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CONFORMAL ANTI-INVARIANT RIEMANNIAN MAPS TO

KÄHLER MANIFOLDS

Mehmet Akif Akyol1 and Bayram Şahin2

We introduce conformal anti-invariant Riemannian maps from Riemann-

ian manifolds to almost Hermitian manifolds and show that they include both anti-

invariant submanifolds and anti-invariant Riemannian maps. We give non-trivial

examples, investigate the geometry of certain distributions and obtain decomposi-

tion theorems for the base manifold. The harmonicity and totally geodesicity of

conformal anti-invariant Riemannian maps are also obtained. Moreover, we study

weakly umbilical conformal Riemannian maps and obtain a classification theorem

for umbilical conformal anti-invariant Riemannian maps.
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1. Introduction

Let (M, JM) be an almost complex manifold with almost complex structure

JM. A totally real submanifold (anti-invariant submanifold)M is a submanifold such

that the almost complex structure JM of the ambient manifold M carries a tangent

space of M into the corresponding normal space of M . A totally real submanifold

is called Lagrangian if dimRM = dimCM. Real curves of Kähler manifolds are

examples of totally real submanifolds. The first contribution to the geometry of

totally real submanifolds was given in the early 1970′s [3]. For details, see [13].

As a generalization of isometric immersions and Riemannian submersions,

Riemannian maps were introduced in [4] as follows. Let F : (M, gM ) −→ (N, gN ) be

a smooth map between Riemannian manifolds such that 0 < rankF < min{m,n},
where dimM = m and dimN = n. Then we denote the kernel space of F∗ by kerF∗
and consider the orthogonal complementary space H = (kerF∗)

⊥ to kerF∗ in TM .

Then the tangent bundle of M has the following decomposition

TM = kerF∗ ⊕H.
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We denote the range of F∗ by rangeF∗ and consider the orthogonal com-

plementary space (rangeF∗)
⊥ to rangeF∗ in the tangent bundle TN of N . Since

rankF < min{m,n}, we always have (rangeF∗)
⊥. Thus the tangent bundle TN of

N has the following decomposition

F−1(TN) = (rangeF∗)⊕ (rangeF∗)
⊥.

Now, a smooth map F : (M
m

1 , gM ) −→ (M
n

2 , gN ) is called Riemannian map at

p1 ∈ M if the horizontal restriction F
h

∗p1 : (kerF∗p1)
⊥ −→ (rangeF∗p1) is a lin-

ear isometry between the inner product spaces ((kerF∗p1)
⊥, gM (p1) |(kerF∗p1)

⊥) and

(rangeF∗p1 , gN (p2) |(rangeF∗p1 )
), p2 = F (p1). Thus F∗ satisfies the equation

gN (F∗X̃, F∗Ỹ ) = gM (X̃, Ỹ ) (1)

for X̃, Ỹ vector fields tangent to H. Indeed, it follows that isometric immersions

and Riemannian submersions are particular Riemannian maps with kerF∗ = {0}
and (rangeF∗)

⊥ = {0}. It is known that a Riemannian map is a subimmersion

[4] and this fact implies that the rank of the linear map F∗p : TpM −→ TF (p)N is

constant for p in each connected component of M , [1] and [4]. It is also important

to note that Riemannian maps satisfy the eikonal equation. Different properties of

Riemannian maps have been studied widely by many authors, see: [5], [6], [8], and

[9]. Recently, conformal Riemannian maps as a generalization of Riemannian maps

have been defined in [12] and the harmonicity of such maps have been also obtained.

On the other hand, as a generalization of totally real submanifolds, anti-

invariant Riemannian maps from Riemannian manifolds to almost complex man-

ifolds were defined and studied in [11]. In this paper, we are going to introduce

and study conformal anti-invariant Riemannian maps from Riemannian manifolds

to almost complex manifolds as a generalization of totally real submanifolds and

anti-invariant Riemannian maps.

2. Preliminaries

In this section, we recall some basic materials from [2, 14]. A 2n−dimensional

Riemannian manifold (M, g, J) is called an almost Hermitian manifold if there exists

a tensor field J of type (1, 1) on M such that J2 = −I and

g(X̃, Ỹ ) = g(JX̃, JỸ ), ∀X̃, Ỹ ∈ Γ(TM), (2)

where I denotes the identity transformation of TpM. Consider an almost Hermitian

manifold (M, g, J) and denote by ∇ the Levi-Civita connection on M with respect

to g. Then M is called a Kähler manifold [14] if J is parallel with respect to ∇, i.e.

(∇X̃J)Ỹ = 0, (3)

∀X̃, Ỹ ∈ Γ(TM).

We now recall the notion of harmonic maps between Riemannian manifolds.

Let (M, gM) and (N, gN ) be Riemannian manifolds and suppose that φ : M → N is
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a smooth map between them. Then the second fundamental form of φ is given by

(∇φ∗)(X̃, Ỹ ) = ∇φ

X̃
φ∗(Ỹ )− φ∗(∇

M

X̃
Ỹ ) (4)

for X̃, Ỹ ∈ Γ(TM), where ∇φ is the pullback connection. It is known that the

second fundamental form is symmetric. The tension field of φ is the section τ(φ) of

the pullback bundle Γ(φ−1TN) defined byτ(φ) = divφ∗ =
∑m

i=1(∇φ∗)(ei, ei), where

{e1, ..., em} is the orthonormal frame on M. A smooth map φ satisfying τ(φ) = 0 is

called a harmonic map, see [2].

We denote by ∇2 both the Levi-Civita connection of (N, gN ) and its pull-

back along F . Then according to [7], for any vector field X̃ on M and any sec-

tion V of (rangeF∗)
⊥, where (rangeF∗)

⊥ is the subbundle of F−1(TN) with fiber

(F∗(TpM))⊥− orthogonal complement of F∗(TpM) for gN over p, we have ∇F⊥
X̃

V

which is the orthogonal projection of ∇2
X̃
V on (F∗(TpM))⊥− such that ∇F⊥g2 = 0.

We now define AV as

∇2
X̃
V = −AV F∗X̃ +∇F⊥

X̃
V (5)

where AV F∗X̃ is tangential component (a vector field along F ) of ∇2
X̃
V. It is easy

to see that AV F∗X̃ is bilinear in V and F∗ and AV F∗X̃ at p depends only on Vp and

F∗pX̃p. By direct computations, we obtain

g2(AV F∗X̃, F∗Ỹ ) = g2(V, (∇F∗)(X̃, Ỹ )) (6)

for X̃, Ỹ ∈ Γ((kerF∗)
⊥) and V ∈ Γ((rangeF∗)

⊥). Since (∇F∗) is symmetric, it

follows that AV is a symmetric linear transformation of rangeF∗.

3. Conformal anti-invariant Riemannian maps

In this section, we define and study conformal anti-invariant Riemannian

maps, give examples, investigate the geometry of leaves of the distributions which

are defined on the target manifolds. We also give a decomposition theorem and ob-

tain necessary and sufficient conditions for such conformal Riemannian maps to be

totally geodesic. We first recall that, in [12], the second author of the present paper

showed that the second fundamental form (∇F∗)(X̃, Ỹ ), ∀X̃, Ỹ ∈ Γ((kerF∗)
⊥), of a

conformal Riemannian map is in the following form

(∇F∗)(X̃, Ỹ )rangeF∗ = X̃(lnλ)F∗Ỹ + Ỹ (lnλ)F∗X̃ − g1(X̃, Ỹ )F∗(grad lnλ). (7)

Thus if we denote the (rangeF∗)
⊥− component of (∇F∗)(X̃, Ỹ ) by (∇F∗)(X̃, Ỹ )(rangeF∗)⊥ ,

we can write (∇F∗)(X̃, Ỹ ) as

(∇F∗)(X̃, Ỹ ) = (∇F∗)(X̃, Ỹ )rangeF∗ + (∇F∗)(X̃, Ỹ )(rangeF∗)⊥ , (8)

for X̃, Ỹ ∈ Γ((kerF∗)
⊥). Hence we have

(∇F∗)(X̃, Ỹ ) = X̃(lnλ)F∗Ỹ + Ỹ (lnλ)F∗X̃ − g1(X̃, Ỹ )F∗(grad lnλ)

+(∇F∗)(X̃, Ỹ )(rangeF∗)⊥ , (9)
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We now present the following definition for conformal anti-invariant Riemann-

ian maps as a generalization of totally real submanifolds and anti-invariant Riemann-

ian maps.

Definition 3.1. Let F be a conformal Riemannian map from a Riemannian mani-

fold (M1, g1) to an almost Hermitian manifold (M2, g2, J). Then we say that F is a

conformal anti-invariant Riemannian map at p ∈ M if J(rangeF∗)p ⊆ (rangeF∗p)
⊥.

If F is a conformal anti-invariant Riemannian map for any p ∈ M, then F is called

a conformal anti-invariant Riemannian map.

We are going to give some examples of conformal anti-invariant Riemannian

maps.

Example 3.1. [13] Every anti-invariant submanifold of an almost Hermitian man-

ifold is a conformal anti-invariant Riemannian map with λ = 1 and kerF∗ = {0}.

Example 3.2. [11] Every anti-invariant Riemannian map from a Riemannian man-

ifold to an almost Hermitian manifold is a conformal anti-invariant Riemannian map

with λ = 1.

We say that a conformal anti-invariant Riemannian map is proper if λ ̸= I.

We now present an example of a proper conformal anti-invariant Riemannian map.

In the following R2m denotes the Euclidean 2m-space with the standard metric. An

almost complex structure J on R2m is said to be compatible if (R2m, J) is com-

plex analytically isometric to the complex number space Cm with the standard flat

Kählerian metric. We denote by J the compatible almost complex structure on R2m

defined by

J(a1, ..., a2m) = (−a2, a1, ...,−a2m, a2m−1).

Example 3.3. Consider the following map defined by

F : R4 −→ R4

(x1, x2, x3, x4) (ex1 sinx2, 0, e
x1 cosx2, 0).

We have

kerF∗ = span{Z1 = ∂x3, Z2 = ∂x4}

and

(kerF∗)
⊥ = span{H1 = ex1 sinx2∂x1 + ex1 cosx2∂x2,H2 = ex1 cosx2∂x1 − ex1 sinx2∂x2}.

By direct computations, we have rangeF∗ = span{F∗H1 = e2x1∂y1, F∗H2 = e2x1∂y3}
and (rangeF∗)

⊥ = { ∂
∂y2

, ∂
∂y4

}. It is also easy to check that

g2(F∗H1, F∗H1) = e2x1g1(H1,H1)

and

g2(F∗H2, F∗H2) = e2x1g1(H2,H2),
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which show that F is a conformal Riemannian map with λ = ex1. Moreover, it is

easy to see that JF∗H1 = e2x1 ∂
∂y2

and JF∗H2 = e2x1 ∂
∂y4

, where J is the canonical

complex structure of R4 defined by

J(y1, y2, y3, y4) = (−y2, y1,−y3, y4).

As a result, F is a conformal anti-invariant Riemannian map.

Let F be a conformal anti-invariant Riemannian map from a Riemannian

manifold (M1, g1) to an almost Hermitian manifold (M2, g2, J). First of all, from

Definition 3.1, we have J(rangeF∗) ∩ (rangeF∗)
⊥ ̸= {0}. We denote the comple-

mentary orthogonal distribution to J(rangeF∗) in ((rangeF∗)
⊥) by µ. Then we

have

(rangeF∗)
⊥ = J(rangeF∗)⊕ µ. (10)

It is easy to see that µ is an invariant distribution of (rangeF∗)
⊥, under the endo-

morphism J2. Thus, for V ∈ Γ((rangeF∗)
⊥), we have

JV = BV + CV (11)

where BV ∈ Γ(rangeF∗) and CV ∈ Γ((rangeF∗)
⊥).

We now investigate the geometry of the leaves of (rangeF∗) and (rangeF∗)
⊥.

First, we give the following result.

Theorem 3.1. Let F be a conformal anti-invariant Riemannian map from a Rie-

mannian manifold (M1, g1) to a Kähler manifold (M2, g2, J). Then (rangeF∗) defines

a totally geodesic foliation on M2 if and only if

g2((∇F∗)(X̃, Ỹ ′)(rangeF∗)⊥ , JF∗Ỹ ) = g2(∇F⊥
X̃

JF∗Ỹ ,CW ) (12)

for any W ∈ Γ((rangeF∗)
⊥) and X̃, Ỹ , Ỹ ′ ∈ Γ((kerF∗)

⊥), such that F∗Ỹ
′ = BV.

Proof. For X̃, Ỹ ∈ Γ((kerF∗)
⊥) and W ∈ Γ((rangeF∗)

⊥), using (2) we have

g2(∇2
X̃
F∗Ỹ ,W ) = g2(∇2

X̃
JF∗Ỹ , JW ).

Thus from (11) we obtain

g2(∇2
X̃
F∗Ỹ ,W ) = −g2(∇2

X̃
F∗Ỹ

′, JF∗Ỹ ) + g2(∇2
X̃
JF∗Ỹ ,CW ),

where F∗Ỹ
′ = BW for Ỹ ′ ∈ Γ((kerF∗)

⊥). Since F is a conformal Riemannian map,

using (4), (5) and (8) we obtain

g2(∇2
X̃
F∗Ỹ ,W ) = −g2((∇F∗)(X̃, Ỹ ′)rangeF∗ + (∇F∗)(X̃, Ỹ ′)(rangeF∗)⊥ + F∗(∇M1

X̃
Ỹ ′), JF∗Ỹ )

+ g2(−AJF∗Ỹ
X̃ +∇F⊥

X̃
JF∗Ỹ ,CW ).

Hence, we arrive at

g2(∇2
X̃
F∗Ỹ ,W ) = −g2((∇F∗)(X̃, Ỹ ′)(rangeF∗)⊥ , JF∗Ỹ ) + g2(∇F⊥

X̃
JF∗Ỹ ,CW ).

From above equation, (rangeF∗) defines a totally geodesic foliation on M2 if and

only if (12) is satisfied. �

In a similar way, we obtain the following Theorem:



192 Mehmet Akif Akyol, Bayram Şahin

Theorem 3.2. Let F be a conformal anti-invariant Riemannian map from a Rie-

mannian manifold (M1, g1) to a Kähler manifold (M2, g2, J). Then (rangeF∗)
⊥ de-

fines a totally geodesic foliation on M2 if and only if

(i) (rangeF∗)
⊥ defines a totally geodesic foliation on M2.

(ii) F is a horizontally homothetic conformal Riemannian map.

(iii) g2(BV,ACV F∗X̃ + F∗(∇M1

X̃
Z ′)) = −g2(CW, (∇F∗)(X̃, Z ′)(rangeF∗)⊥ +∇F⊥

X̃
CV )

− g2(W, [V, F∗X̃])

for any V,W ∈ Γ((rangeF∗)
⊥) and X̃, Z ′ ∈ Γ((kerF∗)

⊥) such that F∗Z
′ = BV.

Proof. For X̃ ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ((rangeF∗)

⊥), since M2 is a Kähler

manifold, using (2) we have

g2(∇2
V W,F∗X̃) = −g2(W, [V, F∗X̃])− g2(JW,∇2

F∗X̃
JV ).

Then using from (11), (4) and (5) we obtain

g2(∇2
V W,F∗X̃) = −g2(W, [V, F∗X̃])− g2(BW, (∇F∗)(X̃, Z ′) + F∗(∇M1

X̃
Z ′))

− g2(BW,−ACV F∗X̃ +∇F⊥
X̃

CV )− g2(CW, (∇F∗)(X̃, Z ′) + F∗(∇M1

X̃
Z ′))

− g2(CW,−ACV F∗X̃ +∇F⊥
X̃

CV ),

where F∗Z
′ = BV ∈ Γ(rangeF∗) for Z ′ ∈ Γ((kerF∗)

⊥). Since F is a conformal

Riemannian map, using (8), we arrive at

g2(∇2
V W,F∗X̃) = −g2(W, [V, F∗X̃])− g2(BW, (∇F∗)(X̃, Z ′)rangeF∗)− g2(BW,F∗(∇M1

X̃
Z ′))

+ g2(BW,ACV F∗X̃)− g2(CW, (∇F∗)(X̃, Ỹ ′)(rangeF∗)⊥)− g2(CW,∇F⊥
X̃

CV )

Then from (9), we get

g2(∇2
V W,F∗X̃) = −g2(W, [V, F∗X̃])− g2(BW,F∗(∇M1

X̃
Z ′)) + g2(BW,ACV F∗X̃)

− g2(CW, (∇F∗)(X̃, Ỹ ′)(rangeF∗)⊥)− g2(CW,∇F⊥
X̃

CV )

− g2(BW, X̃(lnλ)F∗Z
′ + Z ′(lnλ)F∗X̃ − g1(X̃, Z ′)F∗(grad lnλ))

or

g2(∇2
V W,F∗X̃) = −g2(W, [V, F∗X̃])− g2(BW,F∗(∇M1

X̃
Z ′)) + g2(BW,ACV F∗X̃)

− g2(CW, (∇F∗)(X̃, Ỹ ′)(rangeF∗)⊥)− g2(CW,∇F⊥
X̃

CV )

− g1(X̃, grad lnλ)g2(BW,F∗Z
′)− g1(Z

′, grad lnλ)g2(BW,F∗X̃)

+ g1(X̃, Z ′)g2(BW,F∗(grad lnλ))
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Hence we have

g2(∇2
V W,F∗X̃) = −g2(W, [V, F∗X̃])− g2(BW,F∗(∇M1

X̃
Z ′)) + g2(BW,ACV F∗X̃)

− g2(CW, (∇F∗)(X̃, Ỹ ′)(rangeF∗)⊥)− g2(CW,∇F⊥
X̃

CV )

− g1(X̃,Hgrad lnλ)g2(BW,F∗Z
′)− g1(Z

′,Hgrad lnλ)g2(BW,F∗X̃)

+ g1(X̃, Z ′)g2(BW,F∗(grad lnλ))

From above equation, we can conclude that the two assertions in Theorem 3.2 imply

the third. �

We now recall the following characterization for locally (usual) product Rie-

mannian manifold from [10]. Let g be a Riemannian metric tensor on the manifold

M = M1 × M2 and assume that the canonical foliations DM1 and DM2 intersect

perpendicularly everywhere. Then g is the metric tensor of a usual product of Rie-

mannian manifolds if and only if DM1 and DM2 are totally geodesic foliations. From

Theorem 3.1 and Theorem 3.2, we have the following theorem;

Theorem 3.3. Let F be a horizontally homothetic conformal anti-invariant Rie-

mannian map from a Riemannian manifold (M1, g1) to a Kähler manifold (M2, g2, J).

Then the base manifold is a locally product manifold M2(rangeF∗) × M2(rangeF∗)⊥ if

and only if

g2((∇F∗)(X̃, Ỹ ′)(rangeF∗)⊥ , JF∗Ỹ ) = g2(∇F⊥
X̃

JF∗Ỹ ,CV )

and

g2(BV,ACV F∗X̃ + F∗(∇M1

X̃
Z ′)) = −g2(CW, (∇F∗)(X̃, Z ′)(rangeF∗)⊥ +∇F⊥

X̃
CV )

− g2(W, [V, F∗X̃])

for any V,W ∈ Γ((rangeF∗)
⊥) and X̃, Ỹ , Ỹ ′, Z ′ ∈ Γ((kerF∗)

⊥) such that F∗Ỹ
′ =

BW and F∗Z
′ = BV.

In the sequel we are going to investigate the harmonicity of conformal anti-

invariant Riemannian map. We first have the following general result.

Theorem 3.4. Let F be a conformal anti-invariant Riemannian map from a Rie-

mannian manifold (M1, g1) to a Kähler manifold (M2, g2, J). Then F is harmonic

if and only if the following conditions are satisfied;

(a) the fibres are minimal,

(b) traceB∇F⊥
(.) JF∗(.)− F∗(∇M1

(.) (.)) = 0,

(c) traceJAJF∗(.)(.)− C∇F⊥
(.) JF∗(.) = 0.

Proof. For U ∈ Γ(kerF∗), using (4), we have

(∇F∗)(U,U) = −F∗(∇M1
U U). (13)

For X̃ ∈ Γ((kerF∗)
⊥), using (4) and (3), we have

(∇F∗)(X̃, X̃) = ∇2
X̃
F∗X̃ − F∗(∇M1

X̃
X̃) = −J∇2

X̃
JF∗X̃ − F∗(∇M1

X̃
X̃).
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From (5),(8) and (11) we obtain

(∇F∗)(X̃, X̃)(rangeF∗) + (∇F∗)(X̃, X̃)(rangeF∗)⊥ = JAJF∗X̃
X̃ −B∇F⊥

X̃
JF∗X̃

−C∇F⊥
X̃

JF∗X̃ − F∗(∇M1

X̃
X̃). (14)

Then taking the (rangeF∗)− components and ((rangeF∗)
⊥)− components of above

expression (14), we arrive at

(∇F∗)(X̃, X̃)(rangeF∗) = −B∇F⊥
X̃

JF∗X̃ − F∗(∇M1

X̃
X̃) (15)

and

(∇F∗)(X̃, X̃)(rangeF∗)⊥ = JAJF∗X̃
X̃ − C∇F⊥

X̃
JF∗X̃. (16)

Then proof follows from (13), (15) and (16). �

Definition 3.2. Let F be a conformal Riemannian map from a Riemannian man-

ifold (M1, g1) to a Riemannian manifold (M2, g2). Then we say that F is a hori-

zontally homothetic conformal Riemannian map if the gradient of its dilation λ is

vertical, i.e., H(gradλ) = 0.

From Theorem 3.4, we have the following result.

Corollary 3.1. Let F : (M1, g1) → (M2, g2, J) be a conformal anti-invariant Rie-

mannian map such that n ̸= 2
λ2 , where (M1, g1) is a Riemannian manifold and

(M2, g2, J) is a Kähler manifold. If F satisfies

traceB∇F⊥
(.) JF∗(.)− F∗(∇M1

(.) (.)) = 0,

then F is a horizontally homothetic conformal Riemannian map.

We recall that a differentiable map F between Riemannian manifold (M1, g1)

and (M2, g2) is called a totally geodesic map if (∇F∗)(X̃, Ỹ ) = 0 for all X̃, Ỹ ∈
Γ(TM1). We have the following theorem.

Theorem 3.5. Let F be a conformal anti-invariant Riemannian map from a Rie-

mannian manifold (M1, g1) to a Kähler manifold (M2, g2, J). Then F is totally ge-

odesic if and only if

(a) g2(B∇F⊥
X̃

JF∗Ỹ2, F∗(Z)) = λ2g1(∇M1

X̃
Ỹ , Z)

(b) JAJF∗Ỹ2
X̃ = C∇F⊥

X̃
JF∗Ỹ2

for any X̃, Ỹ = Ỹ1 + Ỹ2, Z ∈ Γ(TM1), where Ỹ1 ∈ Γ(kerF∗), Ỹ2 ∈ Γ((kerF∗)
⊥).

Proof. For X̃, Ỹ ∈ Γ(TM1) and Ỹ1 ∈ Γ(kerF∗), Ỹ2 ∈ Γ((kerF∗)
⊥), using (4), (3) and

(5), we have

(∇F∗)(X̃, Ỹ ) = −J(−AJF∗Ỹ2
X̃ +∇F⊥

X̃
JF∗Ỹ2)− F∗(∇M1

X̃
Ỹ ).

Then from (11) we get

(∇F∗)(X̃, Ỹ ) = JAJF∗Ỹ2
X̃ −B∇F⊥

X̃
JF∗Ỹ2 − C∇F⊥

X̃
JF∗Ỹ2 − F∗(∇M1

X̃
Ỹ ).
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Since F is conformal Riemannian map, using (8), we get

(∇F∗)(X̃, Ỹ )rangeF∗ + (∇F∗)(X̃, Ỹ )(rangeF∗)⊥ = JAJF∗Ỹ2
X̃ −B∇F⊥

X̃
JF∗Ỹ2

− C∇F⊥
X̃

JF∗Ỹ2 − F∗(∇M1

X̃
Ỹ ).

Then taking the (rangeF∗) and ((rangeF∗)
⊥) components we arrive at

(∇F∗)(X̃, Ỹ )(rangeF∗) = B∇F⊥
X̃

JF∗Ỹ2 + F∗(∇M1

X̃
Ỹ )

and

(∇F∗)(X̃, Ỹ )(rangeF∗)⊥ = JAJF∗Ỹ2
X̃ − C∇F⊥

X̃
JF∗Ỹ2.

Thus (∇F∗)(X̃, Ỹ ) = 0 if and only if (∇F∗)(X̃, Ỹ )rangeF∗ = 0 and (∇F∗)(X̃, Ỹ )(rangeF∗)⊥ =

0. Hence we have

g2(B∇F⊥
X̃

JF∗Ỹ2, F∗(Z)) = −λ2g1(∇M1

X̃
Ỹ , Z)

and

JAJF∗Ỹ2
X̃ − C∇F⊥

X̃
JF∗Ỹ2 = 0,

which complete the proof. �

We also have the following result for totally geodesic conformal anti-invariant

Riemannian maps.

Theorem 3.6. Let F be a conformal anti-invariant Riemannian map from a Rie-

mannian manifold (M1, g1) to a Kähler manifold (M2, g2, J). Then F is totally ge-

odesic if and only if

(a) The horizontal distribution (kerF∗)
⊥ defines a totally geodesic foliation on

M1.

(b) all the fibres F−1(y) are totally geodesic for y ∈ M2.

(c) (rangeF∗)
⊥ defines a totally geodesic foliation on M2.

for any X̃, Ỹ ∈ Γ(kerF∗)
⊥ and V ∈ Γ(rangeF∗).

Proof. For X̃, Ỹ ∈ Γ(kerF∗)
⊥ and U ∈ Γ(kerF∗), using (4), we have

g2((∇F∗)(X̃, U), F∗Ỹ ) = −λ2g1(∇M1

X̃
U, Ỹ ).

Since ∇M1 is a Levi-Civita connection, we obtain

g2((∇F∗)(X̃, U), F∗Ỹ ) = λ2g1(U,∇M1

X̃
Ỹ ), (λ ̸= 0).

Hence (∇F∗)(X̃, U) = 0 for X̃ ∈ Γ(kerF∗)
⊥ and U ∈ Γ(kerF∗) if and only if (a).

For U, V ∈ Γ(kerF∗) and X̃ ∈ Γ(kerF∗)
⊥, we have

g2((∇F∗)(U, V ), F∗X̃) = −λ2g1(∇M1
U V, Ỹ ), (λ ̸= 0)

Thus (∇F∗)(U, V ) = 0 for U, V ∈ Γ(kerF∗) if and only if (b).

For X̃, Ỹ ∈ Γ(kerF∗)
⊥ and V ∈ Γ(rangeF∗), since M2 is a Kähler manifold,

using (2), (4), (11) we have

g2((∇F∗)(X̃, Ỹ ), V )− g2(∇2
X̃
F∗Ỹ

′, JF∗Ỹ ) + g2(∇2
X̃
JF∗Ỹ ,CV ),
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where F∗Ỹ
′ = BV for Ỹ ′ ∈ Γ((kerF∗)

⊥). Since F is a conformal Riemannian map,

using (4), (5) and (8) we obtain

g2((∇F∗)(X̃, Ỹ ), V ) = −g2((∇F∗)(X̃, Ỹ ′)(rangeF∗)⊥ , JF∗Ỹ ) + g2(∇F⊥
X̃

JF∗Ỹ ,CV ).

Thus, (∇F∗)(X̃, Ỹ ) = 0 for X̃, Ỹ ∈ Γ((kerF∗)
⊥) if and only if (c). �

4. Umbilical conformal anti-invariant Riemannian maps

In this section, we investigate the umbilical case for the conformal anti-invariant

Riemannian maps. We first recall the following definition.

Definition 4.1. [7] Let F be a map from a Riemannian manifold (M1, g1) to a

Riemannian manifold (M2, g2). Then F is called a weakly g1−umbilical if there exist

(1) a field ξ along F , nowhere 0, with values in (kerF∗)
⊥,

(2) a field Z on M such that for every X̃, Ỹ on Γ(TM) we have

(∇F∗)(X̃, Ỹ ) = g1(X̃, Ỹ )[F∗(Z) + ξ]. (17)

F is called strong g1−umbilical if Z = 0.

Using the above definition, we can give the following theorem.

Theorem 4.1. Let F be a g1−umbilical conformal Riemannian map from a Rie-

mannian manifold (M1, g1) to a Riemannian manifold (M2, g2) such that dim(H) ≥
2. Then F is a totally geodesic map.

Proof. We suppose that F is a weakly g1− umbilical conformal Riemannian map

such that dim(H) ≥ 2. Then from (9) and (17) we have

X̃(lnλ)F∗Ỹ + Ỹ (lnλ)F∗X̃ − g1(X̃, Ỹ )F∗(grad lnλ) = g1(X̃, Ỹ )F∗Z (18)

and

(∇F∗)(X̃, Ỹ )(rangeF∗)⊥ = g1(X̃, Ỹ )ξ. (19)

Since dim(H) ≥ 2, we can choose X̃ and Ỹ such that g1(X̃, Ỹ ) = 0. Then we get

X̃(lnλ)F∗Ỹ + Ỹ (lnλ)F∗X̃ = 0.

Since X̃ and Ỹ are orthogonal and F is a conformal Riemannian map, we have

g2(F∗X̃, F∗Ỹ ) = λ2g1(X̃, Ỹ ) = 0.

F∗X̃ and F∗Ỹ are also orthogonal. Then we get

X̃(lnλ)F∗Ỹ = 0, Ỹ (lnλ)F∗X̃ = 0.

Thus F is a horizontally homothetic Riemannian map. Since F is horizontally

homothetic, from (18), we get Z = 0. Thus (∇F∗)(X̃, Ỹ ) = g1(X̃, Ỹ )ξ for X̃, Ỹ ∈
Γ(TM). In particular, for U, V ∈ Γ(kerF∗), we get

−F∗(∇UV ) = g1(U, V )ξ.
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The right side of this equation belongs to Γ((rangeF∗)
⊥) while the left side of this

equation belongs to Γ(rangeF∗). Hence F∗(∇UV ) = 0 and ξ = 0 which proves our

assertion. �

From Theorem 3.6 and Theorem 4.1, we have the following result.

Corollary 4.1. Let F be a g1−umbilical conformal anti-invariant Riemannian map

from a Riemannian manifold (M1, g1) to a Kähler manifold (M2, g2, J) such that

dim(H) ≥ 2. Then we have the following assertions:

(a) The horizontal distribution (kerF∗)
⊥ defines a totally geodesic foliation on

M1.

(b) all the fibres F−1(y) are totally geodesic for y ∈ M2.

(c) (rangeF∗)
⊥ defines a totally geodesic foliation on M2.

From the above Theorem 4.1, we can give the following;

Theorem 4.2. Let F : (M1, g1) → (M2, J, g2) be a g1−umbilical conformal anti-

invariant Riemannian map from a Riemannian manifold (M1, g1) to a Kähler man-

ifold (M2, g2, J). Then at least one of the following is satisfied:

(a) The horizontal distribution (kerF∗)
⊥ is 1 dimensional distribution.

(b) F is a totally geodesic conformal Riemannian map.

Proof. We suppose that F is not a totally geodesic g1− umbilical conformal Rie-

mannian map. Then for w1, w2 ∈ Γ((kerF∗)
⊥), since M2 is a Kähler manifold, using

(6), (4) and (17) we obtain

−AJF∗(w1)F∗(w2) +∇⊥
F∗(w2)

JF∗(w1) = g1(w1, w2)Jξ + g1(w1, w2)JF∗(Z) + JF∗(∇1
w2
w1).

Taking inner product with F∗(w2) in the above equation, we get

−g2(AJF∗(w1)F∗(w2), F∗(w2) = −g1(w1, w2)g2(ξ, JF∗(w2)). (20)

From (6), (17) and (20), we get

g1(w2, w2)g2(ξ, JF∗(w1)) = g1(w1, w2)g2(ξ, JF∗(w2)). (21)

Interchanging the role of w1 and w2 in (21), we obtain

g1(w1, w1)g2(ξ, JF∗(w2)) = g1(w1, w2)g2(ξ, JF∗(w1)). (22)

From (21) and (22), we get

g2(ξ, JF∗(w2)) =
g1(w1, w2)

2

g1(w1, w1)g1(w2, w2)
g2(ξ, JF∗(w2)). (23)

From (23), w1 and w2 are linear dependent, which gives the proof. �
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5. Conclusions

In this paper, we just introduce a general Riemannian map from a Riemannian

manifold to an almost Hermitian manifold. From the theory of submanifolds of

almost Hermitian manifolds, one can see that there are many new research problems

to be investigated.

Acknowledgement: This paper is supported by the Scientific and Technological

Council of Turkey (TUBITAK) under project number 114F339.

REFERENCES

[1] R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis and Applications, Ap-

plied Mathematical Sciences, 75, Springer, New York, 1988.

[2] P. Baird and J. C. Wood, Harmonic Morphisms Between Riemannian Manifolds, Clarendon

Press, Oxford, 2003.

[3] B. Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974),

257-266.

[4] A. E. Fischer, Riemannian maps between Riemannian manifolds, Contemp. Math. 132 (1992),

331-366.

[5] J. P. Jaiswal, Harmonic maps on Sasakian manifolds, J. Geom. 104(2) (2013), 309-315.

[6] A. J. P. Jaiswal and B. A. Pandey, Non-existence of harmonic maps on trans-Sasakian mani-

folds, Lobachevskii J. Math., 37(2) (2016), 185-192.

[7] T. Nore, Second fundamental form of a map, Ann. Mat. Pure Appl. 146 (1987), 281-310.

[8] B. Pandey, J. P. Jaiswal and R. H. Ojha, Necessary and sufficient conditions for the Riemann-

ian map to be a harmonic map on cosymplectic manifolds, Proc. Nat. Acad. Sci. India Sect. A

85(2) (2015), 265-268.

[9] R. Prasad and S. Pandey, Slant Riemannian maps from an almost contact manifold, Filomat,

to appear.

[10] R. Ponge and H. Reckziegel, Twisted products in pseudo Riemannian geometry, Geometriae

Dedicata 48 (1993), 15-25.
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