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ON THE CATEGORY OF FUZZY TOLERANCE RELATIONS
AND RELATED TOPICS

Adrian Gabriel NEACSU?!

This paper uses category theory to approach the topic of fuzzy tolerance rela-
tions and coverings, and it establishes the connection between them. The relations are

described from a fuzzy set point of view.
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1. Introduction

Lotfi Zadeh introduced the fuzzy sets in 1965. For a comprehensive introduction we
refer the reader to [9], [10]. The theory of fuzzy sets allowed the study of new types of
relations. A fuzzy relation R on a set X is a X x X fuzzy set ([11], [14]). If the relation is
reflexive and symmetric then it is called a fuzzy tolerance relation. The tolerance relations
were first studied by Zeeman and have been pursued in [2], [3], [4], [6], [12], [13]. An
example of a tolerance relation is the approximation of real numbers: Every number x € R
is approximately equal to itself with degree 1 and x is approximately equal to y just as much
as y is approximately equal to x.

In [8], we studied fuzzy coverings and coverages. Our aim is to go even further and
focus on the category of fuzzy tolerance relations in connection with coverings ([2], [5]), with
the use of category theory ([1], [7], [15]).

The paper is divided into four sections, the first being this introduction. In the second
section, we recall some basic definition regarding fuzzy sets, fuzzy relations and coverings
of fuzzy sets. In the third section, we tackle the case of normal coverings of fuzzy sets. In
Proposition 3.2, we define the normal exponential of two coverings. In Theorem 3.1, we
construct an involution function on the category of normal coverings. In Proposition 3.4,
we describe several connections between a (normal) covering and its associated relation.

In the fourth section, we study Tol, the category of fuzzy tolerance relations, building
on results of Belohldvek [3]. The study of Tol involves primarily the limits and colimits of the
category. In Theorem 4.2, we establish some connections between Covering, the category of
fuzzy coverings, and Tol. In Theorem 4.3, we construct an isomorphism between t-Covering,

the category of tolerance coverings, which is a subcategory of Covering, and Tol.
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2. Preliminaries

Let X be a set.

Definition 2.1. We say that A is a fuzzy set, or a fuzzy subset of X, if A: X — [0,1] is
a function. A(x) is the membership degree to which x belongs to A.

Definition 2.2. We say that A : X — [0,1] is a normal fuzzy set if there exists x € X such

that A(z) =1

Remark 2.1. A crisp subset A of X, i.e. a subset A C X, can be identified with its
1, z€A

characteristic function A : X — {0,1}, A(z) = .
0, ¢ A

Definition 2.3. The pair (X, (A;)icr) is called a crisp covering of X if:
(a) A; C X foralliel.
(b) Uses Ai = X.

Definition 2.4. A crisp covering (X, (4;)icr) is called a partition of X, if the sets A;’s are

non-empty and disjoint.

Definition 2.5. We say that (X, (A;)icr) is a fuzzy covering, or, simply, a covering of X,
if A+ X —[0,1] are fuzzy sets such that for all x € X, there exists i € I with A;(x) = 1.
In this case, we can also say that X is covered by the fuzzy sets A;, i € 1.

Definition 2.6. If A: X — [0,1] is a fuzzy set then we define the crisp sets:

(a) AT X = [0,1], L Al@)>0
0, A(x)=0
(b) AY: X = [0,1], L Ale)=1
0, A(z)<1

Definition 2.7. Let a € [0,1]. The a—cut of the fuzzy set A: X — [0,1], denoted by A,,
is Ayt X = [0,1], Au(z) =4 Al@) z o
0, Alz)<a
Note that AT =], A, and A = A;.
Definition 2.8. A fuzzy relation R between X and Y is a fuzzy set
R:X xY —[0,1].
The converse of R is the fuzzy relation R”:Y x X — [0, 1], where
Ry,z) = R(z,y) for allz € X and y € X.

Definition 2.9. The composition of the fuzzy relations R: X XY —[0,1] and Q : Y X Z —
[0,1] is the relation R;Q : X x Z — [0, 1] where

(R; Q)(J?,Z) = \/ (R(xvy) A Q(yaz))’ (V)Jﬁ €eX,zeZ

yey
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Definition 2.10. Let (X, (A;)icr) be a covering. Its associated fuzzy relation is R : X xI —
[0,1], R(z,%) = Ai(x).

Definition 2.11. Let (X, (4;),.;) and (I, (By),ey
is (X, (A0ier) (1 (By)yey ) = (X Vier (Ai(@) A By(0) ey )

Proposition 2.1. The composition of two coverings is a covering.

il ) be two coverings. Their composition

Proof. Let (X, (A4:);c;) and (Y, (Bj) 'eJ) be two coverings. For any x € X there exists
i € I with A;(z) = 1. It follows that (A;(z) A B,(i)) = B,(i). Since (1, (By)yey) is a
covering, there exists y € Y such that B (i) = 1. Therefore (X, (A;);c;); (I, (By)y@,) is a

]

covering.

Definition 2.12. ([8, Definition 3.1)) Let Covering be the category which has:

(1) Ob(Covering) = { (X, (Ai);e;) | (X, (Ai);e;) is a fuzzy covering} .

(2) Hom ((X, (A)ies) (Y, (B)),e, ) ={(plf : X =Y, p:T—J,
such that A;(x) < B,y (f(z)), (V) € X, (V)i € I}.

(3) (9.0) 0 (f,p) = (go f.00p) € Hom ((X,(Ai);cs) . (2, (Ch)rek))
for all (f,p) € Hom (( , (A )zeI) ( (B )jeJ)) and
(g,@)EHom(( jEJ) , (Cr) keK))

(4) id(X,(Ai)ig) (idx,idy), for all (X, (4i);c;) € Ob(Covering).

3. Fuzzy relations

3.1. Normal coverings

Definition 3.1. A normal covering (X, (Ai)iel) s a covering with the property that for all
i € I, there exists x € X such that A;(z) = 1.

Remark 3.1. A normal covering (X, (A;),c;
sociated with a set of attributes (A;);cr so that every object has an attribute and every

) can be regarded as a set of objects X as-

attribute has an element.
Remark 3.2. A partition (X, (A;)icr), in the sense of Definition 2.4, is a normal covering.
Proposition 3.1. The composition of two normal coverings is a normal covering.

Proof. Let (X, (A;);c;) and (Y, (Bj)jeJ) be two normal coverings. According to Propo-
sition 2.1, their composition is a covering. For any y € Y there exists x € X such that
Ai(z) A By(i) = 1. On the other hand, for any y € Y there exists ¢ € I such that that
B,(i) = 1 and, also, for any ¢ € I there exists « € X such that A;(z) = 1. Hence
Ai(z) A By(i) = 1 and, therefore, (X, (4i);¢;); (I, (By)er> is a normal covering. O

Xv(Al)l
In [8, Theorem 3.2(g)] we introduced the exponential (Y7 (Bj)jEJ)( er) of two

coverings (X, (4;);c;) and (Y, (Bj)jeJ) and proved that it is a covering. In general,
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(X.(Aier) : .
is not a normal covering. For example we can pick a the cover-

(Ya (Bj)jej
ing (X, Ay) and (Y, By, B2), where Ay = X, B; = () and B, =Y. We have two functions
between the sets of indexes p1, p2 : {1} — {1,2}, where p;(1) =1 and p3(1) = 2. For all the
functions f : X — Y, for all x € X we have:

Ai(xz) = By (f (2)) =0

and
A1(@) = By (f (2)) = 1

where a — b =sup{c € [0,1] : a Ac < b}. This means that (Y, (Bj) e

a normal covering. In the following proposition, we introduce an object in C'overing, which

1s not

) (X’(A'i)z‘el) .

is always normal.

Proposition 3.2. Let (X7 (Ai)ieI) and (Y, (By) ) be two coverings and

jed
YX =0, (Hom ((X, (Aiier) - (Y’ (Bj)J€J>>) ’
J =0, (Hom ((X, (Ai)ier) (Y’ (Bj)jEJ)» ’

where Uy, Us : Covering — Set are the forgetful functors with Uy (f, p) := f and Us(f, p) = p,
for any morphism (f, p) in Covering. Let

(Y, (Bj)jeJ) (X.(Ai)ier) — (YX7 ( /\ (Al(x) — Bp(i)(f(ﬂf)))> )
peﬁ

(x,3)eX xI

Then <Y7 (B;) )(X,(Ai)ief)

nential of (X, (4;),;c;) and (Y, (Bj)jeJ)' The exponential in Covering, the functors Uy and

Us were discussed in [8].

jed is a normal covering and we call it, the normal expo-

Proof. If p € JT then there exists f € YX such that in Covering we have the morphism
(f,p) + (X, (Ai)ier) — (Y, (Bj)jeJ)' Then for all z € X and i € I we have A;(z) <

B,y (f (), which is equivalent to say that for all p € JI and all © € X there exists

f € YX such that A;(z) = B, (f () = 1.
)(X’(Ai)iel)

Therefore (Y, (Bj)jes is a normal covering. For more details refer to
8]. O

Definition 3.2. A subcategory C' of D is called coreflective if for every object Y € Ob(D)
there exists an object Yo € Ob(C) and a morphism go : Yo — Y such that for all the objects
X € Ob(C) and for all morphisms f : X — Y there exists a unique morphism h : X — Y¢
such that gooh = f.

Definition 3.3. Let N-Covering be the category in which the objects are normal coverings

and the morphisms between the normal coverings
(fip) : (X, (Ai)yey) — (Y, (Bj)jeJ) have the property:
Ai(z) < Byiy(f(z)), Ve e X, Viel.
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Proposition 3.3. N-Covering is the full coreflective subcategory of Covering.

Proof. From Definition 3.3, it is clear that N-Covering is a full subcategory of Covering.
In order to prove that N-Covering is a coreflective subcategory of Covering, we consider a
fuzzy covering (Y, (Bj)jeJ> and we define (Y, (Bj)jeJ)N—Covering = (K (Bj)jeJ')’ where
J' is the subset of J in which for all j € J’ there exists y € Y such that B;(y) = 1. We have
that (Y, (Bj)jeJ) € Ob (N-Covering).

N-Covering
We define the morphism (ly,¢y) : (Y, (Bj)jeJ’) — (Y, (Bj)jeJ)’ where 1y is the
identity function on Y and ¢, : J' — J where «(j) = j for all j € J'.
Let (X, (A;);c;) be a normal covering and let (f,p) : (X, (4i);c;) — (Y, (Bj)jeJ)
be a morphism in C'overing. But since (X, (Ai)z'el) is a normal covering for all ¢ € I there
exists z € X such that A;(z) = 1. Then:

1= Ai(z) < By (f(z)), hence Im(p) C J'.

Thus, we can define p’ : I — J’ such that p/(i) = p(7). Then we have the unique morphism
(f, p') with the property
(fsp) =y er) o (f,p),

as required. O

Theorem 3.1. Let J : N-Covering — N-Covering be the functor defined:

(a) On objects, T ((X,(Ai);er)) = (I, (Bz)yex ), where By(i) = Ai(x), for all z € X and
1€l.

(b) On morphisms, I((f,p)) = (p, f).

Then J is an involution functor, i.e. JoJ = IN_Covering-

Proof. We have to prove that J is correctly defined. If (X s (Ad);e I) is a normal covering
then for all i € I there exists z € X such that A;(z) = B,(i) = 1. Then (I, (By),cy) is a
normal covering.

If(f,p): (X, (Ai)ier) — (Y, (Cj)jeJ) is a morphism in N-Covering then for all z € X
and for all i € I we have A;(z) < Cp;) (f ().

163 (X, (Ai)ier)) = (I (Ba)yex) and 3((V(C);e,)) = (:(Dy), ey ) then for al
i € I and for all 2 € X we have B, (i) < Dy, (p (7).

From the above considerations, it follows that J is well defined. Also, it is obvious
that J 0 J = In_Covering- O

3.2. Tolerance relations

Definition 3.4. Let T,T' : X x X — [0, 1] be two fuzzy relations on X. We say that:

(a) T is smaller than T' or T" is greater than T if T(z,y) < T'(x,y), for allz,y € X. We
write T C T (or (X, T) C (X,T)).

(b) T is strictly smaller than T' or T’ is strictly greater than T if T is smaller than
T and there exists x,y € X such that T(z,y) < T'(xz,y). We write T C T' (or
(X,T)C (X,1T)).

Let Ix be the relation associated to the normal covering (X, (0uy),cx)-
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Definition 3.5. ([15]) Let R: A x B — [0,1] be a fuzzy relation. We say that:
(a) R is univalent if R3R C Ip.

(b) R is total if 14 C R;R".

(¢) R is a map if R is univalent and total.

)
)
(d) R is injective if R is univalent.
) R is surjective if R" is total.
)

R is an isomorphism if R and R~ are maps.

Proposition 3.4. Let (X, (Ai)iel) be a normal covering, R its associated normal relation,

ie. R: X x 1 — [0,1],R(z,i) = Ai(z) and (X, (As);e;)” = (I, (Bs),ex) its inversion,

where By (i) = A;(x), for alli € I and for all x € X. Then:

(a) R is total.

(b) R is a map if and only if there exists J C I such that (X, (Ai)ie]) is a partition and
A =0 foralli e I\J.

(¢) R is injective if and only if ‘AI‘ <1 foralliel.

(d) R is surjective if and only if (X, (Ai)iel) s a normal covering.

(e) R is an isomorphism if and only if (X7 (Ai)i€I> is a partition with ’AI’ =1 for all
iel.

Proof. (a) Since (X, (A;);c;) is a covering, for any x € X, there exists ¢ € I such that
Ai(z) = 1. Therefore \/;.; (A; (z) A A; (y)) = 1 for all z = y. Hence R is total.
(b) Let J C I with A; =0 only if i € I\ J. Then (X, (4;),c,) is a partition if and

1, i=j€elJ

, that is R is univalent. The
0, otherwise

only if (R5 R)(i,7) = Vyex (Ai (2) A 4 (2)) =
conclusion follows from (a).

(c) If there exists ¢ € I such that ’AI’ > 1 then there exists z,y € X, = # y such that
Ai(z) AN A;(y) =1, hence R is not injective. The converse is similar.

(d) R is surjective if and only if |ALT| > 1 for all i € I. Note that |AI| >1foralliel
if and only if (X, (A;),c;) is a normal covering.

(e) Follows from (c) and (d). O

4. The category of fuzzy tolerance relations

Definition 4.1. (Belohldvek et al. [3]) Let T : X x X — [0,1] be a fuzzy relation. We say
that:

(a) T is reflexive if T(z,z) =1, for all x € X.

(b) T is symmetric if T'(z,y) = T(y,x), for all z,y € X.

(¢) T is a fuzzy tolerance relation if it is reflexive and symmetric.

Definition 4.2. Let Tol be the category of fuzzy tolerance relations which has:

(1) Ob(Tol) = {(X,T)|T : X x X — [0,1] is a fuzzy tolerance relation}.

(2) Hom ((X,T),(Y,5)) ={f: X = Y[T(z,y) < S(f(x),f(y), (V)z,y € X}.

B) If f: (X, T)— (Y,S) and g : (Y, S) — (Z,Q) then their composition is go f : (X,T) —
(Z,Q), (go f)(x) =g(f(x)).
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(4) id(x 1) = idx, for all (X,T) € Ob(Tol).

Remark 4.1. There exists a faithful functor F' : Tol — N-Covering where on objects
F(X,T) = (X,(Ty),ex) where T, : X — [0,1], T(y) = T(x,y) for all z,y € X and on
morphisms F(f) = (f, f).

Proof. Let f: (X, T) — (Y,S) be a morphism in T'ol. We have
T(x,y) < S(f(x), f(y)) for all z,y € X, which can be rewritten as

for all z,y € X. Which means that (f, f) is a morphism in Covering and F is well defined
faithful functor. ]

Remark 4.2. The set of all fuzzy tolerance relations on X forms a bounded lattice with
the partial order given by C, introduced in Definition 3.4.

The smallest fuzzy tolerance relation is 0 = (X,Ix) and the greatest fuzzy tolerance
relation is 1 = (X, X x X).

In the following Theorem, we present basic constructions in the Tol category.

Theorem 4.1. In the Tol category, we have the following:

(a) The initial object is (0,1y) and the terminal object is ({*},If.}).

(b) The product of two fuzzy tolerance relations (X,T) and (Y,S) is the fuzzy tolerance
relation (X x Y,T x S), where for all 1,29 € X, and for all y1,y2 € Y we have
(T x S) ((z1,91), (2,92)) = T(x1, 22) A S(y1, y2).

(¢) The coproduct of two fuzzy relations (X, T) and (Y, S) is the fuzzy tolerance relation

(XTIY.TIIS), where (TT]S)(x,y) = T(z,y), zyeX .
S(z,y), myeY

(d) The equalizer of f,g: (X, T) — (Y, S) is the object (Xo,Tp) where
Xo={z € X|f(z) =g(x)} and Ty : Xo x Xo — [0,1], To(z,y) = T(x,y).
(e) The coequalizer of f,g: (X, T) — (Y,S) is the object (Y/R, §) where:
(i) R is the equivalence relation on'Y generated by f(x)Rg(x).

(i) S(Z,9) = Vyes (VyesS (2,)), for all 7,5 € Y\R.
(f) The pullback of f : (X, T) — (Z,U) and g : (Y,S) — (Z,U) is the fuzzy toler-
ance relation (X xz Y, T xy S), where X xz Y = {(z,y)|f(x) =g(y)} and for all
(z1,11), (x2,y2) € X Xz Y we have:

(T xv S) ((x1,91), (v2,92)) = T'(w1,22) A S(y1,y2)-

(g) The pushout of f : (X,T) — (V,S) and g : (X,T) — (Z,U) is the fuzzy tolerance
relation (Y [y Z, S+ U), Y1lx Z2) = {(f(x),9(x)) |z € X}, and on Y [[ Z we
have the equivalence relation R generated by f(x)Rg(x) and for all (y1,21), (y2, 22) €
Y [y Z we have:

(sHU>(@Z>,@Z>)=< V s<y1,y2>>v< V U(zl,zQ)).
T (y1,92)€(91,92) (z1,22)€(21,22)
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e exponential of the objects (X, an , 1s the tolerance relation
h) Th ial of the obj X, T d (Y, S) is the tol lati
(Y, 8)(XT) = (YX,8T), where Y~ = Hom ((X,T),(Y,5)) and

ST(f9) = N\ (T(x,9) = S(f(x),91)-

z,yeX

Proof. (a) For every tolerance relation (X,T') there exists a single morphism from ((,Iy) to
(X,T) and a single morphism from (X, T) to ({x},I.}).
(b) We claim that T' x S is a fuzzy tolerance relation for all 7" and S fuzzy tolerance
relations. Indeed:
(i) For all (z,y) € X xY, (T x S) ((x,y), (z,y)) = T(x,z) AS(y,y) = 1, hence T x S is
reflexive.
(ii)) For all (z1,y1), (z2,y2) € X x Y, we have (T x S) ((z1,v1), (x2,¥y2)) = T (z1,22) A
S (y1,y2) =T (X2, 21) NS (y2,y1) = (T x S) (x2,92) , (1, y1), hence T' x S is symmetric.
The associated morphisms to the product are:

px (X xY, T x8) = (X,T), px(2,y) =2, (V)(z,y) € X xY, and
py (X XY, T xS) = (Y,9), py(z,y) =y, (V)(z,y) € X xY.

Let f: (Z,U) = (X,T) and g : (Z,U) — (X, T) be two morphisms. Then there exists a
unique morphism h : (Z,U) — (X x Y, T x S), where

h(z,y) = (f (z),9(y)), for all (z,y) € X x Y,

such that px oh = f and py oh = g.

(¢) The coproduct (X [[Y,T]]S) is obviously a fuzzy tolerance relation. The mor-
phisms associated to the coproduct are ix : (X,T) — (X[[Y,T]]S) and iy : (Y¥,S) —
(XTIY,T]1IS) where ix(z) =z, for all z € X and
iy(y) =y, forally e Y.

We note that for all the morphisms f : (X,T) — (Z,T), g : (Y,S) = (Z,T) there
exists a unique morphism b : (X [[Y,T][[S) — (Z,T) with the property f = hoix and
flz), ze€X
g(z), z€Y .

(d) Let ¢ : (Xo,Tp) — (X,T), i(z) = x, for all x € X. We note that Ty (x1,22) =
T(i(x1),i(x2)) and foi=goi.

To prove the universal property we consider v : (Z,U) — (X,T), a morphism with

g = h oy, which is defined by h(z) =

the properties:
(i) U (z1,22) <T (v(21),v(22)), (V)z1,22 € Z.
(ii) fov=gouw.
Since f(v(z)) = g(v(2)), for all z € Z, then v(z) € Xy, for all z € Z, and we can
define the unique morphism h : (Z,U) — (Xo, Tp), by setting h(z) = v(z), for all z € Z.
(e) Let p: (V,95) — (Y/R, §>, p(y) =7 for all y € Y. Obviously, p is a morphism.
Let (Z,U) be a fuzzy tolerance relation and let u : (Y,.5) — (Z,U) be a morphism
in Tol. It follows that S (y1,92) < U (u(y1),u(y1)), (Y)y1,92 € Y. But that means that
S (y1,y2) < S(p (1) .1 (y2)) U ((wop) (y1), (wop) ().



On the category of fuzzy tolerance relations and related topics 117

Then the unique function h : (Y/R,S) — (Z,U) with the property hop = u is
h(y) = u(y), where y € g, for all y € Y.

(f) We note that (X xz Y, T xy S) is a fuzzy tolerance relation and the projection
morphisms px : (X xz Y, T xy S) = (X,T) and
py (X xzY,TxyS)— (Y,S) on X, respectively on Y, have the property fopx = gopy.

Let (V, R) be a fuzzy tolerance relation and hy : (V,R) — (X,T) and hy : (V,R) —
(Y, S) be two morphisms with the property foh; = gohy. Then there is a unique morphism
h:(V,R) - (X xz Y, T xy S), where h(v) = (h1(v),ha(v)), (V)v € V, which has the
properties px o h = hy and py o h = hy. Hence, (X Xz Y, T xy S) is the pullback of (X, T)
and (Y, .5).

(g) From the way it is defined it is obvious that (Y [[ Z, S [[, U) is a fuzzy tolerance
relation. Its associated morphisms are
p1:(Z,U) = (Y] Z, S U)and ps : (Y,S) = (Y ]Iy Z,S 117 U), where pi(2) = (¥, 2),
for all 2 € Z and p2(y) = (¥, 2), for all y € Y. The morphisms have the property p; o f =
p20g.

To prove that they have the universal property we choose a tolerance relation (V, @),
together with two morphisms uy : (Z,U) — (V, R) and
us : (Y, 9) — (V, R) with the property u; o f = us 0 ¢g. Since u; and us are morphisms in
Tol it follows that

(i) U(z1,22) < R(ui(z1),u1(22)), for all z1, 22 € Z.

(ii) S(y1,y2) < R(uz(y1),u2(y2)), for all y1,y2 € Y.
Then, the unique morphism ui,us) : (Y [y Z,S1[;U) — (V,R), where (u1,u2)(y,2) =
(u2(9), u1(2)), (V)y € Y,z € Z, satisfies ~ the  properties
(u1,u2) o py = uy and (uy,us) o pa = us.

(h) We firstly prove that (Y, ST) is a fuzzy tolerance relation:

(i) We have that ST(f, f) = 1, for all f € YX, since T(x,y) < S(f(x), f(y)), (V)x,y €
X = ST(f,f)=1, (V)f e YX.
(ii) We have that ST(f,g) = ST (g, f), for all f,g € Y, since T and S are symmetric.

Let ev : (YX, ST) x (X, T) — (Y,S) be the evaluation morphism, that is ev(f,z) =
f(z) for all f € YX and z € X. We prove that (YX, ST) has the universal property.

Let (Z,U) be a fuzzy tolerance relation and g : (Z,U) x (X,T) — (Y, S) be a mor-
phism.

Let Ag : (Z,U) — (Y*,57), where A\g(z) = g(z,—) : (X,T) — (¥, S) is a func-
tion. The function Ag is a morphism, since for all z € Z and x1,22 € X we have
(Uv T) ((Za xl)? (Zv xQ)) =T (xb 3:2) <5 (g(za 1'1)’ g(z, xZ))

Then Ag € Y¥ is the unique morphism such that evo ()\g X id(X,T)) = g, which
completes the proof. O

Definition 4.3. (Belohlavek et al. [3]) A normal fuzzy set A : X — [0,1] is called a
preclass of the fuzzy tolerance relation T : X x X — [0,1] if for all z,y € X, it holds that
A(z) NA(y) < T(z,y)



118 Adrian Gabriel Neacsu

Definition 4.4. (Belohldvek et al. [3]) A preclass K : X — [0,1] of the fuzzy tolerance
relation T is called a class of T if for all the preclasses A of T with A(x) > K(z), for all
z € X, we have A =K.

Definition 4.5. A base of the fuzzy tolerance relation T is a set of classes K; of T such
that T(x,y) = Ve (Ki(z) ANKi(y)), (Y)z,y € X, and the set of all classes K;, for all
iel—{io} withig € 1, is not a base.

Remark 4.3. For any « € X the crisp set A, := {z} is a preclass of T. Indeed, A,(x) A
Az(z) = T(z,z) = 1 and Az(z) AN Ax(y) = 0 < T(x,y) for all y # z. If follows that
(X, (Az)zex) is a covering of X with preclasses of T. For z € X, let F, := {F preclass of
T with A, (y) < F(y), (V)y € X}. By Zorn’s Lemma, we can choose a preclass K, € F,,
maximal with respect to inclusion. Then K, is a class of T' with K,(z) = 1. It follows that
(X, (Kz)zex) is a covering. Hence, X can be covered by classes of T'.

If T can be covered with a finite number of classes (for example, when X is finite),
then, we can obtain a (finite) base by removing classes and checking whether the remain-
ing collection still restores the fuzzy tolerance relation. Also, a tolerance relation could
have more bases, see [6, Example 5]. Assume that 7" has an infinite base (K;);cs. Since
Vier Ki(xz) = 1 does not imply that there exists some i with K;(x) = 1, (X, (K;)scr) is not

necessarily a covering.

Lemma 4.1. Let T : X x X — [0,1] be a fuzzy tolerance relation. If T has a finite base
H = {K;li € I} then (X, (K;);c;) is a covering.

Proof. For x € X we have that 1 = T'(z,z) = \/,c; (K;(x) A K;(x)). Since I is a finite set,
it follows that there exists ¢ € I such that K;(z) = 1. Hence (X, (K;),c;) is a covering. [

Proposition 4.1. Let T : X x X — [0,1] be a fuzzy relation. Then:

(1) (X,T) € Ob(Tol) if and only if (X,T,) € Ob(Tol), for all o € (0,1], where T, is the
a—cut of the fuzzy set T : X x X —[0,1].

(2) If T is a tolerance relation and H = {K,|i € I} is a finite base of T, then Ty (z,y) =
V(K () NK;, (y)), for all oo € [0,1].

Proof. (1) The assertion follows from the facts:
(i) To(z,z) =1, (V)z € X and (V) € (0,1] & T(z,x) =1, (V)z € X.
(i) To(z,y) = Ta(y,z), (V)z,y € X and (V)a € (0,1] & T(y,z) = T(y,z), (V)z,y € X.
(2) It follows from applying the a—cut operation in the formula T'(z, y) = \/,; (K;(w) A Ki(y)),
from Definition 4.5. g

In the following theorem, we establish some connections between Covering and Tol.

Theorem 4.2. Let F : Covering — Tol be defined:
(i) On objects: F (X, (As);er) = (X, Vier (Ai(x) A Ai(y))), where (X, (As);e;) is a cover-
ng.
(ii) On morphisms F(f,p) = f.
Let G : Tol — Covering be defined:
(i) On objects: G(X,T) = (X, (T(z,—)),cx), where (X,T) € Ob(Tol).
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(ii) On morphisms: G(f) = (f, f)-

We have that:

(1) The functors F' and G are correctly defined.

2)

(3) G is injective on objects.

(4) (GoFoG)(X,T)=(X,T;T), for oll (X,T) € Ob(Tol).

F' is surjective on objects.

Proof. (1) It is obvious that F is correctly defined on objects.

Let (f,p) : (X, (Ai);er) — (Y, (Bj)jeJ> be a morphism in Covering.

Since A;(x) A Ai(y) < (B (f(2) A By (f(1)), (V)z,y € X, (V)i € I, it follows
that \/;c; (Ai(2) A Ai(y)) < Vier (B (f(2)) A By (f(y))). Then F(f, p) € Homrol (F (X,
(Ai)iel) 3 (Y7 (Bj)jej :

In order to prove that G is correctly defined, we let A,(y) = T(x,y) for all z, y € X
and B(y) = S(z,y) for all z, y € Y. We have that G(X,T) = (X, (As)zex). Since
T is reflexive, it follows that A,(x) = 1, for all x € X, thus G(X,T) € Ob(Covering).
Let f € Hom ((X,T),(Y,5)). Then T(z,y) < S(f(x), f(y)),(V)z,y € X = A(y) <

By (f(y), V)z,y € X.
(2) Assume T has a finite base H = {K;|i € I}. From Lemma 4.1, it follows that

(X, (K;)icr) is a covering. We have that

F (X, (Ki)ier) = | X, (\/ (Ki() /\Ki(y))> = (X, T).

i
It remains to study the case when T does not have a finite base. For z,y € X, we define a
T(x,y), z==
fuzzy set Ay : X —[0,1], by setting A,y(2) = S T(z,y), z=y
0, otherwise

Since T is reflexive and (X, (Azq),cx) € (X, (Azy), yeX) it follows that (X, (Azy)
is a covering. We have that:

F (X7 (Azy)x,yeX) = (X’ ( \/ (Ary(:rl) /\Amy(y/))> ) = (X7 T)

z,ycX

x,yGX)

(3) If G(X,T) = G(X,S), then T(xz,y) = S(z,y) for all z,y € X. Hence, G is
injective.

(4) For any (X,T) € Ob(Tol), we have that:
(GoFoG)(X,T)=(GoF) (X,(T(—,2)),ex) =

= <X» V (T(cv’y)/\T(y»Z))> = (X,T;T),

yex

hence we are done. O

Definition 4.6. We say that (X, (A;);c;, ) is a fuzzy tolerance covering if (X, (A;);c;)
is a covering and a : I — P*(X), where P*(X) is the set of non-empty subsets of X, has
the following properties:
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For all x € X, there exists a unique i € I such that v € a(3).
Ai(x) =1, for all x € (7).

Ai(y) = Aj(z), for all x € a(i) and y € a(j).

Ai(x) =A;(z) foralz e X & i=j.

~ o~
&

(c
(d

)
)
)
)

T

Example 4.1. To clarify the definition above we will construct a fuzzy tolerance covering.
Let X = {x1,29, 25,24, 25,26} and I = {1,2,3}. We define a : I — P*(X) such that
the condition (a) is fulfilled, by setting a(1) = {z1,22},(2) = {x3, 24,25}, a(3) = {x6}
Condition (b) implies: Ay(z1) = Ay(z2) =1, Aa(x3) = Aa(x4) = Aa(ws) = 1, Az(ag) = 1

Ay Ao As

T1 L2 L3 L4 L5 L6
Al 1 1 1 Ai(zg) Ai(zs) Ai(zs) | Ai(xe)
T2 1 1 Ai(zg) Ai(zs) Ai(zs) | Ai(xe)
I3 Al(x3) Al(xd) 1 1 1 Ag(xg)
As x4 | Ar(zs) Ai(zs) 1 1 1 As(x6)
ws | Av(zs) A(zs) | 1 1 1| As(ze)
Ag Tg Al({L‘G) Al({,EG) AQ({EG) AQ((E(;) AQ(.’L‘(;) 1

Condition (c) implies:
o Ai(xz3) = A1(z4) = A1(x5) = Az(x1) = Aa(x2) because x1,z2 € al) and x3, 24,5 €
a(2).
o Aj(xg) = As(xq)
[ AQ(I‘G) = As(l‘d)
x6 € a(3).
Condition (d) implies that the fuzzy sets A;’s are distinct, for all i € I. We can represent
(X, (Ai);er > @) in the table:

As(z2) because x1, 22 € a(l) and zg € a(3).

As(xz4) = As(xs) because z3, x4, x5 € a(2) and

Remark 4.4. If (X, (Ai)ier ,a) is a fuzzy tolerance covering, then for all i € I the fuzzy
set A; can be written in terms of all the other fuzzy sets of the fuzzy tolerance covering i.e.
for all ¢ € I we have:

Ai(x) = b . .
Aj(y), =€ a(j),y € ali)

x € aft)

Proposition 4.2. If (X, (Ai)ier ,a) is a fuzzy tolerance covering, then:
(1) (X, («(i);c;) is a partition.
(2) (X, (a(@));er) € (X, (Ai)ier)-

Proof. (1) According to Definition 4.6(a) for all € a(i) these exists a unique ¢ € I such
that « € X. Hence (X, (a()),¢;) is a partition.
(2) We have A;(x) =1, for all x € a(i) therefore a(i) C A;(x). O

Definition 4.7. Let t-Covering be the category which has:

(a) Objects: The tolerance coverings.

(b) Morphisms: The functions f : X — Y such that for all x € X and i € I, there exists
J € J such that A;(z) < B; (f(x)).

(¢) Composition is the usual function composition.
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Remark 4.5. Let (X, (4;);c;, ) be a fuzzy tolerance covering and let
H={f:X=>X|MzeX,iel, ifx € a(i), then f(z) € a(i)}.

Then H C Homyi-covering ((X, (Ai)iel,a) , (X7 (Ai)iel,a)). Indeed, it is enough to note
that A;(x) = A; (f(x)), foralli e I and z € X.

Theorem 4.3. The categories Tol and t-Covering are isomorphic.

Proof. Let T : X x X — [0,1] be a fuzzy tolerance relation. On X, we consider the
equivalence relation ~, defined by = ~ 2’ if and only if T(z,—) = T(2’,—). We choose

(2)ier a complete set of class representatives. We let
a: I = P(X), ali)={ze X |T(x,—) =T(x;, )}

We define F' : Tol — t-Covering as follows:

(a) Welet F(T) = (X, (Ai);e; ), where A;(y) = T(z,y), for all z € a(i), where a(i) was
defined above.

(b) For all f: X — Y functions and 7' : X x X — [0,1], S : Y xY — [0, 1] tolerance
relations such that T'(z,y) < S (f(z), f(y)) let F(f) = f.

We check that (X, (Ad)icr s a) is a tolerance covering, i.e.:

(a) For all x € X there exists a unique ¢ € I such that x € «(7). Indeed, this is clear from
the fact that ~ is an equivalence relation.

(b) For all z € a(i) we have A;(x) = 1. Indeed, since A;(y) = T(z,y) for all y € X and T
is reflexive, it follows that A;(z) = T'(z,z) = 1.

(c) For all z € a(i) and y € a(j) we have A;(y) = A;j(x). Indeed, since T is symmetric, it
follows that A;(y) = T(z,y) = T(y,z) = A;(x).

(d) Ai(z) = Aj(x) for all z € X if and only if ¢ = j.

We know that A;(z) = T(z,z) for all z € a(i) and x € X and
Aj(x) =T(z,x) for all z € a(i) and = € X. Then z € a(i) N a(j). From (a) it follows
that i = j.
Hence, F' is correctly defined.
We define a functor G : t-Covering — Tol, by:

(a) For all (X, (A;);c;,a) tolerance coverings we let G (X, (4;);c;,) = (X,T) where
T(x,y) = A;(y) for all z € a(i).

(b) For all f: (X, (A;);e; ) — (Y, (Bj)jej,ﬁ) let G(f) = f.

We prove that G is correctly defined. From Definition 4.6(a), it follows that for all z € X

there exists a unique 7 € I such that « € «(i), hence T'(z,y) = A;(y) is correctly defined.

We prove that T is a tolerance relation:

(a) T is reflexive. For all x € X there exists a unique i € I such that x € a(i). From
Definition 4.6(b) it follows that T'(x,z) = A;(z) =1 for all z € X.

(b) T is symmetrical. For all z,y € X there exist unique 7,j € I such that z € «(i) and
y € a(j). Since T'(z,y) = Ai(y) and T(y,x) = A;j(z), from Definition 4.6(c) we get
that T'(z,y) = T(y, ).

We note that:



122 Adrian Gabriel Neacsu

(i) (GoF)(X,T)=(X,T) for all (X,T) € Ob(Tol), and (Go F)(f) = f for any morphism
f: X—=>Y.
(i) (FoG)(X,(Ai)er»>@) = (X, (Ai);er ) for all
(X, (Ai);er > @) € Ob(t-Covering).
It follows that the functors F' and G are inverse to each other. Hence Tol is isomorphic with
t-Covering.
|

5. Conclusions

In summary, we study the category Tol of fuzzy tolerance relations and we establish
connections with the category Covering of fuzzy coverings. Besides that, we construct an
isomorphism between Tol and t-Covering, the category of tolerance coverings, which is a

subcategory of Covering.
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