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MODULE JOHNSON AMENABILITY OF CERTAIN BANACH
ALGEBRAS

Amir Sahami!, Seyedeh Fatemeh Shariati?, Abdolrasoul Pourabbas®

In this paper, we introduce the new notion module Johnson amenabil-ity for a
Banach algebra which is a Banach module over another Banach algebra with
compatible actions. We study the relations between this new mnotion and
other various notions of module amenability. We characterize the module John-
son amenability of £*(S) as an £*(E)-module, for an inverse semigroup S with
subsemigroup E of idempotents. We investigate the module Johnson amenabil-

ity of £'(S), whenever S is a Brandt semigroup or bicyclic semigroup or N with
maximum as its product. As application we show that for every non-empty set

A, MA(C) as an A-module is module Johnson amenable if and only if A is finite,

where A = {[ai’j] € MA(C) | Vi # j,ai; = O}A
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1. Introduction and preliminaries

Amini introduced the concept of module amenability for a class of Banach
algebras [1]. He showed that for an inverse semigroup S, ¢*(S) is module amenable
if and only if S is amenable, where E is the set of idempotents [1, Theorem 3.1]. Some
new generalizations of module amenability like module pseudo amenability, module
pseudo-contractibility and module approximately amenability have been introduced,
see [5], [11]. Bodaghi et al. showed that for an inverse semigroup S, ¢(S) as an
¢} (E)-module is module pseudo-amenable if and only if S is amenable [5, Theorem
3.13(i)]. Also the same result holds for the module approximately amenability [11,
Theorem 3.9].

The notion of Johnson pseudo-contractibility for a Banach algebra was intro-
duced by the second and third authors, which is a weaker notion than amenability
and pseudo-contractibility but it is stronger than pseudo-amenability [14]. A Ba-
nach algebra A is called Johnson pseudo-contractible, if there exists a not necessarily
bounded net (mq) in (A®A)*™ such that a - mq = mq - a and 75 (my)a — a for
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every a € A. They also showed that for a locally compact group G, M(G) is John-
son pseudo-contractible if and only if G is discrete and amenable [14, Proposition
3.3]. They characterized the Johnson pseudo-contractibility of ¢!(S), where S is
a uniformly locally finite inverse semigroup [13, Theorem 2.3]. They showed that
for a Brandt semigroup S = M%(G,I) over a non-empty set I, ¢1(S) is Johnson
pseudo-contractible if and only if G is amenable and I is finite [13, Theorem 2.4].
By considering these notions, we generalize the concept of Johnson pseudo con-
tractibility for a class of Banach algebras that are modules over another Banach
algebra with compatible actions.

In part two of this paper, we define the module Johnson amenability for a
Banach algebra A which is a Banach 2f-module. First we show that the mod-
ule Johnson amenability is a stronger notion than module pseudo-amenability and
module approximately amenability and it is a weaker notion than module pseudo-
contractibility. Next for an inverse semigroup S with subsemigroup E of idempo-
tents, we characterize the module Johnson amenability of £1(S) as an ¢} (E)-module
with amenability of S.

In part three, we provide some examples to distinguish our new notion with
the Johnson pseudo-contractibility. Finally, as an application, we show that for
every non-empty set A, the Banach algebra of A x A-matrices over C, My (C) as an

2-module under this new notion is forced to have a finite index, where A = < [a; ;] €

MA(C) | Vi # j,a;5 = 0}-

2. Module Johnson amenability

Let A and 2 be Banach algebras such that A is a Banach 2-bimodule with
the following compatible actions:

a-(ab) = (a-a)b, (ab)-a=alb-a) (a,beA ac).
Let X be a Banach A-bimodule and a Banach 2-bimodule with the compatible
actions:
a-(a-z)=(a-a)-z, a (a-z)=(a-a)-z, (az)a=a(r-a),

for every a € A, a € A and x € X and similarly for the right or two side actions.
Then we say that X is a Banach A-2A-module. If moreover - x = x - o for every
a € A, x € X, then X is called a commutative Banach A-2-module. If X is a
commutative Banach A-2-module, then so is X*, where the actions of A and 2 on
X* are defined as follows:

<Oé'f,.%'>:<f,$'06>, <a-f,x>:<f,x-a> (OZGQL,GG.A,xGX,fEX*),

and similarly for the right actions. Let A and 2 be as above and X be a Banach
A-2-module. A bounded map D : A — X is called a module derivation if

D(a+b) = D(a) = D(b), D(ab)=D(a)-b+a-D() (a,beA),

and
D(a-a)=a-D(a), D(a-a)=D(a) -a (acAac).



Module Johnson amenability of certain Banach algebras 167

When X is commutative, every x € X defines a module derivation
Dy(a)=a-z—z-a (a€cA),

These are called inner module derivations. A is called module amenable as an 2-
module, if for any commutative Banach A-2-module X, every module derivation
D : A — X* is inner [1, Definition 2.1].

Let A be a Banach 2-module and let A®gA be the projective module tensor

ARA
product of A and A, which is isomorphic to the quotient space %, where Jy is
A

the closed linear span of
{a-a@b—a®a~b|a€%,a,beﬂ}
in A®A. Also consider the closed ideal g4 of A generated by
{(a'oz)b—a(a-b) | « EQl,a,bEA}.
We denote J4 and J4 by J and J repectively, unless otherwise specified. So J is an A-
submodule and a 2(-submodule of A®A, J is an A-submodule and a 2(-submodule of
A, and both of the quotients A®yA and J;L are A-module and A-module. Consider
the product map wy : ARA — A defined by a ® b > ab for every a,b € A and let
- A
Wyt ARQgA — 7 be its induced product map defined by ©4(a @ b+ J) = ab + J.

—
11 11
7k J

Rk

It is clear that w, and wy" :

are both A-module morphisms and

2-module morphisms.
Now we introduce the new notion of this work:

Definition 2.1. Let A be a Banach 2A-module. Then A is called module Johnson
amenable, if there exists a not necessarily bounded net (M) in (ARyA)*™ such that
for every a € A

(i) a-mq =My - a,

(i) @3 (ma) -a+d = a+3-" in f1.

Lemma 2.1. Let A be a Banach A-module. If A is Johnson pseudo-contractible,
then A is module Johnson amenable.

Proof. Since A is Johnson pseudo-contractible, there exists a net (m,) in (ARA)**
such that for every a € A

Ma-a=a-mg and wj(my)- -a— a.

Let g = mq + I+ for every «. It is clear that a - My = My - a for every a € A.
By Goldstein’s theorem one can see that &% (a) = Wi (mq) + -+, So

DR (Ma) - (a+3) = Wi (ma) - a + 35 = a+ 3+
Thus the proof is complete. O

An element M € (A®gA)*™ is called a module virtual diagonal if oyt (M)-a =
a+ 3+t and M -a =a- M for every a € A [12].
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Lemma 2.2. Let A be a Banach A-module. If A has a module virtual diagonal,
then A is module Johnson amenable.

Proof. If A has a module virtual diagonal, then there exists an element M in
(A®gA)*™* such that for every a € A

O (M) -a=a+dt and M-a=a- M.
There exists an element M in (A®A)** such that M = M + J+L. By Goldstein’s

theorem one can see that &' (M) = & (M + I++) = wi (M) + §++. By canonical
module action for every a € A we have

G - a+d = WF (M) +3) a+d=wi (M) o+
= (OJ:Z*(M) +3LL) ca = ~Z*(M) cq = a—i—ZJ‘J‘.
It follows that A is module Johnson amenable. 0

Let A be a Banach 2-module. A Banach algebra A is said to be module
pseudo-amenable (module pseudo-contractible), if there exists a net () in A&gyA
such that @4 (t;)-a+Jd = a+Jdand 4j-a—a-4; — 0 (4 -a —a-a; = 0) for every
a € A [5, Definition 2.1], [5, Definition 2.2].

Proposition 2.1. Let A be a Banach 2A-module. If A is module Johnson amenable,
then A is module pseudo amenable.

Proof. Since A is module Johnson amenable, there exists a net (g )acs in (ARgA)*
such that a-m, = Mmy-a and O3 (Ma)-a+d — a+J* for every a € A. By Goldstein’s
theorem for every « there exists a net (ug) seq in A®gA such that wk*- lién af = 1M

in (A®yA)**. So
wk*-lim wk‘*-liéna . &g — ag ca=0 in (A®RgA)™, (1)

and since wj* is a wk*-continuous map,

k%

wh'-limwk™ lm(@5 (33) o +3) = a + g+t in
«

HJ_J_ ’ (2)
Let X =1 x Q! be a directed set with the product ordering defined by
(aaﬁ) SX (alvﬁl) = o SI Ofl and /B SQI /BI (a,a/ S -[7 57/8/ S 91)7

where Q is the set of all functions from I into Q and 8 < 8’ means that 8(d) <q
B'(d) for every d € I. Suppose that v = (¢, fo) and y, = ug. Iterated limit theorem
[10, Page 69], (1) and (2) imply that for every a € A

wk*-lima-jy, — 9, -a=0 and wk*lim(@5(J,) -a+3J) =a+J-t = a+td.
v gl
So
wk-lima-yy —yy-a=0 and wk-lm(@a(yy)-a+J)=a+J (acA).
gl gl
By Mazur’s lemma one can see that for every a € A
lima-yy —y,-a=0 and lm(@a(y,y)-a+3d)=a+d.
gl gl

It follows that A is module pseudo-amenable. ]
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Let A be a Banach algebra and an 2(-bimodule with compatible actions. Then
A is module approximately amenable (as an 2-module) if for every commutative
Banach A-2-module X, every module derivation D : A — X* is approximately
inner [11, Definition2.1].

Corollary 2.1. Let A be a Banach 2A-module with bounded approximate identity. If
A is module Johnson amenable, then A is module approrimately amenable.

Proof. If A is module Johnson amenable, then Proposition 2.1 and [5, Theorem 3.2]
imply that A is module approximately amenable. O

Proposition 2.2. Let A be a Banach 2A-module. If A is module pseudo-contractible,
then A is module Johnson amenable.

Proof. 1t is clear. O

Following [4, §2], let A be a Banach 2-module with compatible action and let
v € AgU{0}, where Ay is a character space of 2. Consider a linear map ¢ : A — 2
such that for every a € A and a € 2

¢(ab) = d(a)p(b), ¢la-a) = d(a-a) = p(a)p(a).
A bounded linear functional m : A* — C is called a module (¢, ¢)-mean on A* if
m(f-a)=gog(a)m(f), m(f-a)=p(@)m(f) and m(po¢) =1 for every f € A%,
a € A and a € A. We say that A is module (¢, ¢)-amenable if there exists a module
(¢, p)-mean on A*.

Proposition 2.3. Let A be a Banach 2A-module such that a - o = p(a)a for every
a €A and o € A, where @, ¢ are as above. If A is module Johnson amenable and
Q- My = Mg -« for every a € A (Mg as in Definition 2.1), then A is module
(¢, p)-amenable.

Proof. Since A is module Johnson amenable, there exists a net (14 )aes in (AQgA)*
such that a - My = Mq - a and O (M) -a+J — a + g+ for every a € A. Define
T:ARA — A by T(a®b) = o ¢(b)a for every a,b € A. It is easy to see that
T=0onJ. SoT drops to T : AQyA — A. Then for every a € A and @ € AQgA

T(a- @)= aT (), T(i-a) = @op(a)T(), (3)

and also

T(o- @) = o-T(0), T(i-a) = @la)T (@) =T(a) - o (4)
Since ¢|5 = 0, ¢ drops to (;NS : % — 2. For every a,b € A we have
(T(a®@b+7),p00) = (T(a@b),pod) = (pod(bla,pod) = (ab,pog)
= (ab+3,p09) = (@ala@b+7),p0 ).
Then

(T(u),p0¢) = (@alu),pod)  (ucAdgA). ()
Consider the map 7% : (A®yA)** — A**. Since T** is wk*-continuous, Goldstein’s
theorem, (3), (4), and (5) imply that for every a € A, a € A and F € (AQyA)**

T™(a-F)=a-T™(F), T"(F-a)=po¢(a)I™(F), (6)

and
T**(a F)y=a- T**(F), T**(F ca) = (p(oz)T**(F) = T**(F) -, (7)
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and also 3 }
(o, T™(F)) = (¢ o ¢,y (F)). (8)
By (6) for every a € A and f € A* we have
(f-a, T (1a)) = (f, T (a)) = (£, T (ama)) = {f, T (Ma-a)) = pod(a)(f, T* (1))
(7) imply that for every v € 2 and f € A*
(f-a, T (ia)) = (f,aT* (ma)) = (f. T (aima)) = (f, T (Ma-a)) = p(a)(f, T (7).
Since @4 (M) - a +J — a + J++ for every a € A,
lim({p 0 6, @ (Ma))(p © §,a+ 3-) = lim(p 0 $(a + J)¢ © &, &) (1a))

— lim(a +3- ¢ 0 6@ (1a)

= li(£n<ga o &,w;*(ma) ca+J)

= (pod,a+d™).
So (o, W¥ (1ha)) — 1in C. (8) leads to (wodp, T** (1)) — 1. For sufficiently large

T**(m@)

(p 0 ¢, T (1ha))

we may assume that (f - a,T* () = @ 0 ¢(a)(f, T (1)), (f - o, T* (1g)) =
(@) (f, T (174)) and (p o ¢, T** (1)) = 1. Hence the proof is complete. O

Remark 2.1. Let A be a Banach A-module. It is clear that A™* is a Banach -
module with dual action and also J4 C Ju++. By Goldstein’s theorem and applying
A** k%
[6, Theorem 2.6.15(ii)], one can see that ga+= C J5*. Consider — and
A**
Banach A-module with natural actions. Since JaA** C Jax= (similarly to the left

action) and J4A** C 5+ (similarly to the left action), T and g
A** A

o, (po ¢, T**(iny)) stays away from zero. Replacing T**(1ha) by

TLJ- as

are Banach

-modules with natural actions [6, Example 2.6.2 (iv)].

da
Remark 2.2. By the discussion before Definition 3.5 in [2], there is a continuous
.A** A.A** .AA.A *k
linear map Qg : ® ( %J_) such that for every a,b,x € A and u €
T gex I

A QA the following equalities hold:
(1) Q(a®@b+Tge) =a®b+ I,
(i) Qo(u+ Tgex) -z = Qqu - + T ges);
(iv) @ (Qa(u 4 Jg)) = Ao @ger (u + T gee ),

‘A** A**
where X : T — s F+J g — F—i—HJA-L is a well defined continuous map. Note
A**

75T
that [2] contains alternative definitions of Ia, Ja, Ja= and Ja+, but we can adopt
the map Qg with our own definitions here.

Proposition 2.4. Let A be a Banach 2A-module. If A** is module Johnson amenable,
then A is module Johnson amenable.
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Proof. Since A** is module Johnson amenable, there exists a net (14 )aer in (A** g A )**

such that F - mq = mq - F and O35, (Ma) - F 4+ Jp — F + Hji for every F € A**.
Consider the canonical embedding map i : (A®gyA)* — (ARgA)*™**. Let 7, =
i* 0 Q5" (Ma), where Qg is a continuous map as in Remark 2.2. Properties (ii) and
(iii) in Remark 2.2 imply that for every a € A

@-fia = a- ("o (1a)) = "oy (a-1ha) = i*0Q (Ia-a) = (i* o (a))-a = fia-a.
By Goldstein’s theorem for every «, there exists (:rg) in A**@gA** such that wk*- lién xg =
Me in (A**@gA*)**. By the property (iv) in Remark 2.2 we have
Wy (a) - (a+dn) = @y 0i" o Uy (1) - (a4 da)
= wk*- lién(d)z* 0i* o Qi (x3) - (a+3da))
= wk™ (@ 0 i*(Ou(x5)) - (a +da)
— wk* (@ o Qa(eh) - (a+ )
= wk*- lién()\ oWas(3) - (a+3da)) (a e A).

Remark (2.1) implies that A is an —-module morphism. So

A
"Dj{*(ﬁm +J4) = wk*- lién()\** 0 Wihs (gjng) (a+30))
= A" o wji (ha) - (a+3a) 9)

= N0 (Ma) - (a+dn))-
There exists (Ty,) in A**** such that @3, (Ma) = To + J4=. One can see that
O (g) (a+da) =Ta-a+ 5= —a+J5t =a+Ja (a€A).

By (9) we have

&3 (fia) - (a+3a) — a+ 35L.
So @ (fia) - (a+da) — a+ J4+. Thus A is module Johnson amenable. O

Proposition 2.5. Let A and B be Banach A-modules. Suppose that ¥ : A — B
is a continuous epimorphism such that ¥(«a-x) = a-¥(x) and ¥(r - o) =¥ () - «
for every a € A and x € A. If A is module Johnson amenable, then B is module
Johnson amenable.

Proof. Since A is module Johnson amenable, there exists a net (Mg )acs in (ARgA)**
such that a - mq = Mq - @ and O (M) -a+Jg — a + qu‘L for every a € A. Define
VU :ARA — BB by U W(r®y) = ¥(z) @¥(y), for every 7,y € A. So¥W @ ¥
is a bounded linear map. It is easy to see that ¥ @ ¥(J4) C Jg. Then we can define
O: ARgA — BRyB by O(z @y +J4) =¥ @¥(x ®y) + Ig for every x,y € A. For
every @ € A®gA, a € A and o € A we have

O(a- i) = (a)-O(@), O(i-a)=0O(q)- ¥(a). (10)

Also
Ola-u)=a-0(a), Ot «a)=0(1)- « (11)
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Since ©** is wk*-continuous, Goldstein’s theorem and (10) imply that

O (a-F)=W¥(a) - O™(F), O"(F-a)=0"(F) -¥(a) (acAF € (AgA)™).
Let 1o = O (Mmq). So for every a € A

U(a) ng =¥(a) - 0" (Mmy) = 0™ (a-my) = O™ (My-a) = O™ (M) - ¥(a) = ne-¥(a).
One can see that ¥(J4) C Js. So we can define ¥ : % — % by ¥(a+34) = ¥(a)+33
for every a € A. It is clear that ¥ is an epimorphism map and also ¥ (Z-a) = ¥(i)-a
and ¥(a-7) = a-¥ () forevery @ € A and T € %. Since &% (M) -a+da — a+da"
and U** is continuous, ¥ (0% (Mg) - a + Ja) — ¥ (a + Jatt). Since ¥ is an
epimorphism map, by Goldstein’s theorem one can see that ¥**(&* (Ma)-a+3da) =
T (0% (M) - F(a+3da). So for every a € A

(@5 (1) - (W(a) + 33) — W(a) + Iz, (12)
in Hi%' We claim that &g 0 © = ¥ o @4. To see this for every a,b e A

(ab+34, 5300) = ((@) W (b)+3m, ) = ¥(ab)+ds = F(ab+da) = (awb+Ty, Doiy).
(12) implies that

@i 0 O (1ha) - (¥(a) +I8) — (a) + Iz~ (a € A).
Hence @3 (Ng) - b+ Js — b+ Jpt for every b € B. O

Corollary 2.2. Let A be a Banach 2A-module and let L be a closed ideal of A. If A
is module Johnson amenable, then A/L is module Johnson amenable.

Proof. Since the quotient map ¢ : A — A/L satisfies conditions in Proposition 2.5,
A/L is module Johnson amenable. O

Let A be a Banach 2A-module and let B be a Banach B-module. One can see
that the Banach algebra A®B is a Banach A&B-module with following actions:

(a®B)a®b) =a-a®B-b (a,be A acABcB),
and similarly for the right action.

Proposition 2.6. Let A be a Banach 2A-module and let B be a Banach B-B-module.
Suppose that B has a non-zero idempotent. If AQB is module Johnson amenable
(as Banach A@B-module), then A is module Johnson amenable.

(A®B)D(ARB))**

Proof. Since A®B is module Johnson amenable, there exists a net (1, in 71
A®B
A®B(ma) u+3d4em — U—HJA@% for every u € AQB.
Suppose that by is a non-zero idempotent of B. By similar argument as in [9, Propo-
sition 3.5], there exists a non-zero f € B* such that f(by) = 1 and f(bby) = f(bob)

for every b € B. Define ¢,0 : (AXB)R(AXB) — ARA and ¢ : AQB — A by
(a1 ® b1 ® az ® ba) = f(b1b2)ar ® ag,
0(a1 ® by ® ag ® ba) = f(bob1b2)a1 ® ag,
Y(ap ®b1) = f(b1)ar (ai,az € A, b1, b € B).

such that u-my, = My -uw and @
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So for every d € (AQB)R(A®B) and a € A we have

a-6(d)=¢((a®by)-d) and 0(d)-a=¢(d-(a® by)), (13)

and also
V(waes(d)(@®by)) = (wa o 0(d))a. (14)
One can see that ¢(J,e5) € Ja, 0(Jges) € Ja and Y(d4ep) € da. So define
5,6 ACBIOASE) ABA 45 ASB A a4 ) = 6(d) + T,

Jaes Ja daes s -
5(d+ﬂA®B) =0(d)+J4 and 1/;(u+gﬂ®g) = 4(u)+J4. Foreveryd e (A®BJ)®(A®B),
A®B

there exists an element d € (AQB)&(A&B) such that d = d + J4ems- (13) implies
that

a-0(d)=a-0(d+I,55) =a-(0(d)
(dla®bo) - d)) +Ia = d((a
=d((a®by)-d) (a€A)

and similarly for the right action, 8(d) - a = ¢(d - (a ® bg)). (14) implies that

(@5 (d)(a@bo) + Iu3)) = (d) + Jagms)((a®bo) + I 4a3))
(wygp(d)(@a®bo) + 3 463)
( A®3(d)( a®bo)) +da

of(d))a+da
00(d))+3da)(a+da)

a(0(d) +3a)(a+3da)
=y OON( N)(a—G—HA).

+3J4)=(a-0(d)+ T4
®bo) -d—i—jﬂ@)g)

)

(Wags

I
AA“@@:@:

(

Il
El

(A&B)&(ASB))™
Vi

Now let n, = 0**(/,). By Goldstein’s theorem for every F €

we have

a-0(F) = ¢ ((a@by) - F), 0*(F)-a=¢"(F-(a@by)) (acA) (15)
and also

P (@Dhep(F) - (a®@bo) +ygm) =G4 00 (F) - (a+da) (a€A). (16)
(15) implies that for every a € A
a-ne =a-0"(mg) = 0 (a®@by) - Ma) = ¢ (e - (a®by)) = 0" (1g) - a = ng - a.
implies that
Mm@} (na) - a+da = 1ién@z**(@;ﬁ®3(ma) (a®bo) +ae3) = V" ((a®bo) + Tyis)
= f(bo)a+ 35" = a+J5+ (a € A).

Hence A is module Johnson amenable. OJ
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The semigroup S is called inverse semigroup, if for every s € S there exists an
element s* € S such that s = ss*s and s* = s*ss* [8]. Let S be an inverse semigroup
with the idempotent set E. Consider £(S) as a Banach module over ¢!(E) with the
multiplication right action and the trivial left action, that is

S 05 =05, J5-0.=0s (s€S,ecb).

Theorem 2.1. With the above notation, ¢1(S) is module Johnson amenable if and
only if S is amenable.

Proof. if S is amenable, then £!(S) has a module virtual diagonal [12, theorem 2.9],
[1, Theorem 3.1]. Lemma 2.2 implies that ¢1(S) is module Johnson amenable.
Conversely if #1(.9) is module Johnson amenable, then Proposition 2.1 implies that
¢1(S) is module pseudo-amenable. Applying [5, Theorem 3.13 (i)], S is amenable.
]

3. Examples and applications

Example 3.1. Let S be the set of natural numbers N with the binary operation
(m,n) — max{m,n}, where m and n are in N. It is clear that S is an inverse
semigroup. Since S is an amenable group, Theorem 2.1 implies that £1(S) is module
Johnson amenable as an (*(E)-module, where E(S) = N. But it is not Johnson
pseudo-contractible [3, Example 2.5].

Example 3.2. Let S be the bicyclic semigroup. Then S is generated by p and q
subject to pg = e # qp for the unit element e, that is S = {p™q¢" : m,n > 0}.
Following [7], S is an inverse amenable semigroup and (p™q")* = p"q"™. Theo-
rem 2.1 implies that £*(S) is module Johnson amenable as an ¢'(E)-module, where
E(S) = {p"q¢™ : n > 0}. But it is not Johnson pseudo-contractible [3, Example 2.2].

Example 3.3. Let G be an amenable group, I be an infinite set and let S = M°(G, I)
be a Brandt semigroup, that is the collection of all I x I matrices (g);; with g € G
in the (i, j)-th position and zero elsewhere with the following multiplication

(9)ij(Mks = { (()gh)il % 7:& Z

where g,h € G and i,j,k,l € I. S is an inverse amenable semigroup [7|. Theo-
rem 2.1 implies that £1(S) is module Johnson amenable as an £*(E)-module, where
E(S)={(e)ii:i e I}U{0}. Butitis not Johnson pseudo-contractible 13, Theorem
2.4].

The Banach algebra of A x A-matrices over C, with finite #'-norm and matrix
multiplication is denoted by My (C), where A is an arbitrary set. Suppose that

A= {[ai,j] € MA(C) | Vi # j,ai; = 0} as a closed subalgebra of M (C). One can

see that A = M (C) is Banach A-bimodule with respect to matrix multiplication.
Since a(a - b) = (a - a)b for every a € 2 and a,b € A, § = 0. So % = A and
"

Theorem 3.1. With the above notation, let A be a non-empty set. Then My (C) is
module Johnson amenable if and only if A is finite.
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Proof. Since A = M (C) is module Johnson amenable, there exists a net (mq)acr
in (A®gA)** such that a-m, = Mg - a and @4 (My) -a — a in A** for every a € A.
Let a be a non-zero element of A. By Hahn-Banach theorem there exists a bounded
linear functional ¢ in A* such that ¢ (a) # 0. Since wk*—ligldjjl*(ma) -a = a, we

have
ligén(a ), Wit (Mmg)) = liorénw,abjl*(ma) ca) = (,a) #0.

o (a-v¥,0y (Mya)) # 0 for every a. By Goldstein’s theorem, there is a bounded net
(z5) in A®gA such that wk*- lién Th = g in (A®gA)**. Tt follows that

wk*-lima- 25 — 28 a=a-1mq —Mg-a=0 (a € A).

Since wy" is wk*-continuous,

wk*- liéna ol o (l) - a=0 and wk*- liénd)j{*(xg) =Wy (Ma).
Since (xg) is a net in A®QgA, wk- liéna . &)A(xg) — &A(x'g) -a=0. Let yg = (IJA(:L‘Q).
So (yg) is a bounded net in A such that for every a € A

wk- hmayg —yga=0 and wk” -hényg =@y (Mq).

By a similar argument as in [13, Lemma 2.1] we complete the proof. Suppose that
yp = [y;] ], where y’ € C for every i, j. Fixed ig € A, for every j € A we have

€in Y8 — YZEi ie, + ( “”05 Og;
i0,jY8 — YBCio,g = yﬁ i0,i i0,J yﬁ i3>
iEA SN
i#j i#ig

where ¢;; is a matrix which belongs to Mz (C) and whose (4, j)-th entry is 1 and
others are zero. Since the product of the weak topology on C coincides with the
weak topology on A [15, Theorem 4.3],

10,50

wk — lién yé’j —yg"" =0 and wk-— lién yé’ =0, (17)

7407740)

whenever i # j in A. Since [Jyg|| < ||mall, (¥ is a bounded net in C. So it

20,20

has a convergent subnet (yg” tdo —

) in C. We may assume that lgny Since

10,90 20,20

(yé —yg"") is anet in C, (17) implies that limy 7 —yg"" = 0 with respect to | - |.

So hm yg)’ yﬁj = 0. It follows that hmy ’j = [ for every j € A. If [ = 0, then

by (17) for every i,7 € A, hmyﬁ’J = 0 in C. So wk- hmyﬂ’] = 0, where 7,j € A.

Applying [15, Theorem 4.3], wk: l/lgm Y, = 0in A. Tt follows that liﬂm(yﬁk, a-) =0.
k k

On the other hand
lim(yg,,a - ) =lim(a -, §s,) = lim(a - ¢, 0% (Mma)) # 0,
Bk Bk o



176 Amir Sahami, Seyedeh Fatemeh Shariati, Abdolrasoul Pourabbas

which is a contradiction. So wk—liﬂm yé}f =1 0 for every j € A. Using (17) we
k
have wk—liﬁm nyZ = 0 whenever j # i in A. Applying [15, Theorem 4.3] again, wk-
k

liﬁm Y8, = Yo, where yo is a matrix with [ in the diagonal position and 0 elsewhere.
k

Thus yo € C’onv(ygk)lm = Conv(ygk)'l'u. So yo € A. But

o= [I| =Yy’ = llwoll < o0,
jEA jeA
which is a contradiction. So A must be finite.

Conversely if A is finite, then M) (C) is Johnson pseudo-contractible [13, Lemma
2.1]. Lemma 2.1 implies that M, (C) is module Johnson amenable. O
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