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ON THE CATEGORY OF FUZZY TOLERANCE RELATIONS 
AND RELATED TOPICS

 Adrian Gabriel NEACSU1

This paper uses category theory to approach the topic of fuzzy tolerance rela-
tions and coverings, and it establishes the connection between them. The relations are 
described from a fuzzy set point of view.
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1. Introduction

Lotfi Zadeh introduced the fuzzy sets in 1965. For a comprehensive introduction we

refer the reader to [9], [10]. The theory of fuzzy sets allowed the study of new types of

relations. A fuzzy relation R on a set X is a X ×X fuzzy set ([11], [14]). If the relation is

reflexive and symmetric then it is called a fuzzy tolerance relation. The tolerance relations

were first studied by Zeeman and have been pursued in [2], [3], [4], [6], [12], [13]. An

example of a tolerance relation is the approximation of real numbers: Every number x ∈ R
is approximately equal to itself with degree 1 and x is approximately equal to y just as much

as y is approximately equal to x.

In [8], we studied fuzzy coverings and coverages. Our aim is to go even further and

focus on the category of fuzzy tolerance relations in connection with coverings ([2], [5]), with

the use of category theory ([1], [7], [15]).

The paper is divided into four sections, the first being this introduction. In the second

section, we recall some basic definition regarding fuzzy sets, fuzzy relations and coverings

of fuzzy sets. In the third section, we tackle the case of normal coverings of fuzzy sets. In

Proposition 3.2, we define the normal exponential of two coverings. In Theorem 3.1, we

construct an involution function on the category of normal coverings. In Proposition 3.4,

we describe several connections between a (normal) covering and its associated relation.

In the fourth section, we study Tol, the category of fuzzy tolerance relations, building

on results of Belohlávek [3]. The study of Tol involves primarily the limits and colimits of the

category. In Theorem 4.2, we establish some connections between Covering, the category of

fuzzy coverings, and Tol. In Theorem 4.3, we construct an isomorphism between t-Covering,

the category of tolerance coverings, which is a subcategory of Covering, and Tol.
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2. Preliminaries

Let X be a set.

Definition 2.1. We say that A is a fuzzy set, or a fuzzy subset of X, if A : X → [0, 1] is

a function. A(x) is the membership degree to which x belongs to A.

Definition 2.2. We say that A : X → [0, 1] is a normal fuzzy set if there exists x ∈ X such

that A(x) = 1.

Remark 2.1. A crisp subset A of X, i.e. a subset A ⊆ X, can be identified with its

characteristic function A : X → {0, 1} , A(x) =

1, x ∈ A

0, x /∈ A
.

Definition 2.3. The pair (X, (Ai)i∈I) is called a crisp covering of X if:

(a) Ai ⊆ X for all i ∈ I.

(b)
⋃
i∈I Ai = X.

Definition 2.4. A crisp covering (X, (Ai)i∈I) is called a partition of X, if the sets Ai’s are

non-empty and disjoint.

Definition 2.5. We say that (X, (Ai)i∈I) is a fuzzy covering, or, simply, a covering of X,

if Ai : X → [0, 1] are fuzzy sets such that for all x ∈ X, there exists i ∈ I with Ai(x) = 1.

In this case, we can also say that X is covered by the fuzzy sets Ai, i ∈ I.

Definition 2.6. If A : X → [0, 1] is a fuzzy set then we define the crisp sets:

(a) A↑ : X → [0, 1], A↑(x) =

1, A(x) > 0

0, A(x) = 0
.

(b) A↓ : X → [0, 1], A↓(x) =

1, A(x) = 1

0, A(x) < 1
.

Definition 2.7. Let α ∈ [0, 1]. The α−cut of the fuzzy set A : X → [0, 1], denoted by Aα,

is Aα : X → [0, 1], Aα(x) =

1, A(x) ≥ α

0, A(x) < α
.

Note that A↑ =
⋃
αAα and A↓ = A1.

Definition 2.8. A fuzzy relation R between X and Y is a fuzzy set

R : X × Y → [0, 1].

The converse of R is the fuzzy relation R˘: Y ×X → [0, 1], where

R (̆y, x) = R(x, y) for all x ∈ X and y ∈ X.

Definition 2.9. The composition of the fuzzy relations R : X×Y → [0, 1] and Q : Y ×Z →
[0, 1] is the relation R;Q : X × Z → [0, 1] where

(R;Q)(x, z) =
∨
y∈Y

(R(x, y) ∧Q(y, z)), (∀)x ∈ X, z ∈ Z.
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Definition 2.10. Let (X, (Ai)i∈I) be a covering. Its associated fuzzy relation is R : X×I →
[0, 1], R(x, i) = Ai(x).

Definition 2.11. Let
(
X, (Ai)i∈I

)
and

(
I, (By)y∈Y

)
be two coverings. Their composition

is
(
X, (Ai)i∈I

)
;
(
I, (By)y∈Y

)
=
(
X,
∨
i∈I (Ai(x) ∧By(i))y∈Y

)
.

Proposition 2.1. The composition of two coverings is a covering.

Proof. Let
(
X, (Ai)i∈I

)
and

(
Y, (Bj)j∈J

)
be two coverings. For any x ∈ X there exists

i ∈ I with Ai(x) = 1. It follows that (Ai(x) ∧By(i)) = By(i). Since
(
I, (By)y∈Y

)
is a

covering, there exists y ∈ Y such that By(i) = 1. Therefore
(
X, (Ai)i∈I

)
;
(
I, (By)y∈Y

)
is a

covering. �

Definition 2.12. ([8, Definition 3.1]) Let Covering be the category which has:

(1) Ob(Covering) =
{(
X, (Ai)i∈I

)
|
(
X, (Ai)i∈I

)
is a fuzzy covering

}
.

(2) Hom
((
X, (Ai)i∈I

)
,
(
Y, (Bj)j∈J

))
= {(f, ρ)|f : X → Y, ρ : I → J ,

such that Ai(x) ≤ Bρ(i)(f(x)), (∀)x ∈ X, (∀)i ∈ I}.
(3) (g, θ) ◦ (f, ρ) = (g ◦ f, θ ◦ ρ) ∈ Hom

((
X, (Ai)i∈I

)
,
(
Z, (Ck)k∈K

))
,

for all (f, ρ) ∈ Hom
((
X, (Ai)i∈I

)
,
(
Y, (Bj)j∈J

))
and

(g, θ) ∈ Hom
((
Y, (Bj)j∈J

)
,
(
Z, (Ck)k∈K

))
.

(4) id(X,(Ai)i∈I)
= (idX , idI) , for all

(
X, (Ai)i∈I

)
∈ Ob(Covering).

3. Fuzzy relations

3.1. Normal coverings

Definition 3.1. A normal covering
(
X, (Ai)i∈I

)
is a covering with the property that for all

i ∈ I, there exists x ∈ X such that Ai(x) = 1.

Remark 3.1. A normal covering
(
X, (Ai)i∈I

)
can be regarded as a set of objects X as-

sociated with a set of attributes (Ai)i∈I so that every object has an attribute and every

attribute has an element.

Remark 3.2. A partition (X, (Ai)i∈I), in the sense of Definition 2.4, is a normal covering.

Proposition 3.1. The composition of two normal coverings is a normal covering.

Proof. Let
(
X, (Ai)i∈I

)
and

(
Y, (Bj)j∈J

)
be two normal coverings. According to Propo-

sition 2.1, their composition is a covering. For any y ∈ Y there exists x ∈ X such that

Ai(x) ∧ By(i) = 1. On the other hand, for any y ∈ Y there exists i ∈ I such that that

By(i) = 1 and, also, for any i ∈ I there exists x ∈ X such that Ai(x) = 1. Hence

Ai(x) ∧By(i) = 1 and, therefore,
(
X, (Ai)i∈I

)
;
(
I, (By)y∈Y

)
is a normal covering. �

In [8, Theorem 3.2(g)] we introduced the exponential
(
Y, (Bj)j∈J

)(X,(Ai)i∈I)
of two

coverings
(
X, (Ai)i∈I

)
and

(
Y, (Bj)j∈J

)
and proved that it is a covering. In general,
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Y, (Bj)j∈J

)(X,(Ai)i∈I)
is not a normal covering. For example we can pick a the cover-

ing (X,A1) and (Y,B1, B2), where A1 = X, B1 = ∅ and B2 = Y . We have two functions

between the sets of indexes ρ1, ρ2 : {1} → {1, 2}, where ρ1(1) = 1 and ρ2(1) = 2. For all the

functions f : X → Y , for all x ∈ X we have:

A1(x)→ Bρ1(1) (f (x)) = 0

and

A1(x)→ Bρ2(1) (f (x)) = 1

where a → b = sup{c ∈ [0, 1] : a ∧ c ≤ b}. This means that
(
Y, (Bj)j∈J

)(X,(Ai)i∈I)
is not

a normal covering. In the following proposition, we introduce an object in Covering, which

is always normal.

Proposition 3.2. Let
(
X, (Ai)i∈I

)
and

(
Y, (Bj)j∈J

)
be two coverings and

Y X = U1

(
Hom

((
X, (Ai)i∈I

)
,
(
Y, (Bj)j∈J

)))
,

JI = U2

(
Hom

((
X, (Ai)i∈I

)
,
(
Y, (Bj)j∈J

)))
,

where U1, U2 : Covering→ Set are the forgetful functors with U1(f, ρ) := f and U2(f, ρ) = ρ,

for any morphism (f, ρ) in Covering. Let

(
Y, (Bj)j∈J

)(X,(Ai)i∈I)
:=

Y X ,

 ∧
(x,i)∈X×I

(
Ai(x)→ Bρ(i)(f(x))

)
ρ∈JI



Then
(
Y, (Bj)j∈J

)(X,(Ai)i∈I)
is a normal covering and we call it, the normal expo-

nential of
(
X, (Ai)i∈I

)
and

(
Y, (Bj)j∈J

)
. The exponential in Covering, the functors U1 and

U2 were discussed in [8].

Proof. If ρ ∈ JI then there exists f ∈ Y X such that in Covering we have the morphism

(f, ρ) :
(
X, (Ai)i∈I

)
→
(
Y, (Bj)j∈J

)
. Then for all x ∈ X and i ∈ I we have Ai(x) ≤

Bρ(i) (f (x)), which is equivalent to say that for all ρ ∈ JI and all x ∈ X there exists

f ∈ Y X such that Ai(x)→ Bρ(i) (f (x)) = 1.

Therefore
(
Y, (Bj)j∈J

)(X,(Ai)i∈I)
is a normal covering. For more details refer to

[8]. �

Definition 3.2. A subcategory C of D is called coreflective if for every object Y ∈ Ob(D)

there exists an object YC ∈ Ob(C) and a morphism gC : YC → Y such that for all the objects

X ∈ Ob(C) and for all morphisms f : X → Y there exists a unique morphism h : X → YC

such that gC ◦ h = f .

Definition 3.3. Let N-Covering be the category in which the objects are normal coverings

and the morphisms between the normal coverings

(f, ρ) :
(
X, (Ai)i∈I

)
→
(
Y, (Bj)j∈J

)
have the property:

Ai(x) ≤ Bρ(i)(f(x)), ∀x ∈ X, ∀i ∈ I.



On the category of fuzzy tolerance relations and related topics 113

Proposition 3.3. N-Covering is the full coreflective subcategory of Covering.

Proof. From Definition 3.3, it is clear that N-Covering is a full subcategory of Covering.

In order to prove that N-Covering is a coreflective subcategory of Covering, we consider a

fuzzy covering
(
Y, (Bj)j∈J

)
and we define

(
Y, (Bj)j∈J

)
N-Covering

=
(
Y, (Bj)j∈J′

)
, where

J ′ is the subset of J in which for all j ∈ J ′ there exists y ∈ Y such that Bj(y) = 1. We have

that
(
Y, (Bj)j∈J

)
N-Covering

∈ Ob (N-Covering).

We define the morphism (1Y , ιJ′) :
(
Y, (Bj)j∈J′

)
→
(
Y, (Bj)j∈J

)
, where 1Y is the

identity function on Y and ιJ′ : J ′ → J where ι(j) = j for all j ∈ J ′.
Let

(
X, (Ai)i∈I

)
be a normal covering and let (f, ρ) :

(
X, (Ai)i∈I

)
→
(
Y, (Bj)j∈J

)
be a morphism in Covering. But since

(
X, (Ai)i∈I

)
is a normal covering for all i ∈ I there

exists x ∈ X such that Ai(x) = 1. Then:

1 = Ai(x) ≤ Bρ(i) (f(x)) , hence Im(ρ) ⊆ J ′.

Thus, we can define ρ′ : I → J ′ such that ρ′(i) = ρ(i). Then we have the unique morphism

(f, ρ′) with the property

(f, ρ) = (1Y , ιJ′) ◦ (f, ρ),

as required. �

Theorem 3.1. Let I : N-Covering→ N-Covering be the functor defined:

(a) On objects, I
(
(X, (Ai)i∈I)

)
=
(
I, (Bx)x∈X

)
, where Bx(i) = Ai(x), for all x ∈ X and

i ∈ I.

(b) On morphisms, I((f, ρ)) = (ρ, f).

Then I is an involution functor, i.e. I ◦ I = 1N-Covering.

Proof. We have to prove that I is correctly defined. If
(
X, (Ai)i∈I

)
is a normal covering

then for all i ∈ I there exists x ∈ X such that Ai(x) = Bx(i) = 1. Then
(
I, (Bx)x∈X

)
is a

normal covering.

If (f, ρ) :
(
X, (Ai)i∈I

)
→
(
Y, (Cj)j∈J

)
is a morphism in N-Covering then for all x ∈ X

and for all i ∈ I we have Ai(x) ≤ Cρ(i) (f (x)).

If I
(
(X, (Ai)i∈I

)
) =

(
I, (Bx)x∈X

)
and I

(
(Y, (Cj)j∈J)

)
=
(
J, (Dy)y∈Y

)
then for all

i ∈ I and for all x ∈ X we have Bx(i) ≤ Df(y) (ρ (i)).

From the above considerations, it follows that I is well defined. Also, it is obvious

that I ◦ I = 1N-Covering. �

3.2. Tolerance relations

Definition 3.4. Let T, T ′ : X ×X → [0, 1] be two fuzzy relations on X. We say that:

(a) T is smaller than T ′ or T ′ is greater than T if T (x, y) ≤ T ′(x, y), for all x, y ∈ X. We

write T ⊆ T ′ (or (X,T ) ⊆ (X,T ′)).

(b) T is strictly smaller than T ′ or T ′ is strictly greater than T if T is smaller than

T ′ and there exists x, y ∈ X such that T (x, y) < T ′(x, y). We write T ⊂ T ′ (or

(X,T ) ⊂ (X,T ′)).

Let IX be the relation associated to the normal covering
(
X, (δxy)x∈X

)
.
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Definition 3.5. ([15]) Let R : A×B → [0, 1] be a fuzzy relation. We say that:

(a) R is univalent if R ;̆R ⊆ IB.

(b) R is total if IA ⊆ R;R .̆

(c) R is a map if R is univalent and total.

(d) R is injective if R˘ is univalent.

(e) R is surjective if R˘ is total.

(f) R is an isomorphism if R and R˘are maps.

Proposition 3.4. Let
(
X, (Ai)i∈I

)
be a normal covering, R its associated normal relation,

i.e. R : X × I → [0, 1], R(x, i) = Ai(x) and
(
X, (Ai)i∈I

)̆
=
(
I, (Bx)x∈X

)
its inversion,

where Bx(i) = Ai(x), for all i ∈ I and for all x ∈ X. Then:

(a) R is total.

(b) R is a map if and only if there exists J ⊆ I such that
(
X, (Ai)i∈J

)
is a partition and

Ai = ∅ for all i ∈ I\J .

(c) R is injective if and only if
∣∣∣A↑i ∣∣∣ ≤ 1 for all i ∈ I.

(d) R is surjective if and only if
(
X, (Ai)i∈I

)
is a normal covering.

(e) R is an isomorphism if and only if
(
X, (Ai)i∈I

)
is a partition with

∣∣∣A↑i ∣∣∣ = 1 for all

i ∈ I.

Proof. (a) Since
(
X, (Ai)i∈I

)
is a covering, for any x ∈ X, there exists i ∈ I such that

Ai(x) = 1. Therefore
∨
i∈I (Ai (x) ∧Ai (y)) = 1 for all x = y. Hence R is total.

(b) Let J ⊂ I with Ai = ∅ only if i ∈ I \ J . Then
(
X, (Ai)i∈J

)
is a partition if and

only if (R ;̆R)(i, j) =
∨
x∈X (Ai (x) ∧Aj (x)) =

1, i = j ∈ J

0, otherwise
, that is R is univalent. The

conclusion follows from (a).

(c) If there exists i ∈ I such that
∣∣∣A↑i ∣∣∣ > 1 then there exists x, y ∈ X, x 6= y such that

Ai(x) ∧Ai(y) = 1, hence R is not injective. The converse is similar.

(d) R is surjective if and only if |A↑i | ≥ 1 for all i ∈ I. Note that |A↑i | ≥ 1 for all i ∈ I
if and only if

(
X, (Ai)i∈I

)
is a normal covering.

(e) Follows from (c) and (d). �

4. The category of fuzzy tolerance relations

Definition 4.1. (Belohlávek et al. [3]) Let T : X ×X → [0, 1] be a fuzzy relation. We say

that:

(a) T is reflexive if T (x, x) = 1, for all x ∈ X.

(b) T is symmetric if T (x, y) = T (y, x), for all x, y ∈ X.

(c) T is a fuzzy tolerance relation if it is reflexive and symmetric.

Definition 4.2. Let Tol be the category of fuzzy tolerance relations which has:

(1) Ob(Tol) = {(X,T )|T : X ×X → [0, 1] is a fuzzy tolerance relation}.
(2) Hom ((X,T ) , (Y, S)) = {f : X → Y |T (x, y) ≤ S (f(x), f(y)) , (∀)x, y ∈ X}.
(3) If f : (X,T )→ (Y, S) and g : (Y, S)→ (Z,Q) then their composition is g ◦f : (X,T )→

(Z,Q), (g ◦ f)(x) = g(f(x)).
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(4) id(X,T ) = idX , for all (X,T ) ∈ Ob(Tol).

Remark 4.1. There exists a faithful functor F : Tol → N-Covering where on objects

F (X,T ) =
(
X, (Tx)x∈X

)
where Tx : X → [0, 1], Tx(y) = T (x, y) for all x, y ∈ X and on

morphisms F (f) = (f, f).

Proof. Let f : (X,T )→ (Y, S) be a morphism in Tol. We have

T (x, y) ≤ S(f(x), f(y)) for all x, y ∈ X, which can be rewritten as

Tx(y) ≤ Sf(x)(f(y))

for all x, y ∈ X. Which means that (f, f) is a morphism in Covering and F is well defined

faithful functor. �

Remark 4.2. The set of all fuzzy tolerance relations on X forms a bounded lattice with

the partial order given by ⊆, introduced in Definition 3.4.

The smallest fuzzy tolerance relation is 0 = (X, IX) and the greatest fuzzy tolerance

relation is 1 = (X,X ×X).

In the following Theorem, we present basic constructions in the Tol category.

Theorem 4.1. In the Tol category, we have the following:

(a) The initial object is (∅, I∅) and the terminal object is
(
{∗} , I{∗}

)
.

(b) The product of two fuzzy tolerance relations (X,T ) and (Y, S) is the fuzzy tolerance

relation (X × Y, T × S), where for all x1, x2 ∈ X, and for all y1, y2 ∈ Y we have

(T × S) ((x1, y1), (x2, y2)) = T (x1, x2) ∧ S(y1, y2).

(c) The coproduct of two fuzzy relations (X,T ) and (Y, S) is the fuzzy tolerance relation

(X
∐
Y, T

∐
S), where (T

∐
S)(x, y) =

T (x, y), x, y ∈ X

S(x, y), x, y ∈ Y
.

(d) The equalizer of f, g : (X,T )→ (Y, S) is the object (X0, T0) where

X0 = {x ∈ X|f(x) = g(x)} and T0 : X0 ×X0 → [0, 1], T0(x, y) = T (x, y).

(e) The coequalizer of f, g : (X,T )→ (Y, S) is the object
(
Y/R, Ŝ

)
where:

(i) R is the equivalence relation on Y generated by f(x)Rg(x).

(ii) Ŝ (x̂, ŷ) =
∨
x∈x̂ (∨y∈ŷS (x, y)), for all x̂, ŷ ∈ Y \R.

(f) The pullback of f : (X,T ) → (Z,U) and g : (Y, S) → (Z,U) is the fuzzy toler-

ance relation (X ×Z Y, T ×U S), where X ×Z Y = {(x, y)|f(x) = g(y)} and for all

(x1, y1), (x2, y2) ∈ X ×Z Y we have:

(T ×U S) ((x1, y1), (x2, y2)) = T (x1, x2) ∧ S(y1, y2).
(g) The pushout of f : (X,T ) → (Y, S) and g : (X,T ) → (Z,U) is the fuzzy tolerance

relation (Y
∐
X Z, S

∐
T U), (Y

∐
X Z) = {(f(x), g(x)) |x ∈ X}, and on Y

∐
X Z we

have the equivalence relation R generated by f(x)Rg(x) and for all ̂(y1, z1), ̂(y2, z2) ∈
Y
∐
X Z we have:

(
S
∐
T

U

)(
̂(y1, z1), ̂(y2, z2)

)
=

 ∨
(y1,y2)∈(ŷ1,ŷ2)

S (y1, y2)

 ∨

 ∨
(z1,z2)∈(ẑ1,ẑ2)

U (z1, z2)

 .
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(h) The exponential of the objects (X,T ) and (Y, S) is the tolerance relation

(Y, S)(X,T ) =
(
Y X , ST

)
, where Y X = Hom ((X,T ) , (Y, S)) and

ST (f, g) =
∧

x,y∈X
(T (x, y)→ S (f(x), g(y))) .

Proof. (a) For every tolerance relation (X,T ) there exists a single morphism from (∅, I∅) to

(X,T ) and a single morphism from (X,T ) to
(
{∗} , I{∗}

)
.

(b) We claim that T × S is a fuzzy tolerance relation for all T and S fuzzy tolerance

relations. Indeed:

(i) For all (x, y) ∈ X × Y , (T × S) ((x, y), (x, y)) = T (x, x) ∧ S(y, y) = 1, hence T × S is

reflexive.

(ii) For all (x1, y1), (x2, y2) ∈ X × Y , we have (T × S) ((x1, y1) , (x2, y2)) = T (x1, x2) ∧
S (y1, y2) = T (x2, x1)∧S (y2, y1) = (T × S) (x2, y2) , (x1, y1), hence T×S is symmetric.

The associated morphisms to the product are:

pX : (X × Y, T × S)→ (X,T ), pX(x, y) = x, (∀)(x, y) ∈ X × Y, and

pY : (X × Y, T × S)→ (Y, S), pY (x, y) = y, (∀)(x, y) ∈ X × Y.

Let f : (Z,U) → (X,T ) and g : (Z,U) → (X,T ) be two morphisms. Then there exists a

unique morphism h : (Z,U)→ (X × Y, T × S), where

h(x, y) = (f (x) , g (y)) , for all (x, y) ∈ X × Y,

such that pX ◦ h = f and pY ◦ h = g.

(c) The coproduct (X
∐
Y, T

∐
S) is obviously a fuzzy tolerance relation. The mor-

phisms associated to the coproduct are iX : (X,T ) → (X
∐
Y, T

∐
S) and iY : (Y, S) →

(X
∐
Y, T

∐
S) where iX(x) = x, for all x ∈ X and

iY (y) = y, for all y ∈ Y .

We note that for all the morphisms f : (X,T ) → (Z, T ), g : (Y, S) → (Z, T ) there

exists a unique morphism h : (X
∐
Y, T

∐
S) → (Z, T ) with the property f = h ◦ iX and

g = h ◦ iY , which is defined by h(x) =

f(x), x ∈ X

g(x), x ∈ Y
.

(d) Let i : (X0, T0) → (X,T ), i(x) = x, for all x ∈ X. We note that T0 (x1, x2) =

T (i (x1) , i (x2)) and f ◦ i = g ◦ i.
To prove the universal property we consider v : (Z,U) → (X,T ), a morphism with

the properties:

(i) U (z1, z2) ≤ T (v(z1), v(z2)), (∀)z1, z2 ∈ Z.

(ii) f ◦ v = g ◦ v.

Since f(v(z)) = g(v(z)), for all z ∈ Z, then v(z) ∈ X0, for all z ∈ Z, and we can

define the unique morphism h : (Z,U)→ (X0, T0), by setting h(z) = v(z), for all z ∈ Z.

(e) Let p : (Y, S)→
(
Y/R, Ŝ

)
, p(y) = ŷ for all y ∈ Y . Obviously, p is a morphism.

Let (Z,U) be a fuzzy tolerance relation and let u : (Y, S) → (Z,U) be a morphism

in Tol. It follows that S (y1, y2) ≤ U (u (y1) , u (y1)), (∀)y1, y2 ∈ Y . But that means that

S (y1, y2) ≤ Ŝ (p (y1) , p (y2)) ≤ U ((u ◦ p) (y1) , (u ◦ p) (y2)).
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Then the unique function h : (Y/R, Ŝ) → (Z,U) with the property h ◦ p = u is

h(ŷ) = u(y), where y ∈ ŷ, for all y ∈ Y .

(f) We note that (X ×Z Y, T ×U S) is a fuzzy tolerance relation and the projection

morphisms pX : (X ×Z Y, T ×U S)→ (X,T ) and

pY : (X×Z Y, T ×U S)→ (Y, S) on X, respectively on Y , have the property f ◦pX = g ◦pY .

Let (V,R) be a fuzzy tolerance relation and h1 : (V,R) → (X,T ) and h2 : (V,R) →
(Y, S) be two morphisms with the property f ◦h1 = g◦h2. Then there is a unique morphism

h : (V,R) → (X ×Z Y, T ×U S), where h(v) = (h1(v), h2(v)) , (∀)v ∈ V, which has the

properties pX ◦ h = h1 and pY ◦ h = h2. Hence, (X ×Z Y, T ×U S) is the pullback of (X,T )

and (Y, S).

(g) From the way it is defined it is obvious that (Y
∐
X Z, S

∐
T U) is a fuzzy tolerance

relation. Its associated morphisms are

p1 : (Z,U)→ (Y
∐
X Z, S

∐
T U) and p2 : (Y, S)→ (Y

∐
X Z, S

∐
T U), where p1(z) = (ŷ, z),

for all z ∈ Z and p2(y) = (ŷ, z), for all y ∈ Y . The morphisms have the property p1 ◦ f =

p2 ◦ g.

To prove that they have the universal property we choose a tolerance relation (V,Q),

together with two morphisms u1 : (Z,U)→ (V,R) and

u2 : (Y, S) → (V,R) with the property u1 ◦ f = u2 ◦ g. Since u1 and u2 are morphisms in

Tol it follows that

(i) U(z1, z2) ≤ R(u1(z1), u1(z2)), for all z1, z2 ∈ Z.

(ii) S(y1, y2) ≤ R(u2(y1), u2(y2)), for all y1, y2 ∈ Y .

Then, the unique morphism u1, u2) : (Y
∐
X Z, S

∐
T U) → (V,R), where (u1, u2)(ŷ, z) =

(u2(ŷ), u1(ẑ)), (∀)y ∈ Y, z ∈ Z, satisfies the properties

(u1, u2) ◦ p1 = u1 and (u1, u2) ◦ p2 = u2.

(h) We firstly prove that
(
Y X , ST

)
is a fuzzy tolerance relation:

(i) We have that ST (f, f) = 1, for all f ∈ Y X , since T (x, y) ≤ S(f(x), f(y)), (∀)x, y ∈
X ⇐⇒ ST (f, f) = 1, (∀)f ∈ Y X .

(ii) We have that ST (f, g) = ST (g, f), for all f, g ∈ Y X , since T and S are symmetric.

Let ev :
(
Y X , ST

)
× (X,T ) → (Y, S) be the evaluation morphism, that is ev(f, x) =

f(x) for all f ∈ Y X and x ∈ X. We prove that
(
Y X , ST

)
has the universal property.

Let (Z,U) be a fuzzy tolerance relation and g : (Z,U) × (X,T ) → (Y, S) be a mor-

phism.

Let λg : (Z,U) →
(
Y X , ST

)
, where λg(z) = g(z,−) : (X,T ) → (Y, S) is a func-

tion. The function λg is a morphism, since for all z ∈ Z and x1, x2 ∈ X we have

(U, T ) ((z, x1), (z, x2)) = T (x1, x2) ≤ S (g(z, x1), g(z, x2)).

Then λg ∈ Y X is the unique morphism such that ev ◦
(
λg × id(X,T )

)
= g, which

completes the proof. �

Definition 4.3. (Belohlávek et al. [3]) A normal fuzzy set A : X → [0, 1] is called a

preclass of the fuzzy tolerance relation T : X ×X → [0, 1] if for all x, y ∈ X, it holds that

A(x) ∧A(y) ≤ T (x, y)
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Definition 4.4. (Belohlávek et al. [3]) A preclass K : X → [0, 1] of the fuzzy tolerance

relation T is called a class of T if for all the preclasses A of T with A(x) ≥ K(x), for all

x ∈ X, we have A = K.

Definition 4.5. A base of the fuzzy tolerance relation T is a set of classes Ki of T such

that T (x, y) =
∨
i∈I (Ki(x) ∧Ki(y)) , (∀)x, y ∈ X, and the set of all classes Ki, for all

i ∈ I − {i0} with i0 ∈ I, is not a base.

Remark 4.3. For any x ∈ X the crisp set Ax := {x} is a preclass of T . Indeed, Ax(x) ∧
Ax(x) = T (x, x) = 1 and Ax(x) ∧ Ax(y) = 0 ≤ T (x, y) for all y 6= x. If follows that

(X, (Ax)x∈X) is a covering of X with preclasses of T . For x ∈ X, let Fx := {F preclass of

T with Ax(y) ≤ F (y), (∀)y ∈ X}. By Zorn’s Lemma, we can choose a preclass Kx ∈ Fx,

maximal with respect to inclusion. Then Kx is a class of T with Kx(x) = 1. It follows that

(X, (Kx)x∈X) is a covering. Hence, X can be covered by classes of T .

If T can be covered with a finite number of classes (for example, when X is finite),

then, we can obtain a (finite) base by removing classes and checking whether the remain-

ing collection still restores the fuzzy tolerance relation. Also, a tolerance relation could

have more bases, see [6, Example 5]. Assume that T has an infinite base (Ki)i∈I . Since∨
i∈I Ki(x) = 1 does not imply that there exists some i with Ki(x) = 1, (X, (Ki)i∈I) is not

necessarily a covering.

Lemma 4.1. Let T : X × X → [0, 1] be a fuzzy tolerance relation. If T has a finite base

H = {Ki|i ∈ I} then
(
X, (Ki)i∈I

)
is a covering.

Proof. For x ∈ X we have that 1 = T (x, x) =
∨
i∈I (Ki(x) ∧Ki(x)). Since I is a finite set,

it follows that there exists i ∈ I such that Ki(x) = 1. Hence
(
X, (Ki)i∈I

)
is a covering. �

Proposition 4.1. Let T : X ×X → [0, 1] be a fuzzy relation. Then:

(1) (X,T ) ∈ Ob(Tol) if and only if (X,Tα) ∈ Ob(Tol), for all α ∈ (0, 1], where Tα is the

α−cut of the fuzzy set T : X ×X → [0, 1].

(2) If T is a tolerance relation and H = {Ki|i ∈ I} is a finite base of T , then Tα(x, y) =∨
i (Kiα(x) ∧Kiα(y)), for all α ∈ [0, 1].

Proof. (1) The assertion follows from the facts:

(i) Tα(x, x) = 1, (∀)x ∈ X and (∀)α ∈ (0, 1]⇔ T (x, x) = 1, (∀)x ∈ X.

(ii) Tα(x, y) = Tα(y, x), (∀)x, y ∈ X and (∀)α ∈ (0, 1]⇔ T (y, x) = T (y, x), (∀)x, y ∈ X.

(2) It follows from applying the α−cut operation in the formula T (x, y) =
∨
i∈I (Ki(x) ∧Ki(y)),

from Definition 4.5. �

In the following theorem, we establish some connections between Covering and Tol.

Theorem 4.2. Let F : Covering→ Tol be defined:

(i) On objects: F
(
X, (Ai)i∈I

)
=
(
X,
∨
i∈I (Ai(x) ∧Ai(y))

)
, where

(
X, (Ai)i∈I

)
is a cover-

ing.

(ii) On morphisms F (f, ρ) = f .

Let G : Tol→ Covering be defined:

(i) On objects: G(X,T ) =
(
X, (T (x,−))x∈X

)
, where (X,T ) ∈ Ob(Tol).
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(ii) On morphisms: G(f) = (f, f).

We have that:

(1) The functors F and G are correctly defined.

(2) F is surjective on objects.

(3) G is injective on objects.

(4) (G ◦ F ◦G) (X,T ) = (X,T ;T ), for all (X,T ) ∈ Ob(Tol).

Proof. (1) It is obvious that F is correctly defined on objects.

Let (f, ρ) :
(
X, (Ai)i∈I

)
→
(
Y, (Bj)j∈J

)
be a morphism in Covering.

Since Ai(x) ∧ Ai(y) ≤
(
Bρ(i) (f(x)) ∧Bρ(i) (f(y))

)
, (∀)x, y ∈ X, (∀)i ∈ I, it follows

that
∨
i∈I (Ai(x) ∧Ai(y)) ≤

∨
i∈I
(
Bρ(i) (f(x)) ∧Bρ(i) (f(y))

)
. Then F (f, ρ) ∈ HomTol (F (X,

(Ai)i∈I
)
, F
(
Y, (Bj)j∈J

))
.

In order to prove that G is correctly defined, we let Ax(y) = T (x, y) for all x, y ∈ X
and Bx(y) = S(x, y) for all x, y ∈ Y . We have that G(X,T ) = (X, (Ax)x∈X). Since

T is reflexive, it follows that Ax(x) = 1, for all x ∈ X, thus G(X,T ) ∈ Ob(Covering).

Let f ∈ Hom ((X,T ), (Y, S)). Then T (x, y) ≤ S(f(x), f(y)), (∀)x, y ∈ X =⇒ Ax(y) ≤
Bf(x)(f(y)), (∀)x, y ∈ X.

(2) Assume T has a finite base H = {Ki|i ∈ I}. From Lemma 4.1, it follows that

(X, (Ki)i∈I) is a covering. We have that

F
(
X, (Ki)i∈I

)
=

X,(∨
i

(Ki(x) ∧Ki(y))

)
x,y∈X

 = (X,T ).

It remains to study the case when T does not have a finite base. For x, y ∈ X, we define a

fuzzy set Axy : X → [0, 1], by setting Axy(z) =


T (x, y), z = x

T (x, y), z = y

0, otherwise

.

Since T is reflexive and
(
X, (Axx)x∈X

)
⊆
(
X, (Axy)x,y∈X

)
it follows that

(
X, (Axy)x,y∈X

)
is a covering. We have that:

F
(
X, (Axy)x,y∈X

)
=

X,

( ∨
x,y∈X

(
Axy(x′) ∧Axy(y′)

))
x′,y′∈X

 = (X,T )

(3) If G(X,T ) = G(X,S), then T (x, y) = S(x, y) for all x, y ∈ X. Hence, G is

injective.

(4) For any (X,T ) ∈ Ob(Tol), we have that:

(G ◦ F ◦G) (X,T ) = (G ◦ F )
(
X, (T (−, x))x∈X

)
=

=

(
X,
∨
y∈X

(T (x, y) ∧ T (y, z))

)
= (X,T ;T ) ,

hence we are done. �

Definition 4.6. We say that
(
X, (Ai)i∈I , α

)
is a fuzzy tolerance covering if

(
X, (Ai)i∈I

)
is a covering and α : I → P∗(X), where P∗(X) is the set of non-empty subsets of X, has

the following properties:
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(a) For all x ∈ X, there exists a unique i ∈ I such that x ∈ α(i).

(b) Ai(x) = 1, for all x ∈ α(i).

(c) Ai(y) = Aj(x), for all x ∈ α(i) and y ∈ α(j).

(d) Ai(x) = Aj(x) for all x ∈ X ⇔ i = j.

Example 4.1. To clarify the definition above we will construct a fuzzy tolerance covering.

Let X = {x1, x2, x3, x4, x5, x6} and I = {1, 2, 3}. We define α : I → P∗(X) such that

the condition (a) is fulfilled, by setting α(1) = {x1, x2} , α(2) = {x3, x4, x5} , α(3) = {x6}
Condition (b) implies: A1(x1) = A1(x2) = 1, A2(x3) = A2(x4) = A2(x5) = 1, A3(x6) = 1

A1 A2 A3

x1 x2 x3 x4 x5 x6

A1 x1 1 1 A1(x3) A1(x3) A1(x3) A1(x6)

x2 1 1 A1(x3) A1(x3) A1(x3) A1(x6)

x3 A1(x3) A1(x3) 1 1 1 A2(x6)

A2 x4 A1(x3) A1(x3) 1 1 1 A2(x6)

x5 A1(x3) A1(x3) 1 1 1 A2(x6)

A3 x6 A1(x6) A1(x6) A2(x6) A2(x6) A2(x6) 1

Condition (c) implies:

• A1(x3) = A1(x4) = A1(x5) = A2(x1) = A2(x2) because x1, x2 ∈ α(1) and x3, x4, x5 ∈
α(2).

• A1(x6) = A3(x1) = A3(x2) because x1, x2 ∈ α(1) and x6 ∈ α(3).

• A2(x6) = A3(x3) = A3(x4) = A3(x5) because x3, x4, x5 ∈ α(2) and

x6 ∈ α(3).

Condition (d) implies that the fuzzy sets Ai’s are distinct, for all i ∈ I. We can represent(
X, (Ai)i∈I , α

)
in the table:

Remark 4.4. If
(
X, (Ai)i∈I , α

)
is a fuzzy tolerance covering, then for all i ∈ I the fuzzy

set Ai can be written in terms of all the other fuzzy sets of the fuzzy tolerance covering i.e.

for all i ∈ I we have:

Ai(x) =

1, x ∈ α(i)

Aj(y), x ∈ α(j), y ∈ α(i)

Proposition 4.2. If
(
X, (Ai)i∈I , α

)
is a fuzzy tolerance covering, then:

(1)
(
X, (α (i))i∈I

)
is a partition.

(2)
(
X, (α (i))i∈I

)
⊆
(
X, (Ai)i∈I

)
.

Proof. (1) According to Definition 4.6(a) for all x ∈ α(i) these exists a unique i ∈ I such

that x ∈ X. Hence
(
X, (α (i))i∈I

)
is a partition.

(2) We have Ai(x) = 1, for all x ∈ α(i) therefore α(i) ⊆ Ai(x). �

Definition 4.7. Let t-Covering be the category which has:

(a) Objects: The tolerance coverings.

(b) Morphisms: The functions f : X → Y such that for all x ∈ X and i ∈ I, there exists

j ∈ J such that Ai(x) ≤ Bj (f(x)).

(c) Composition is the usual function composition.



On the category of fuzzy tolerance relations and related topics 121

Remark 4.5. Let
(
X, (Ai)i∈I , α

)
be a fuzzy tolerance covering and let

H = {f : X → X | (∀)x ∈ X, i ∈ I, if x ∈ α(i), then f(x) ∈ α(i)} .

Then H ⊆ Homt-Covering

((
X, (Ai)i∈I , α

)
,
(
X, (Ai)i∈I , α

))
. Indeed, it is enough to note

that Ai(x) = Ai (f(x)), for all i ∈ I and x ∈ X.

Theorem 4.3. The categories Tol and t-Covering are isomorphic.

Proof. Let T : X × X → [0, 1] be a fuzzy tolerance relation. On X, we consider the

equivalence relation ∼, defined by x ∼ x′ if and only if T (x,−) = T (x′,−). We choose

(xi)i∈I a complete set of class representatives. We let

α : I → P∗(X), α(i) = {x ∈ X |T (x,−) = T (xi,−)}.

We define F : Tol→ t-Covering as follows:

(a) We let F (T ) =
(
X, (Ai)i∈I , α

)
, where Ai(y) = T (x, y), for all x ∈ α(i), where α(i) was

defined above.

(b) For all f : X → Y functions and T : X × X → [0, 1], S : Y × Y → [0, 1] tolerance

relations such that T (x, y) ≤ S (f(x), f(y)) let F (f) = f .

We check that
(
X, (Ai)i∈I , α

)
is a tolerance covering, i.e.:

(a) For all x ∈ X there exists a unique i ∈ I such that x ∈ α(i). Indeed, this is clear from

the fact that ∼ is an equivalence relation.

(b) For all x ∈ α(i) we have Ai(x) = 1. Indeed, since Ai(y) = T (x, y) for all y ∈ X and T

is reflexive, it follows that Ai(x) = T (x, x) = 1.

(c) For all x ∈ α(i) and y ∈ α(j) we have Ai(y) = Aj(x). Indeed, since T is symmetric, it

follows that Ai(y) = T (x, y) = T (y, x) = Aj(x).

(d) Ai(x) = Aj(x) for all x ∈ X if and only if i = j.

We know that Ai(x) = T (z, x) for all z ∈ α(i) and x ∈ X and

Aj(x) = T (z, x) for all z ∈ α(i) and x ∈ X. Then z ∈ α(i) ∩ α(j). From (a) it follows

that i = j.

Hence, F is correctly defined.

We define a functor G : t-Covering→ Tol, by:

(a) For all
(
X, (Ai)i∈I , α

)
tolerance coverings we let G

(
X, (Ai)i∈I , α

)
= (X,T ) where

T (x, y) = Ai(y) for all x ∈ α(i).

(b) For all f :
(
X, (Ai)i∈I , α

)
→
(
Y, (Bj)j∈j , β

)
let G(f) = f .

We prove that G is correctly defined. From Definition 4.6(a), it follows that for all x ∈ X
there exists a unique i ∈ I such that x ∈ α(i), hence T (x, y) = Ai(y) is correctly defined.

We prove that T is a tolerance relation:

(a) T is reflexive. For all x ∈ X there exists a unique i ∈ I such that x ∈ α(i). From

Definition 4.6(b) it follows that T (x, x) = Ai(x) = 1 for all x ∈ X.

(b) T is symmetrical. For all x, y ∈ X there exist unique i, j ∈ I such that x ∈ α(i) and

y ∈ α(j). Since T (x, y) = Ai(y) and T (y, x) = Aj(x), from Definition 4.6(c) we get

that T (x, y) = T (y, x).

We note that:
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(i) (G ◦F )(X,T ) = (X,T ) for all (X,T ) ∈ Ob(Tol), and (G ◦F )(f) = f for any morphism

f : X → Y .

(ii) (F ◦G)
(
X, (Ai)i∈I , α

)
=
(
X, (Ai)i∈I , α

)
for all(

X, (Ai)i∈I , α
)
∈ Ob(t-Covering).

It follows that the functors F and G are inverse to each other. Hence Tol is isomorphic with

t-Covering.

�

5. Conclusions

In summary, we study the category Tol of fuzzy tolerance relations and we establish

connections with the category Covering of fuzzy coverings. Besides that, we construct an

isomorphism between Tol and t-Covering, the category of tolerance coverings, which is a

subcategory of Covering.
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