

CONFORMAL ANTI-INVARIANT RIEMANNIAN MAPS TO KÄHLER MANIFOLDS

Mehmet Akif AKYOL¹ and Bayram SAHIN²

We introduce conformal anti-invariant Riemannian maps from Riemannian manifolds to almost Hermitian manifolds and show that they include both anti-invariant submanifolds and anti-invariant Riemannian maps. We give non-trivial examples, investigate the geometry of certain distributions and obtain decomposition theorems for the base manifold. The harmonicity and totally geodesicity of conformal anti-invariant Riemannian maps are also obtained. Moreover, we study weakly umbilical conformal Riemannian maps and obtain a classification theorem for umbilical conformal anti-invariant Riemannian maps.

Keywords: Anti-invariant submanifold, anti-invariant Riemannian map, conformal anti-invariant Riemannian map, totally geodesic map, harmonic map.

MSC2010: 53C15,53C43

1. Introduction

Let $(\mathcal{M}, J_{\mathcal{M}})$ be an almost complex manifold with almost complex structure $J_{\mathcal{M}}$. A totally real submanifold (anti-invariant submanifold) M is a submanifold such that the almost complex structure $J_{\mathcal{M}}$ of the ambient manifold \mathcal{M} carries a tangent space of M into the corresponding normal space of M . A totally real submanifold is called *Lagrangian* if $\dim_{\mathbb{R}} M = \dim_{\mathbb{C}} \mathcal{M}$. Real curves of Kähler manifolds are examples of totally real submanifolds. The first contribution to the geometry of totally real submanifolds was given in the early 1970's [3]. For details, see [13].

As a generalization of isometric immersions and Riemannian submersions, Riemannian maps were introduced in [4] as follows. Let $F : (M, g_M) \rightarrow (N, g_N)$ be a smooth map between Riemannian manifolds such that $0 < \text{rank } F < \min\{m, n\}$, where $\dim M = m$ and $\dim N = n$. Then we denote the kernel space of F_* by $\ker F_*$ and consider the orthogonal complementary space $\mathcal{H} = (\ker F_*)^\perp$ to $\ker F_*$ in TM . Then the tangent bundle of M has the following decomposition

$$TM = \ker F_* \oplus \mathcal{H}.$$

¹ Professor, Department of Mathematics, Faculty of Art and Science, Bingol university, 12000, Bingol, Turkey, E-mail: mehmetakifakyol@bingol.edu.tr

² Professor, Department of Mathematics, Ege university, 35100, Bornova, Izmir, Turkey, E-mail: bayram.sahin@ymail.com

We denote the range of F_* by $\text{range}F_*$ and consider the orthogonal complementary space $(\text{range}F_*)^\perp$ to $\text{range}F_*$ in the tangent bundle TN of N . Since $\text{rank}F < \min\{m, n\}$, we always have $(\text{range}F_*)^\perp$. Thus the tangent bundle TN of N has the following decomposition

$$F^{-1}(TN) = (\text{range}F_*) \oplus (\text{range}F_*)^\perp.$$

Now, a smooth map $F : (M_1^m, g_M) \longrightarrow (M_2^n, g_N)$ is called Riemannian map at $p_1 \in M$ if the horizontal restriction $F_{*p_1}^h : (\ker F_{*p_1})^\perp \longrightarrow (\text{range}F_{*p_1})$ is a linear isometry between the inner product spaces $((\ker F_{*p_1})^\perp, g_M(p_1)|_{(\ker F_{*p_1})^\perp})$ and $(\text{range}F_{*p_1}, g_N(p_2)|_{(\text{range}F_{*p_1})})$, $p_2 = F(p_1)$. Thus F_* satisfies the equation

$$g_N(F_*\tilde{X}, F_*\tilde{Y}) = g_M(\tilde{X}, \tilde{Y}) \quad (1)$$

for \tilde{X}, \tilde{Y} vector fields tangent to \mathcal{H} . Indeed, it follows that isometric immersions and Riemannian submersions are particular Riemannian maps with $\ker F_* = \{0\}$ and $(\text{range}F_*)^\perp = \{0\}$. It is known that a Riemannian map is a subimmersion [4] and this fact implies that the rank of the linear map $F_{*p} : T_p M \longrightarrow T_{F(p)} N$ is constant for p in each connected component of M , [1] and [4]. It is also important to note that Riemannian maps satisfy the eikonal equation. Different properties of Riemannian maps have been studied widely by many authors, see: [5], [6], [8], and [9]. Recently, conformal Riemannian maps as a generalization of Riemannian maps have been defined in [12] and the harmonicity of such maps have been also obtained.

On the other hand, as a generalization of totally real submanifolds, anti-invariant Riemannian maps from Riemannian manifolds to almost complex manifolds were defined and studied in [11]. In this paper, we are going to introduce and study conformal anti-invariant Riemannian maps from Riemannian manifolds to almost complex manifolds as a generalization of totally real submanifolds and anti-invariant Riemannian maps.

2. Preliminaries

In this section, we recall some basic materials from [2, 14]. A $2n$ -dimensional Riemannian manifold (\mathcal{M}, g, J) is called an almost Hermitian manifold if there exists a tensor field J of type $(1, 1)$ on \mathcal{M} such that $J^2 = -I$ and

$$g(\tilde{X}, \tilde{Y}) = g(J\tilde{X}, J\tilde{Y}), \quad \forall \tilde{X}, \tilde{Y} \in \Gamma(T\mathcal{M}), \quad (2)$$

where I denotes the identity transformation of $T_p \mathcal{M}$. Consider an almost Hermitian manifold (\mathcal{M}, g, J) and denote by ∇ the Levi-Civita connection on \mathcal{M} with respect to g . Then \mathcal{M} is called a Kähler manifold [14] if J is parallel with respect to ∇ , i.e.

$$(\nabla_{\tilde{X}} J)\tilde{Y} = 0, \quad (3)$$

$$\forall \tilde{X}, \tilde{Y} \in \Gamma(T\mathcal{M}).$$

We now recall the notion of harmonic maps between Riemannian manifolds. Let $(\mathcal{M}, g_{\mathcal{M}})$ and (N, g_N) be Riemannian manifolds and suppose that $\varphi : \mathcal{M} \rightarrow N$ is

a smooth map between them. Then the second fundamental form of φ is given by

$$(\nabla\varphi_*)(\tilde{X}, \tilde{Y}) = \nabla_{\tilde{X}}^\varphi \varphi_*(\tilde{Y}) - \varphi_*(\nabla_{\tilde{X}}^{\mathcal{M}} \tilde{Y}) \quad (4)$$

for $\tilde{X}, \tilde{Y} \in \Gamma(TM)$, where ∇^φ is the pullback connection. It is known that the second fundamental form is symmetric. The tension field of φ is the section $\tau(\varphi)$ of the pullback bundle $\Gamma(\varphi^{-1}TN)$ defined by $\tau(\varphi) = \text{div } \varphi_* = \sum_{i=1}^m (\nabla\varphi_*)(e_i, e_i)$, where $\{e_1, \dots, e_m\}$ is the orthonormal frame on \mathcal{M} . A smooth map φ satisfying $\tau(\varphi) = 0$ is called a harmonic map, see [2].

We denote by ∇^2 both the Levi-Civita connection of (N, g_N) and its pull-back along F . Then according to [7], for any vector field \tilde{X} on \mathcal{M} and any section V of $(\text{range } F_*)^\perp$, where $(\text{range } F_*)^\perp$ is the subbundle of $F^{-1}(TN)$ with fiber $(F_*(T_p\mathcal{M}))^\perp$ – orthogonal complement of $F_*(T_p\mathcal{M})$ for g_N over p , we have $\nabla_{\tilde{X}}^{F^\perp} V$ which is the orthogonal projection of $\nabla_{\tilde{X}}^2 V$ on $(F_*(T_p\mathcal{M}))^\perp$ – such that $\nabla^{F^\perp} g_2 = 0$. We now define A_V as

$$\nabla_{\tilde{X}}^2 V = -A_V F_* \tilde{X} + \nabla_{\tilde{X}}^{F^\perp} V \quad (5)$$

where $A_V F_* \tilde{X}$ is tangential component (a vector field along F) of $\nabla_{\tilde{X}}^2 V$. It is easy to see that $A_V F_* \tilde{X}$ is bilinear in V and F_* and $A_V F_* \tilde{X}$ at p depends only on V_p and $F_{*p} \tilde{X}_p$. By direct computations, we obtain

$$g_2(A_V F_* \tilde{X}, F_* \tilde{Y}) = g_2(V, (\nabla F_*)(\tilde{X}, \tilde{Y})) \quad (6)$$

for $\tilde{X}, \tilde{Y} \in \Gamma((\ker F_*)^\perp)$ and $V \in \Gamma((\text{range } F_*)^\perp)$. Since (∇F_*) is symmetric, it follows that A_V is a symmetric linear transformation of $\text{range } F_*$.

3. Conformal anti-invariant Riemannian maps

In this section, we define and study conformal anti-invariant Riemannian maps, give examples, investigate the geometry of leaves of the distributions which are defined on the target manifolds. We also give a decomposition theorem and obtain necessary and sufficient conditions for such conformal Riemannian maps to be totally geodesic. We first recall that, in [12], the second author of the present paper showed that the second fundamental form $(\nabla F_*)(\tilde{X}, \tilde{Y}), \forall \tilde{X}, \tilde{Y} \in \Gamma((\ker F_*)^\perp)$, of a conformal Riemannian map is in the following form

$$(\nabla F_*)(\tilde{X}, \tilde{Y})^{\text{range } F_*} = \tilde{X}(\ln \lambda) F_* \tilde{Y} + \tilde{Y}(\ln \lambda) F_* \tilde{X} - g_1(\tilde{X}, \tilde{Y}) F_*(\text{grad } \ln \lambda). \quad (7)$$

Thus if we denote the $(\text{range } F_*)^\perp$ – component of $(\nabla F_*)(\tilde{X}, \tilde{Y})$ by $(\nabla F_*)(\tilde{X}, \tilde{Y})^{(\text{range } F_*)^\perp}$, we can write $(\nabla F_*)(\tilde{X}, \tilde{Y})$ as

$$(\nabla F_*)(\tilde{X}, \tilde{Y}) = (\nabla F_*)(\tilde{X}, \tilde{Y})^{\text{range } F_*} + (\nabla F_*)(\tilde{X}, \tilde{Y})^{(\text{range } F_*)^\perp}, \quad (8)$$

for $\tilde{X}, \tilde{Y} \in \Gamma((\ker F_*)^\perp)$. Hence we have

$$\begin{aligned} (\nabla F_*)(\tilde{X}, \tilde{Y}) &= \tilde{X}(\ln \lambda) F_* \tilde{Y} + \tilde{Y}(\ln \lambda) F_* \tilde{X} - g_1(\tilde{X}, \tilde{Y}) F_*(\text{grad } \ln \lambda) \\ &\quad + (\nabla F_*)(\tilde{X}, \tilde{Y})^{(\text{range } F_*)^\perp}, \end{aligned} \quad (9)$$

We now present the following definition for conformal anti-invariant Riemannian maps as a generalization of totally real submanifolds and anti-invariant Riemannian maps.

Definition 3.1. *Let F be a conformal Riemannian map from a Riemannian manifold (\mathcal{M}_1, g_1) to an almost Hermitian manifold (\mathcal{M}_2, g_2, J) . Then we say that F is a conformal anti-invariant Riemannian map at $p \in \mathcal{M}_1$ if $J(\text{range}F_*)_p \subseteq (\text{range}F_{*p})^\perp$. If F is a conformal anti-invariant Riemannian map for any $p \in \mathcal{M}_1$, then F is called a conformal anti-invariant Riemannian map.*

We are going to give some examples of conformal anti-invariant Riemannian maps.

Example 3.1. [13] *Every anti-invariant submanifold of an almost Hermitian manifold is a conformal anti-invariant Riemannian map with $\lambda = 1$ and $\ker F_* = \{0\}$.*

Example 3.2. [11] *Every anti-invariant Riemannian map from a Riemannian manifold to an almost Hermitian manifold is a conformal anti-invariant Riemannian map with $\lambda = 1$.*

We say that a conformal anti-invariant Riemannian map is proper if $\lambda \neq I$. We now present an example of a proper conformal anti-invariant Riemannian map. In the following \mathbb{R}^{2m} denotes the Euclidean $2m$ -space with the standard metric. An almost complex structure J on \mathbb{R}^{2m} is said to be compatible if (\mathbb{R}^{2m}, J) is complex analytically isometric to the complex number space \mathbb{C}^m with the standard flat Kählerian metric. We denote by J the compatible almost complex structure on \mathbb{R}^{2m} defined by

$$J(\bar{a}_1, \dots, \bar{a}_{2m}) = (-\bar{a}_2, \bar{a}_1, \dots, -\bar{a}_{2m}, \bar{a}_{2m-1}).$$

Example 3.3. *Consider the following map defined by*

$$\begin{array}{ccc} F : & \mathbb{R}^4 & \longrightarrow \mathbb{R}^4 \\ & (\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4) & (e^{\bar{x}_1} \sin \bar{x}_2, 0, e^{\bar{x}_1} \cos \bar{x}_2, 0). \end{array}$$

We have

$$\ker F_* = \text{span}\{Z_1 = \partial \bar{x}_3, Z_2 = \partial \bar{x}_4\}$$

and

$$(\ker F_*)^\perp = \text{span}\{H_1 = e^{\bar{x}_1} \sin \bar{x}_2 \partial \bar{x}_1 + e^{\bar{x}_1} \cos \bar{x}_2 \partial \bar{x}_2, H_2 = e^{\bar{x}_1} \cos \bar{x}_2 \partial \bar{x}_1 - e^{\bar{x}_1} \sin \bar{x}_2 \partial \bar{x}_2\}.$$

By direct computations, we have $\text{range}F_* = \text{span}\{F_*H_1 = e^{2\bar{x}_1} \partial \bar{y}_1, F_*H_2 = e^{2\bar{x}_1} \partial \bar{y}_3\}$ and $(\text{range}F_*)^\perp = \{\frac{\partial}{\partial \bar{y}_2}, \frac{\partial}{\partial \bar{y}_4}\}$. It is also easy to check that

$$g_2(F_*H_1, F_*H_1) = e^{2\bar{x}_1} g_1(H_1, H_1)$$

and

$$g_2(F_*H_2, F_*H_2) = e^{2\bar{x}_1} g_1(H_2, H_2),$$

which show that F is a conformal Riemannian map with $\lambda = e^{\bar{x}_1}$. Moreover, it is easy to see that $JF_*H_1 = e^{2\bar{x}_1}\frac{\partial}{\partial\bar{y}_2}$ and $JF_*H_2 = e^{2\bar{x}_1}\frac{\partial}{\partial\bar{y}_4}$, where J is the canonical complex structure of \mathbb{R}^4 defined by

$$J(\bar{y}_1, \bar{y}_2, \bar{y}_3, \bar{y}_4) = (-\bar{y}_2, \bar{y}_1, -\bar{y}_3, \bar{y}_4).$$

As a result, F is a conformal anti-invariant Riemannian map.

Let F be a conformal anti-invariant Riemannian map from a Riemannian manifold (\mathcal{M}_1, g_1) to an almost Hermitian manifold (\mathcal{M}_2, g_2, J) . First of all, from Definition 3.1, we have $J(\text{range}F_*) \cap (\text{range}F_*)^\perp \neq \{0\}$. We denote the complementary orthogonal distribution to $J(\text{range}F_*)$ in $((\text{range}F_*)^\perp)$ by μ . Then we have

$$(\text{range}F_*)^\perp = J(\text{range}F_*) \oplus \mu. \quad (10)$$

It is easy to see that μ is an invariant distribution of $(\text{range}F_*)^\perp$, under the endomorphism J_2 . Thus, for $V \in \Gamma((\text{range}F_*)^\perp)$, we have

$$JV = \mathcal{B}V + \mathcal{C}V \quad (11)$$

where $\mathcal{B}V \in \Gamma(\text{range}F_*)$ and $\mathcal{C}V \in \Gamma((\text{range}F_*)^\perp)$.

We now investigate the geometry of the leaves of $(\text{range}F_*)$ and $(\text{range}F_*)^\perp$. First, we give the following result.

Theorem 3.1. *Let F be a conformal anti-invariant Riemannian map from a Riemannian manifold (\mathcal{M}_1, g_1) to a Kähler manifold (\mathcal{M}_2, g_2, J) . Then $(\text{range}F_*)$ defines a totally geodesic foliation on \mathcal{M}_2 if and only if*

$$g_2((\nabla F_*)(\tilde{X}, \tilde{Y}')^{(\text{range}F_*)^\perp}, JF_*\tilde{Y}) = g_2(\nabla_{\tilde{X}}^{F^\perp} JF_*\tilde{Y}, \mathcal{C}W) \quad (12)$$

for any $W \in \Gamma((\text{range}F_*)^\perp)$ and $\tilde{X}, \tilde{Y}, \tilde{Y}' \in \Gamma((\text{ker}F_*)^\perp)$, such that $F_*\tilde{Y}' = \mathcal{B}V$.

Proof. For $\tilde{X}, \tilde{Y} \in \Gamma((\text{ker}F_*)^\perp)$ and $W \in \Gamma((\text{range}F_*)^\perp)$, using (2) we have

$$g_2(\nabla_{\tilde{X}}^2 F_*\tilde{Y}, W) = g_2(\nabla_{\tilde{X}}^2 JF_*\tilde{Y}, JW).$$

Thus from (11) we obtain

$$g_2(\nabla_{\tilde{X}}^2 F_*\tilde{Y}, W) = -g_2(\nabla_{\tilde{X}}^2 F_*\tilde{Y}', JF_*\tilde{Y}) + g_2(\nabla_{\tilde{X}}^2 JF_*\tilde{Y}, \mathcal{C}W),$$

where $F_*\tilde{Y}' = \mathcal{B}W$ for $\tilde{Y}' \in \Gamma((\text{ker}F_*)^\perp)$. Since F is a conformal Riemannian map, using (4), (5) and (8) we obtain

$$\begin{aligned} g_2(\nabla_{\tilde{X}}^2 F_*\tilde{Y}, W) &= -g_2((\nabla F_*)(\tilde{X}, \tilde{Y}')^{(\text{range}F_*)^\perp} + (\nabla F_*)(\tilde{X}, \tilde{Y}')^{(\text{range}F_*)^\perp} + F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1}\tilde{Y}'), JF_*\tilde{Y}) \\ &\quad + g_2(-A_{JF_*\tilde{Y}}\tilde{X} + \nabla_{\tilde{X}}^{F^\perp} JF_*\tilde{Y}, \mathcal{C}W). \end{aligned}$$

Hence, we arrive at

$$g_2(\nabla_{\tilde{X}}^2 F_*\tilde{Y}, W) = -g_2((\nabla F_*)(\tilde{X}, \tilde{Y}')^{(\text{range}F_*)^\perp}, JF_*\tilde{Y}) + g_2(\nabla_{\tilde{X}}^{F^\perp} JF_*\tilde{Y}, \mathcal{C}W).$$

From above equation, $(\text{range}F_*)$ defines a totally geodesic foliation on \mathcal{M}_2 if and only if (12) is satisfied. \square

In a similar way, we obtain the following Theorem:

Theorem 3.2. *Let F be a conformal anti-invariant Riemannian map from a Riemannian manifold (\mathcal{M}_1, g_1) to a Kähler manifold (\mathcal{M}_2, g_2, J) . Then $(\text{range}F_*)^\perp$ defines a totally geodesic foliation on \mathcal{M}_2 if and only if*

- (i) $(\text{range}F_*)^\perp$ defines a totally geodesic foliation on \mathcal{M}_2 .
- (ii) F is a horizontally homothetic conformal Riemannian map.
- (iii) $g_2(\mathcal{B}V, A_{\mathcal{C}V}F_*\tilde{X} + F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1}Z')) = -g_2(\mathcal{C}W, (\nabla F_*)(\tilde{X}, Z')^{(\text{range}F_*)^\perp} + \nabla_{\tilde{X}}^{F^\perp}\mathcal{C}V)$
 $- g_2(W, [V, F_*\tilde{X}])$

for any $V, W \in \Gamma((\text{range}F_*)^\perp)$ and $\tilde{X}, Z' \in \Gamma((\ker F_*)^\perp)$ such that $F_*Z' = \mathcal{B}V$.

Proof. For $\tilde{X} \in \Gamma((\ker F_*)^\perp)$ and $V, W \in \Gamma((\text{range}F_*)^\perp)$, since \mathcal{M}_2 is a Kähler manifold, using (2) we have

$$g_2(\nabla_V^2 W, F_*\tilde{X}) = -g_2(W, [V, F_*\tilde{X}]) - g_2(JW, \nabla_{F_*\tilde{X}}^2 JV).$$

Then using from (11), (4) and (5) we obtain

$$\begin{aligned} g_2(\nabla_V^2 W, F_*\tilde{X}) &= -g_2(W, [V, F_*\tilde{X}]) - g_2(\mathcal{B}W, (\nabla F_*)(\tilde{X}, Z') + F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1}Z')) \\ &\quad - g_2(\mathcal{B}W, -A_{\mathcal{C}V}F_*\tilde{X} + \nabla_{\tilde{X}}^{F^\perp}\mathcal{C}V) - g_2(\mathcal{C}W, (\nabla F_*)(\tilde{X}, Z') + F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1}Z')) \\ &\quad - g_2(\mathcal{C}W, -A_{\mathcal{C}V}F_*\tilde{X} + \nabla_{\tilde{X}}^{F^\perp}\mathcal{C}V), \end{aligned}$$

where $F_*Z' = \mathcal{B}V \in \Gamma(\text{range}F_*)$ for $Z' \in \Gamma((\ker F_*)^\perp)$. Since F is a conformal Riemannian map, using (8), we arrive at

$$\begin{aligned} g_2(\nabla_V^2 W, F_*\tilde{X}) &= -g_2(W, [V, F_*\tilde{X}]) - g_2(\mathcal{B}W, (\nabla F_*)(\tilde{X}, Z')^{(\text{range}F_*)^\perp}) - g_2(\mathcal{B}W, F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1}Z')) \\ &\quad + g_2(\mathcal{B}W, A_{\mathcal{C}V}F_*\tilde{X}) - g_2(\mathcal{C}W, (\nabla F_*)(\tilde{X}, \tilde{Y}')^{(\text{range}F_*)^\perp}) - g_2(\mathcal{C}W, \nabla_{\tilde{X}}^{F^\perp}\mathcal{C}V) \end{aligned}$$

Then from (9), we get

$$\begin{aligned} g_2(\nabla_V^2 W, F_*\tilde{X}) &= -g_2(W, [V, F_*\tilde{X}]) - g_2(\mathcal{B}W, F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1}Z')) + g_2(\mathcal{B}W, A_{\mathcal{C}V}F_*\tilde{X}) \\ &\quad - g_2(\mathcal{C}W, (\nabla F_*)(\tilde{X}, \tilde{Y}')^{(\text{range}F_*)^\perp}) - g_2(\mathcal{C}W, \nabla_{\tilde{X}}^{F^\perp}\mathcal{C}V) \\ &\quad - g_2(\mathcal{B}W, \tilde{X}(\ln \lambda)F_*Z' + Z'(\ln \lambda)F_*\tilde{X} - g_1(\tilde{X}, Z')F_*(\text{grad} \ln \lambda)) \end{aligned}$$

or

$$\begin{aligned} g_2(\nabla_V^2 W, F_*\tilde{X}) &= -g_2(W, [V, F_*\tilde{X}]) - g_2(\mathcal{B}W, F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1}Z')) + g_2(\mathcal{B}W, A_{\mathcal{C}V}F_*\tilde{X}) \\ &\quad - g_2(\mathcal{C}W, (\nabla F_*)(\tilde{X}, \tilde{Y}')^{(\text{range}F_*)^\perp}) - g_2(\mathcal{C}W, \nabla_{\tilde{X}}^{F^\perp}\mathcal{C}V) \\ &\quad - g_1(\tilde{X}, \text{grad} \ln \lambda)g_2(\mathcal{B}W, F_*Z') - g_1(Z', \text{grad} \ln \lambda)g_2(\mathcal{B}W, F_*\tilde{X}) \\ &\quad + g_1(\tilde{X}, Z')g_2(\mathcal{B}W, F_*(\text{grad} \ln \lambda)) \end{aligned}$$

Hence we have

$$\begin{aligned}
g_2(\nabla_V^2 W, F_* \tilde{X}) &= -g_2(W, [V, F_* \tilde{X}]) - g_2(\mathcal{B}W, F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1} Z')) + g_2(\mathcal{B}W, A_{\mathcal{C}V} F_* \tilde{X}) \\
&\quad - g_2(\mathcal{C}W, (\nabla F_*)(\tilde{X}, \tilde{Y}')^{(\text{range } F_*)^\perp}) - g_2(\mathcal{C}W, \nabla_{\tilde{X}}^{F^\perp} \mathcal{C}V) \\
&\quad - g_1(\tilde{X}, \mathcal{H}grad \ln \lambda) g_2(\mathcal{B}W, F_* Z') - g_1(Z', \mathcal{H}grad \ln \lambda) g_2(\mathcal{B}W, F_* \tilde{X}) \\
&\quad + g_1(\tilde{X}, Z') g_2(\mathcal{B}W, F_*(grad \ln \lambda))
\end{aligned}$$

From above equation, we can conclude that the two assertions in Theorem 3.2 imply the third. \square

We now recall the following characterization for locally (usual) product Riemannian manifold from [10]. Let g be a Riemannian metric tensor on the manifold $\mathcal{M} = \mathcal{M}_1 \times \mathcal{M}_2$ and assume that the canonical foliations $D_{\mathcal{M}_1}$ and $D_{\mathcal{M}_2}$ intersect perpendicularly everywhere. Then g is the metric tensor of a usual product of Riemannian manifolds if and only if $D_{\mathcal{M}_1}$ and $D_{\mathcal{M}_2}$ are totally geodesic foliations. From Theorem 3.1 and Theorem 3.2, we have the following theorem;

Theorem 3.3. *Let F be a horizontally homothetic conformal anti-invariant Riemannian map from a Riemannian manifold (\mathcal{M}_1, g_1) to a Kähler manifold (\mathcal{M}_2, g_2, J) . Then the base manifold is a locally product manifold $\mathcal{M}_2(\text{range } F_*) \times \mathcal{M}_2(\text{range } F_*)^\perp$ if and only if*

$$g_2((\nabla F_*)(\tilde{X}, \tilde{Y}')^{(\text{range } F_*)^\perp}, JF_* \tilde{Y}) = g_2(\nabla_{\tilde{X}}^{F^\perp} JF_* \tilde{Y}, \mathcal{C}V)$$

and

$$\begin{aligned}
g_2(\mathcal{B}V, A_{\mathcal{C}V} F_* \tilde{X} + F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1} Z')) &= -g_2(\mathcal{C}W, (\nabla F_*)(\tilde{X}, Z')^{(\text{range } F_*)^\perp} + \nabla_{\tilde{X}}^{F^\perp} \mathcal{C}V) \\
&\quad - g_2(W, [V, F_* \tilde{X}])
\end{aligned}$$

for any $V, W \in \Gamma((\text{range } F_*)^\perp)$ and $\tilde{X}, \tilde{Y}, \tilde{Y}', Z' \in \Gamma((\ker F_*)^\perp)$ such that $F_* \tilde{Y}' = \mathcal{B}W$ and $F_* Z' = \mathcal{B}V$.

In the sequel we are going to investigate the harmonicity of conformal anti-invariant Riemannian map. We first have the following general result.

Theorem 3.4. *Let F be a conformal anti-invariant Riemannian map from a Riemannian manifold (\mathcal{M}_1, g_1) to a Kähler manifold (\mathcal{M}_2, g_2, J) . Then F is harmonic if and only if the following conditions are satisfied;*

- (a) *the fibres are minimal,*
- (b) *trace $\mathcal{B}\nabla_{(.)}^{F^\perp} JF_*(.) - F_*(\nabla_{(.)}^{\mathcal{M}_1}(.) = 0$,*
- (c) *trace $J A_{JF_*(.)}(.) - \mathcal{C}\nabla_{(.)}^{F^\perp} JF_*(.) = 0$.*

Proof. For $U \in \Gamma(\ker F_*)$, using (4), we have

$$(\nabla F_*)(U, U) = -F_*(\nabla_U^{\mathcal{M}_1} U). \quad (13)$$

For $\tilde{X} \in \Gamma((\ker F_*)^\perp)$, using (4) and (3), we have

$$(\nabla F_*)(\tilde{X}, \tilde{X}) = \nabla_{\tilde{X}}^2 F_* \tilde{X} - F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1} \tilde{X}) = -J \nabla_{\tilde{X}}^2 JF_* \tilde{X} - F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1} \tilde{X}).$$

From (5),(8) and (11) we obtain

$$(\nabla F_*)(\tilde{X}, \tilde{X})^{(rangeF_*)} + (\nabla F_*)(\tilde{X}, \tilde{X})^{(rangeF_*)^\perp} = JA_{JF_*\tilde{X}}\tilde{X} - \mathcal{B}\nabla_{\tilde{X}}^{F\perp}JF_*\tilde{X} - \mathcal{C}\nabla_{\tilde{X}}^{F\perp}JF_*\tilde{X} - F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1}\tilde{X}). \quad (14)$$

Then taking the $(rangeF_*)$ - components and $((rangeF_*)^\perp)$ - components of above expression (14), we arrive at

$$(\nabla F_*)(\tilde{X}, \tilde{X})^{(rangeF_*)} = -\mathcal{B}\nabla_{\tilde{X}}^{F\perp}JF_*\tilde{X} - F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1}\tilde{X}) \quad (15)$$

and

$$(\nabla F_*)(\tilde{X}, \tilde{X})^{(rangeF_*)^\perp} = JA_{JF_*\tilde{X}}\tilde{X} - \mathcal{C}\nabla_{\tilde{X}}^{F\perp}JF_*\tilde{X}. \quad (16)$$

Then proof follows from (13), (15) and (16). \square

Definition 3.2. *Let F be a conformal Riemannian map from a Riemannian manifold (\mathcal{M}_1, g_1) to a Riemannian manifold (\mathcal{M}_2, g_2) . Then we say that F is a horizontally homothetic conformal Riemannian map if the gradient of its dilation λ is vertical, i.e., $\mathcal{H}(\text{grad}\lambda) = 0$.*

From Theorem 3.4, we have the following result.

Corollary 3.1. *Let $F : (\mathcal{M}_1, g_1) \rightarrow (\mathcal{M}_2, g_2, J)$ be a conformal anti-invariant Riemannian map such that $n \neq \frac{2}{\lambda^2}$, where (\mathcal{M}_1, g_1) is a Riemannian manifold and (\mathcal{M}_2, g_2, J) is a Kähler manifold. If F satisfies*

$$\text{trace} \mathcal{B}\nabla_{(.)}^{F\perp}JF_*(.) - F_*(\nabla_{(.)}^{\mathcal{M}_1}(.)) = 0,$$

then F is a horizontally homothetic conformal Riemannian map.

We recall that a differentiable map F between Riemannian manifold (\mathcal{M}_1, g_1) and (\mathcal{M}_2, g_2) is called a totally geodesic map if $(\nabla F_*)(\tilde{X}, \tilde{Y}) = 0$ for all $\tilde{X}, \tilde{Y} \in \Gamma(TM_1)$. We have the following theorem.

Theorem 3.5. *Let F be a conformal anti-invariant Riemannian map from a Riemannian manifold (\mathcal{M}_1, g_1) to a Kähler manifold (\mathcal{M}_2, g_2, J) . Then F is totally geodesic if and only if*

- (a) $g_2(B\nabla_{\tilde{X}}^{F\perp}JF_*\tilde{Y}_2, F_*(Z)) = \lambda^2 g_1(\nabla_{\tilde{X}}^{\mathcal{M}_1}\tilde{Y}, Z)$
- (b) $JA_{JF_*\tilde{Y}_2}\tilde{X} = C\nabla_{\tilde{X}}^{F\perp}JF_*\tilde{Y}_2$

for any $\tilde{X}, \tilde{Y} = \tilde{Y}_1 + \tilde{Y}_2, Z \in \Gamma(TM_1)$, where $\tilde{Y}_1 \in \Gamma(\ker F_*)$, $\tilde{Y}_2 \in \Gamma((\ker F_*)^\perp)$.

Proof. For $\tilde{X}, \tilde{Y} \in \Gamma(TM_1)$ and $\tilde{Y}_1 \in \Gamma(\ker F_*)$, $\tilde{Y}_2 \in \Gamma((\ker F_*)^\perp)$, using (4), (3) and (5), we have

$$(\nabla F_*)(\tilde{X}, \tilde{Y}) = -J(-A_{JF_*\tilde{Y}_2}\tilde{X} + \nabla_{\tilde{X}}^{F\perp}JF_*\tilde{Y}_2) - F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1}\tilde{Y}).$$

Then from (11) we get

$$(\nabla F_*)(\tilde{X}, \tilde{Y}) = JA_{JF_*\tilde{Y}_2}\tilde{X} - B\nabla_{\tilde{X}}^{F\perp}JF_*\tilde{Y}_2 - C\nabla_{\tilde{X}}^{F\perp}JF_*\tilde{Y}_2 - F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1}\tilde{Y}).$$

Since F is conformal Riemannian map, using (8), we get

$$(\nabla F_*)(\tilde{X}, \tilde{Y})^{rangeF_*} + (\nabla F_*)(\tilde{X}, \tilde{Y})^{(rangeF_*)^\perp} = JA_{JF_*\tilde{Y}_2}\tilde{X} - B\nabla_{\tilde{X}}^{F\perp}JF_*\tilde{Y}_2 \\ - C\nabla_{\tilde{X}}^{F\perp}JF_*\tilde{Y}_2 - F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1}\tilde{Y}).$$

Then taking the $(rangeF_*)$ and $((rangeF_*)^\perp)$ components we arrive at

$$(\nabla F_*)(\tilde{X}, \tilde{Y})^{(rangeF_*)} = B\nabla_{\tilde{X}}^{F\perp}JF_*\tilde{Y}_2 + F_*(\nabla_{\tilde{X}}^{\mathcal{M}_1}\tilde{Y})$$

and

$$(\nabla F_*)(\tilde{X}, \tilde{Y})^{(rangeF_*)^\perp} = JA_{JF_*\tilde{Y}_2}\tilde{X} - C\nabla_{\tilde{X}}^{F\perp}JF_*\tilde{Y}_2.$$

Thus $(\nabla F_*)(\tilde{X}, \tilde{Y}) = 0$ if and only if $(\nabla F_*)(\tilde{X}, \tilde{Y})^{rangeF_*} = 0$ and $(\nabla F_*)(\tilde{X}, \tilde{Y})^{(rangeF_*)^\perp} = 0$. Hence we have

$$g_2(\mathcal{B}\nabla_{\tilde{X}}^{F\perp}JF_*\tilde{Y}_2, F_*(Z)) = -\lambda^2 g_1(\nabla_{\tilde{X}}^{\mathcal{M}_1}\tilde{Y}, Z)$$

and

$$JA_{JF_*\tilde{Y}_2}\tilde{X} - C\nabla_{\tilde{X}}^{F\perp}JF_*\tilde{Y}_2 = 0,$$

which complete the proof. \square

We also have the following result for totally geodesic conformal anti-invariant Riemannian maps.

Theorem 3.6. *Let F be a conformal anti-invariant Riemannian map from a Riemannian manifold (\mathcal{M}_1, g_1) to a Kähler manifold (\mathcal{M}_2, g_2, J) . Then F is totally geodesic if and only if*

- (a) *The horizontal distribution $(kerF_*)^\perp$ defines a totally geodesic foliation on \mathcal{M}_1 .*
- (b) *all the fibres $F^{-1}(y)$ are totally geodesic for $y \in \mathcal{M}_2$.*
- (c) *$(rangeF_*)^\perp$ defines a totally geodesic foliation on \mathcal{M}_2 .*

for any $\tilde{X}, \tilde{Y} \in \Gamma(kerF_*)^\perp$ and $V \in \Gamma(rangeF_*)$.

Proof. For $\tilde{X}, \tilde{Y} \in \Gamma(kerF_*)^\perp$ and $U \in \Gamma(kerF_*)$, using (4), we have

$$g_2((\nabla F_*)(\tilde{X}, U), F_*\tilde{Y}) = -\lambda^2 g_1(\nabla_{\tilde{X}}^{\mathcal{M}_1}U, \tilde{Y}).$$

Since $\nabla^{\mathcal{M}_1}$ is a Levi-Civita connection, we obtain

$$g_2((\nabla F_*)(\tilde{X}, U), F_*\tilde{Y}) = \lambda^2 g_1(U, \nabla_{\tilde{X}}^{\mathcal{M}_1}\tilde{Y}), (\lambda \neq 0).$$

Hence $(\nabla F_*)(\tilde{X}, U) = 0$ for $\tilde{X} \in \Gamma(kerF_*)^\perp$ and $U \in \Gamma(kerF_*)$ if and only if (a).

For $U, V \in \Gamma(kerF_*)$ and $\tilde{X} \in \Gamma(kerF_*)^\perp$, we have

$$g_2((\nabla F_*)(U, V), F_*\tilde{X}) = -\lambda^2 g_1(\nabla_U^{\mathcal{M}_1}V, \tilde{X}), (\lambda \neq 0)$$

Thus $(\nabla F_*)(U, V) = 0$ for $U, V \in \Gamma(kerF_*)$ if and only if (b).

For $\tilde{X}, \tilde{Y} \in \Gamma(kerF_*)^\perp$ and $V \in \Gamma(rangeF_*)$, since \mathcal{M}_2 is a Kähler manifold, using (2), (4), (11) we have

$$g_2((\nabla F_*)(\tilde{X}, \tilde{Y}), V) - g_2(\nabla_{\tilde{X}}^2 F_*\tilde{Y}', JF_*\tilde{Y}) + g_2(\nabla_{\tilde{X}}^2 JF_*\tilde{Y}, \mathcal{C}V),$$

where $F_*\tilde{Y}' = \mathcal{B}V$ for $\tilde{Y}' \in \Gamma((\ker F_*)^\perp)$. Since F is a conformal Riemannian map, using (4), (5) and (8) we obtain

$$g_2((\nabla F_*)(\tilde{X}, \tilde{Y}), V) = -g_2((\nabla F_*)(\tilde{X}, \tilde{Y}'), (range F_*)^\perp, JF_*\tilde{Y}) + g_2(\nabla_{\tilde{X}}^{F^\perp} JF_*\tilde{Y}, \mathcal{C}V).$$

Thus, $(\nabla F_*)(\tilde{X}, \tilde{Y}) = 0$ for $\tilde{X}, \tilde{Y} \in \Gamma((\ker F_*)^\perp)$ if and only if (c). \square

4. Umbilical conformal anti-invariant Riemannian maps

In this section, we investigate the umbilical case for the conformal anti-invariant Riemannian maps. We first recall the following definition.

Definition 4.1. [7] Let F be a map from a Riemannian manifold (\mathcal{M}_1, g_1) to a Riemannian manifold (\mathcal{M}_2, g_2) . Then F is called a weakly g_1 -umbilical if there exist

- (1) a field ξ along F , nowhere 0, with values in $(\ker F_*)^\perp$,
- (2) a field Z on \mathcal{M} such that for every \tilde{X}, \tilde{Y} on $\Gamma(TM)$ we have

$$(\nabla F_*)(\tilde{X}, \tilde{Y}) = g_1(\tilde{X}, \tilde{Y})[F_*(Z) + \xi]. \quad (17)$$

F is called strong g_1 -umbilical if $Z = 0$.

Using the above definition, we can give the following theorem.

Theorem 4.1. Let F be a g_1 -umbilical conformal Riemannian map from a Riemannian manifold (\mathcal{M}_1, g_1) to a Riemannian manifold (\mathcal{M}_2, g_2) such that $\dim(\mathcal{H}) \geq 2$. Then F is a totally geodesic map.

Proof. We suppose that F is a weakly g_1 -umbilical conformal Riemannian map such that $\dim(\mathcal{H}) \geq 2$. Then from (9) and (17) we have

$$\tilde{X}(\ln \lambda)F_*\tilde{Y} + \tilde{Y}(\ln \lambda)F_*\tilde{X} - g_1(\tilde{X}, \tilde{Y})F_*(\text{grad} \ln \lambda) = g_1(\tilde{X}, \tilde{Y})F_*Z \quad (18)$$

and

$$(\nabla F_*)(\tilde{X}, \tilde{Y})^{(range F_*)^\perp} = g_1(\tilde{X}, \tilde{Y})\xi. \quad (19)$$

Since $\dim(\mathcal{H}) \geq 2$, we can choose \tilde{X} and \tilde{Y} such that $g_1(\tilde{X}, \tilde{Y}) = 0$. Then we get

$$\tilde{X}(\ln \lambda)F_*\tilde{Y} + \tilde{Y}(\ln \lambda)F_*\tilde{X} = 0.$$

Since \tilde{X} and \tilde{Y} are orthogonal and F is a conformal Riemannian map, we have

$$g_2(F_*\tilde{X}, F_*\tilde{Y}) = \lambda^2 g_1(\tilde{X}, \tilde{Y}) = 0.$$

$F_*\tilde{X}$ and $F_*\tilde{Y}$ are also orthogonal. Then we get

$$\tilde{X}(\ln \lambda)F_*\tilde{Y} = 0, \quad \tilde{Y}(\ln \lambda)F_*\tilde{X} = 0.$$

Thus F is a horizontally homothetic Riemannian map. Since F is horizontally homothetic, from (18), we get $Z = 0$. Thus $(\nabla F_*)(\tilde{X}, \tilde{Y}) = g_1(\tilde{X}, \tilde{Y})\xi$ for $\tilde{X}, \tilde{Y} \in \Gamma(TM)$. In particular, for $U, V \in \Gamma(\ker F_*)$, we get

$$-F_*(\nabla_U V) = g_1(U, V)\xi.$$

The right side of this equation belongs to $\Gamma((\text{range}F_*)^\perp)$ while the left side of this equation belongs to $\Gamma(\text{range}F_*)$. Hence $F_*(\nabla_U V) = 0$ and $\xi = 0$ which proves our assertion. \square

From Theorem 3.6 and Theorem 4.1, we have the following result.

Corollary 4.1. *Let F be a g_1 -umbilical conformal anti-invariant Riemannian map from a Riemannian manifold (\mathcal{M}_1, g_1) to a Kähler manifold (\mathcal{M}_2, g_2, J) such that $\dim(\mathcal{H}) \geq 2$. Then we have the following assertions:*

- (a) *The horizontal distribution $(\ker F_*)^\perp$ defines a totally geodesic foliation on \mathcal{M}_1 .*
- (b) *all the fibres $F^{-1}(y)$ are totally geodesic for $y \in \mathcal{M}_2$.*
- (c) *$(\text{range}F_*)^\perp$ defines a totally geodesic foliation on \mathcal{M}_2 .*

From the above Theorem 4.1, we can give the following;

Theorem 4.2. *Let $F : (\mathcal{M}_1, g_1) \rightarrow (\mathcal{M}_2, J, g_2)$ be a g_1 -umbilical conformal anti-invariant Riemannian map from a Riemannian manifold (\mathcal{M}_1, g_1) to a Kähler manifold (\mathcal{M}_2, g_2, J) . Then at least one of the following is satisfied:*

- (a) *The horizontal distribution $(\ker F_*)^\perp$ is 1 dimensional distribution.*
- (b) *F is a totally geodesic conformal Riemannian map.*

Proof. We suppose that F is not a totally geodesic g_1 -umbilical conformal Riemannian map. Then for $w_1, w_2 \in \Gamma((\ker F_*)^\perp)$, since \mathcal{M}_2 is a Kähler manifold, using (6), (4) and (17) we obtain

$$-A_{JF_*(w_1)}F_*(w_2) + \nabla_{F_*(w_2)}^1 JF_*(w_1) = g_1(w_1, w_2)J\xi + g_1(w_1, w_2)JF_*(Z) + JF_*(\nabla_{w_2}^1 w_1).$$

Taking inner product with $F_*(w_2)$ in the above equation, we get

$$-g_2(A_{JF_*(w_1)}F_*(w_2), F_*(w_2)) = -g_1(w_1, w_2)g_2(\xi, JF_*(w_2)). \quad (20)$$

From (6), (17) and (20), we get

$$g_1(w_2, w_2)g_2(\xi, JF_*(w_1)) = g_1(w_1, w_2)g_2(\xi, JF_*(w_2)). \quad (21)$$

Interchanging the role of w_1 and w_2 in (21), we obtain

$$g_1(w_1, w_1)g_2(\xi, JF_*(w_2)) = g_1(w_1, w_2)g_2(\xi, JF_*(w_1)). \quad (22)$$

From (21) and (22), we get

$$g_2(\xi, JF_*(w_2)) = \frac{g_1(w_1, w_2)^2}{g_1(w_1, w_1)g_1(w_2, w_2)}g_2(\xi, JF_*(w_1)). \quad (23)$$

From (23), w_1 and w_2 are linear dependent, which gives the proof. \square

5. Conclusions

In this paper, we just introduce a general Riemannian map from a Riemannian manifold to an almost Hermitian manifold. From the theory of submanifolds of almost Hermitian manifolds, one can see that there are many new research problems to be investigated.

Acknowledgement: This paper is supported by the Scientific and Technological Council of Turkey (TUBITAK) under project number 114F339.

REFERENCES

- [1] *R. Abraham, J. E. Marsden and T. Ratiu*, Manifolds, Tensor Analysis and Applications, Applied Mathematical Sciences, **75**, Springer, New York, 1988.
- [2] *P. Baird and J. C. Wood*, Harmonic Morphisms Between Riemannian Manifolds, Clarendon Press, Oxford, 2003.
- [3] *B. Y. Chen and K. Ogiue*, On totally real submanifolds, *Trans. Amer. Math. Soc.* **193** (1974), 257-266.
- [4] *A. E. Fischer*, Riemannian maps between Riemannian manifolds, *Contemp. Math.* **132** (1992), 331-366.
- [5] *J. P. Jaiswal*, Harmonic maps on Sasakian manifolds, *J. Geom.* **104**(2) (2013), 309-315.
- [6] *A. J. P. Jaiswal and B. A. Pandey*, Non-existence of harmonic maps on trans-Sasakian manifolds, *Lobachevskii J. Math.*, **37**(2) (2016), 185-192.
- [7] *T. Nore*, Second fundamental form of a map, *Ann. Mat. Pure Appl.* **146** (1987), 281-310.
- [8] *B. Pandey, J. P. Jaiswal and R. H. Ojha*, Necessary and sufficient conditions for the Riemannian map to be a harmonic map on cosymplectic manifolds, *Proc. Nat. Acad. Sci. India Sect. A* **85**(2) (2015), 265-268.
- [9] *R. Prasad and S. Pandey*, Slant Riemannian maps from an almost contact manifold, *Filomat*, to appear.
- [10] *R. Ponge and H. Reckziegel*, Twisted products in pseudo Riemannian geometry, *Geometriae Dedicata* **48** (1993), 15-25.
- [11] *B. Şahin*, Invariant and anti-invariant Riemannian maps to Kähler manifolds, *Int. J. Geom. Meth. Mod. Phys.* **7**(3) (2010), 1-19.
- [12] *B. Şahin*, Conformal Riemannian maps between Riemannian manifolds, their harmonicity and decomposition theorems, *Acta Appl. Math.* **109**(3) (2010), 829-847.
- [13] *K. Yano and M. Kon*, Anti-invariant submanifolds, Lecture Notes in Pure and Applied Mathematics, Vol. 21, Marcel Dekker Inc., 1976.
- [14] *K. Yano and M. Kon*, Structures on Manifolds, Series in Pure Mathematics 3, World Scientific Pub. Co., Singapore, 1984.