the function (1) becomes

G(x) = F1(x)+F2(x)
1+F1(x)F2(x)

. This cdf will be at the heart of Section 3. Taking m = 3, δ1 = 1,

δ2 = 1 and δ3 = 0, the function (1) becomes G(x) = F1(x)+F2(x)+F3(x)
2+F1(x)F2(x)

; F3(x) is excluded of

the denominator.
The following result motivates the interest of (1).

Theorem 2.1. The function G(x) (1) possesses the properties of a cdf.

Proof of Theorem 2.1. For any k ∈ {1, . . . ,m}, let fk(x) be a pdf associated to the cdf Fk(x).
Recall that Fk(x) is continuous with Fk(x) ∈ [0, 1], lim

x→+∞
Fk(x) = 1, lim

x→−∞
Fk(x) = 0 and

fk(x) = F ′
k(x) almost everywhere with fk(x) ≥ 0. Let us now investigate the sufficient

conditions for G(x) to be a cdf.

• Since
m∑

k=1

Fk(x) and m − 1 +
m∏

k=1

(Fk(x))
δk are continuous functions with m − 1 +

m∏
k=1

(Fk(x))
δk ̸= 0, G(x) is a continuous function of x.

• Let us prove that G(x) ∈ [0, 1]. Owing to
m∑

k=1

Fk(x) ≥ 0 and m−1+
m∏

k=1

(Fk(x))
δk > 0,

we have G(x) ≥ 0. On the other hand, using the inequality:
m∏

k=1

(1−xk) ≥ 1−
m∑

k=1

xk,

xk ∈ [0, 1], with xk = 1− (Fk(x))
δk ∈ [0, 1] and observing that (Fk(x))

δk ≥ Fk(x), we
obtain

m∏
k=1

(Fk(x))
δk ≥ 1−

m∑
k=1

(1− (Fk(x))
δk) = 1−m+

m∑
k=1

(Fk(x))
δk

≥ 1−m+
m∑

k=1

Fk(x).

Hence G(x) ≤ 1.
• Let us prove that G′(x) ≥ 0, implying that G(x) is increasing. For any derivable
function u(x), note that ((u(x))δk)′ = δku

′(x) since δk ∈ {0, 1}. Therefore we have



A new cumulative distribution function based on m existing ones 77

G′(x) =
A(x)

B(x)
almost everywhere, where

A(x) =

(
m∑

k=1

fk(x)

)(
m− 1 +

m∏
k=1

(Fk(x))
δk

)

−

(
m∑

k=1

Fk(x)

) m∑
k=1

δkfk(x)

m∏
u=1
u̸=k

(Fu(x))
δu


and

B(x) =

(
m− 1 +

m∏
k=1

(Fk(x))
δk

)2

.

We have B(x) > 0. Let us now investigate the sign of A(x). The following decompo-
sition holds: A(x) = A1(x) +A2(x), where

A1(x) =
m∑

k=1

δkfk(x)

m− 1 +
m∏

u=1

(Fu(x))
δu −

(
m∑

v=1

Fv(x)

)
m∏

u=1
u̸=k

(Fu(x))
δu


and

A2(x) =
m∑

k=1

(1− δk)fk(x)

(
m− 1 +

m∏
k=1

(Fk(x))
δk

)
.

Since A2(x) ≥ 0 as a sum of positive terms, let us focus on the sign of A1(x). Observe

that, if δk = 1, we have Fk(x)
m∏

u=1
u̸=k

(Fu(x))
δu =

m∏
u=1

(Fu(x))
δu . If δk = 0, the k-th term

in the sum of A1(x) is zero. Therefore we can write

A1(x) =

m∑
k=1

δkfk(x)

m− 1−

 m∑
v ̸=k
v=1

Fv(x)

 m∏
u=1
u ̸=k

(Fu(x))
δu

 .

Since Fv(x)
m∏

u=1
u̸=k

(Fu(x))
δu ≤ 1, we have m − 1 −

 m∑
u̸=k
u=1

Fu(x)

 m∏
u=1
u ̸=k

(Fu(x))
δu ≥ 0, im-

plying that A1(x) ≥ 0. Therefore A(x) ≥ 0, so G′(x) ≥ 0.
• Let us now investigate lim

x→−∞
G(x) and lim

x→+∞
G(x). If m ≥ 2, we have m − 1 +

m∏
k=1

(Fk(x))
δk ≥ m − 1 > 0. Since lim

x→−∞

m∑
k=1

Fk(x) = 0, we have lim
x→−∞

G(x) = 0. If

m = 1, recall that we have imposed δm = 0, so lim
x→−∞

G(x) = lim
x→−∞

F1(x) = 0. On

the other hand, for any m ≥ 1, we have lim
x→+∞

G(x) =
m

m− 1 + 1
= 1.

�

Let us now present some immediate examples existing in the literature. Taking m = 1
(so δ1 = 0), we obtain the simple cdf G(x) = F1(x). The choice δ1 = . . . = δm = 0 gives an

uniform mixture of cdfs: G(x) = 1
m

m∑
k=1

Fk(x). Finally, for m = 2, δ1 = 1 and δ2 = 0, we
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obtain the M transformation introduced by [12]: G(x) = F1(x)+F2(x)
1+F1(x)

.

For this reason, we will call (1) as the GM transformation (as Generalization of the
M transformation). To the best of our knowledge, it is new in literature.

New cdfs can also be derived by the GM transformation and existing transformations.
Some of them using only one cdf are described below.

• For any cdf F of continuous distribution and δ1, . . . , δm such that
m∑

k=1

δk = q with

q ∈ {0, . . . ,m}, the GM transformation yields the following cdf:

G(x) =
mF (x)

m− 1 + (F (x))q
.

• For any cdf F of continuous distribution with support equal to R or [0,+∞) or (−∞, 0)
and any real numbers β1, . . . , βm, where βk > 0 for any k ∈ {1, . . . ,m}, the GM
transformation includes the following cdf:

G(x) =

m∑
k=1

F (βkx)

m− 1 +
m∏

k=1

(F (βkx))δk
.

• Combining the GM transformation and the power transformation introduced by [4],
for any cdf F of continuous distribution and any real numbers α1, . . . , αm, where
αk > 0 for any k ∈ {1, . . . ,m}, we obtain the cdf:

G(x) =

m∑
k=1

(F (x))αk

m− 1 +
m∏

k=1

(F (x))δkαk

.

• Combining the GM transformation and the transformation using QRTM introduced
by [15], for any cdf F of continuous distribution and any real numbers λ1, . . . , λm,
where λk ∈ [−1, 1] for any k ∈ {1, . . . ,m}, we obtain the cdf:

G(x) =

m∑
k=1

(
(1 + λk)F (x)− λk(F (x))2

)
m− 1 +

m∏
k=1

((1 + λk)F (x)− λk(F (x))2)δk
.

Remark 2.1. Others interesting combinations are possible according to the problem. Thanks
to their adaptability, with a specific F (x), these cdfs are of interest from the theoretical and
applied aspects.

3. A particular case with some related new distributions

Let us now focus our attention on a simple configuration already mentioned. If we
chose m = 2 and δ1 = δ2 = 1, then the GM transformation is reduced to the following form

G(x) =
F1(x) + F2(x)

1 + F1(x)F2(x)
.

The main difference with G(x) and the cdf proposed by [12] is the function F2 in the
denominator introducing more flexibility, and leading new cdf. The associated pdf is given
by

g(x) =
f1(x)(1− (F2(x))

2) + f2(x)(1− (F1(x))
2)

(1 + F1(x)F2(x))2
.
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We now described some of its mathematical properties. The quantile function Q(x)
can be obtained via the nonlinear equation:

G(Q(x)) = x ⇔ F1(Q(x)) + F2(Q(x)) = x (1 + F1(Q(x))F2(Q(x))) .

For x such that F1(x) ∈ (0, 1) and F2(x) ∈ (0, 1), using the geometric series, we can expand
G(x) as

G(x) =

+∞∑
k=0

(−1)k
(
(F1(x))

k+1
(F2(x))

k
+ (F1(x))

k
(F2(x))

k+1
)
.

An expansion of the pdf g(x) is given by g(x) =
+∞∑
k=0

(−1)kuk(x), where

uk(x) =
(
(k + 1) (F1(x)F2(x))

k
[f1(x) + f2(x)]

+ k (F1(x)F2(x))
k−1

(f2(x) (F1(x))
2
+ f1(x) (F2(x))

2
)
)
.

These expansions can be used to determine the r-th moments of a random variable X having
the cdf G(x), and other crucial quantities. Their expressions are however long to express in
full generality.

Two special cases arising from G(x) and using the usual distributions are described
below.

New Two Component Weibull (NTCW) distribution.: Considering the cdf F1 of
the Weibull distribution with parameters k1 > 0 and λ1 > 0 and the cdf F2 of the
Weibull distribution with parameters k2 > 0 and λ2 > 0 . Then we have F1(x) =(
1− e

−
(

x
λ1

)k1
)
, F2(x) =

(
1− e

−
(

x
λ2

)k2
)
,

G(x) =
2− e

−
(

x
λ1

)k1

− e
−
(

x
λ2

)k2

2− e
−
(

x
λ1

)k1

− e
−
(

x
λ2

)k2

+ e
−
(

x
λ1

)k1−
(

x
λ2

)k2

and

g(x) =

k1

λ1

(
x
λ1

)k1−1

e
−
(

x
λ1

)k1

(
1−

(
1− e

−
(

x
λ2

)k2
)2
)

(
2− e

−
(

x
λ1

)k1

− e
−
(

x
λ2

)k2

+ e
−
(

x
λ1

)k1−
(

x
λ2

)k2
)2

+

k2

λ2

(
x
λ2

)k2−1

e
−
(

x
λ2

)k2

(
1−

(
1− e

−
(

x
λ1

)k1
)2
)

(
2− e

−
(

x
λ1

)k1

− e
−
(

x
λ2

)k2

+ e
−
(

x
λ1

)k1−
(

x
λ2

)k2
)2 , x > 0. (2)

New Gumbel-Normal (NGN) distribution.: Considering the cdf F1 of the Gumbel
distribution with parameters λ ∈ R and β > 0 and the cdf F2 of the normal distribution
with parameters λ ∈ R and σ > 0 the corresponding cdf’s are expressed as F1(x) =

e−e
− x−λ

β
, F2(x) =

∫ x

−∞
1√

2πσ2
e−

(t−λ)2

2σ2 dt = Φ(x), then we have

G(x) =
e−e

− x−λ
β

+Φ(x)

1 + e−e
− x−λ

β Φ(x)
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and

g(x) =

1
β e

−e
− x−λ

β − x−λ
β
(
1− (Φ(x))2

)
+ 1√

2πσ2
e−

(x−λ)2

2σ2

(
1− e−2e

− x−λ
β

)
(
1 + e−e

− x−λ
β Φ(x)

)2 ,

x ∈ R. (3)

The next section is devoted to applications of these two distributions in a statistical
setting.

4. Applications

We now propose to check the suitability of the parametric models related to the
NTCW and NGN distributions. Two data sets representing different scenario of practical
life are considered. Estimations of the different parameters are given via the maximum like-
lihood method and hence the corresponding log-likelihood ℓ(Θ) is evaluated based on equa-
tions (2) and (3) for comparing purposes. In order to compute and measure the compatibility
of a random sample with a theoretical probability distribution function, our benchmark is
the Kolmogorov-Smirnov (KS) goodness of fit statistic.

Application I: NTCW distribution. Here, we present a real data set taken from
[1] for comparing the fits of the NTCW distribution with the new generalized Lindley (NGL)
distribution proposed by [1], Lindley distribution and Exponential distribution. The data
set represents the breaking stress of carbon fibers (in Gba) and consists of the values: 3.70,
2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 3.56, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09,
1.87, 3.15, 4.90, 1.57, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 1.25, 4.38,
1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.89, 2.88, 2.82, 2.05, 3.65, 3.75, 2.43, 2.95,
2.97, 3.39, 2.96, 2.35, 2.55, 2.59, 2.03, 1.61, 2.12, 3.15, 1.08, 2.56, 1.80, 2.53. The results are
summarized in Table I:

Table I: NTCW distribution with practical application

Distribution β̂ α̂ θ̂ µ̂ λ ℓ(Θ̂) KS
NGL 8.485 7.412 2.788 – – -91.107 0.117

Lindley – – 0.590 – – -122.384 0.711
Exponential – – – – 0.362 -132.9944 0.282

NTCW α̂1 = 8.2544 β̂1 = 10.2118 α̂2 = 3.4404 β̂2 = 3.0624 – -86.0677 0.0791

The above inferences indicates that NTCW not only posses the largest log-likelihood
ℓ(Θ̂) values but also possess the smallest KS statistic as compared to the competing models.
Therefore, NTCW distribution is the best for this data from these criteria.

Application II: NGN distribution. The considered data set shows the lowest 7
days average flows in meter cube per second at gauging station La Parota 1963-1999.The
values during this period are 19.8, 15.1, 0.3, 19.1, 19.0, 14.4, 17.5, 15.4, 18.9, 16.5,15.3, 19.3,
19.1, 13.0, 16.4, 15.3, 22.3, 17.4, 16.9, 23.2, 13.1,14.2, 17.1, 15.8, 3.2, 13.4, 17.7, 21.5, 9.8,
21.1, 18.7, 15.0,15.2, 9.8, 21.1, 15.7, 11.9, which are reported by [6]. The comparing mod-
els includes the generalized Logistic (GLO), the generalized Pareto (GP) and the Gumbel
(Gumb.) distributions. For respective density functions, readers are referred to [6]. The
results are given in Table II:

Table II: NGN distribution with practical application

Distribution λ̂ σ̂ β̂ α ℓ(Θ̂) KS
GLO – – 0.267 4.241 -125.06 0.743
GP – – 0.999 25.25 -119.47 0.3797

Gumb. – – 7.604 17.822 -126.92 0.4062
NGN 16.6998 3.4261 2.8310 – -100.797 0.2273
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In view of above results, we can see that the NGN distribution takes the largest
log-likelihood ℓ(Θ̂) and the smallest KS statistic. This confirms the capability of the NGN
distribution for modeling this data set than other compared models.

5. Conclusion

In this note, we introduce a new general family of distributions characterized by a cdf
G(x) constructed from m existing cdfs F1(x), . . . , Fm(x) via a special transformation called
the GM transformation. It can be viewed as a flexible version of the M transformation
introduced by [12]. Special cases of this family, generating new distributions, are introduced
and discussed. Applications are given to two practical data sets. We explore the estimation
of the unknown parameters and show that the new distributions can be used quite effectively
to provide better fits than some existing distributions.
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