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OPTIMUM DESIGN OF BUMPERS FOR IMPACT 
APPLICATION USING KKT, SLP, CSD AND PLBA 

ALGORITHMS AGAINST IMPACT 

Reza HEDAYATI1, Meysam JAHANBAKHSHI2 

Elastic energy absorbers which consist of ring-liked plate and springs can 
be a good choice for increasing the impact duration during an accident. In the 
current paper, an energy absorber system is optimized using four optimizing 
methods Karush-Kuhn-Tucker (KKT), Sequential Linear Programming (SLP), 
Constrained Steepest-Descent (CSD), and Pshenichny-Lim-Belegundu-Arora 
(PLBA). Time solution, convergency, programming length and accuracy of the 
results were considered in order to find the best solution algorithm. Results showed 
the superiority of PLBA and modified CSD over the other algorithms. 

Keywords: Sequential Linear Programming (SLP); Constrained Steepest-Descent 
(CSD); Pshenichny-Lim-Belegundu-Arora (PLBA) 

1. Introduction 

The energy absorber system in this study consists of 4 rings, four springs 
and a bumper. A schematic view of this system is shown in Figure 1. Two elastic 
rings riveted to the bumper are connected to the two corresponding rings riveted 
to the car body by means of springs. When a car impacts an external obstacle, the 
distance between the bumper and the car body decreases which leads to 
compaction of the rings and the springs. The energy absorbed by the rings and 
springs increases the impact duration which decreases the peak force applied to 
the car and passengers.   

Dynamic mechanical optimization problems involve integration of 
material and mechanical parameters as to determine the response of the system to 
external inputs [1]. Then, using the response variables, cost and constraint 
functions for the problem are formulated. These constraints are implicit functions 
of the design variables. In mechanical and structural design problems, various 
state variables, such as the displacements, dimensions and velocities, are treated 
as independent variables. The kinetic and internal energies become equality 
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constraints in the formulations. Several possible ways to parameterize these 
variables have been investigated by Wang and Arora [2-4]. 

In the current paper, an energy absorber system is optimized using four 
optimizing methods namely KKT, Sequential Linear Programming (SLP), 
Constrained Steepest-Descent (CSD), and Pshenichny-Lim-Belegundu-Arora 
(PLBA). The reviews of the applications of the optimization algorithms can be 
found under their related subsection in the following.  

 
Fig. 1. A schematic view of energy absorber system in the bumper (a) Side view (b) Front view 

2. Constraints and Objective Function of the problem 

The objective function of the problem is the price of the energy absorber. 
For calculating the total price, the relationship below can be used [5]: 

2181.9 CCrtLF +×= ρπ (1) 

in which 1C  is the price of steel per unit volume and 2C  is the price of the four 
springs. Using a steel type of SAE 960X which has a yield stress of 413 MPa and 
costs 65$/lb [5], and considering the price of springs as k1.0 , the objective 
function can be stated as: 

krtLxf 4.0100)7800(81.9)( +×= π   (2) 
In order to avoid spring flatting, the inequality below must be governed: 

0)5sin(2(2 001 ≥−−= δϕ rr   (3) 

For the car considered, it is usually seen that after an accident, the frontal 
part of the car is crushed about 1 meter. Ignoring the energy absorbed by the 
crushing of the frontal parts of the car, which then leads to a safer design of the 
springs, the impact force can be calculated as [6]:  

JFmvFd 375000225120021121 2 =××=×⇒= (4) 
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The force applied to all the springs should not exceed 375 kN.  Therefore, 
by considering a safety factor of 1.33, the force applied to each of the rings is 
calculated to be 125 kN. The relevant constraint can be stated as: 
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Cold forming of absorber is possible if the mean radius of the ring ݎ଴ is 
greater than three times of the thickness. Regarding a minimum thickness of 
0.18034 cm for the rings (the reason will be explained furthur), the third 
constraint can be written as: 

01054102.00 2
03min03 ≥×−=⇒≥−= −rrr ϕϕ (6) 

By considering a height of 35 cm for the bumper, the maximum radius for 
each ring is approximately calculated as 0.15 m. This can be written as: 

015.00 040max4 ≥−=⇒≥−= rrr ϕϕ  
 

(7) 

The minimum length of each ring is taken as four times of its thickness. 
This will make its size suitable for embedding it between the bumper outer 
surface and the springs. By considering cmL 442.1min = , the fifth constraint will 
be: 

010442.10 2
5min5 ≥×−=⇒≥−= −LLL ϕϕ   (8) 

Since the bumper consists of four rings, and each spring can have a 
maximum length of 0.7 m, the total length of the springs is 2.8 m, which can be 
stated as: 

08.20 6max6 ≥−=⇒≥−= LLL ϕϕ (9) 
As stated above, cold forming of absorber is possible if the mean radius of 

the ring is greater than three times of its thickness. Therefore, the seventh 
constraint can be written as: 

0307 ≥−= trϕ  
 

(10) 

Rings with thicknesses higher than 0.071 inch (0.18034 cm) can be found 
much easier than the ones with lower thicknesses. Therefore the eighth constraint 
can be taken as:  

01018034.0 2
8 ≥×−= −tϕ  

 
(11) 

Regarding the connection between 0r  and t , an approximate value of tmax 
can be found by rmax=3tmax. Therefore: 

005.09 ≥−= tϕ  (12) 
The available spring constants for connective springs (between 1 and 108) 

can be considered as two other constraints: 
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010 10min10 ≥−=⇒≥−= kkk ϕϕ  (13) 

0100 8
11max11 ≥−=⇒≥−= kkk ϕϕ  (14) 

The displacement of the of the absorbing rings,δ , must always be positive, 
therefore a minimum value of 001.0  was taken for it. Regarding the space limit in 
the frontal part of the car, δ can be chosen to have a maximum value of 1. Then: 

0001.0001.0 1212 ≤+−=⇒≥= δϕδϕ   (15) 
011 1313 ≤−=⇒≤= δϕδϕ   (16) 

The energy capacity of the bumper is enough if the potential energy gained 
after elastic deformation of the springs is higher than the initial kinetic energy, i.e. 

0.... ≥− EKEP , where 221.. mvEK =  and: 
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Since the car mass is 1200 kg and its initial velocity is 25 m/s, the above 
constraint can be rewritten as: 
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The above equation can get infinite if the amount into logarithm gets 
negative. So the fifteenth constraint can be written as: 
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Therefore: 

0
2015 >−=
δϕ r  

(20) 

In numerical calculations, it is needed to normalize the constraints. It is 
due to the fact that the constraints are different in magnitude and unit. As a result 
when a constraint is violated, it is difficult to judge about how intense the 
violation has been. Therefore, in the current study we first normalize the 
constraints and then use them in different algorithms. Before normalizing the 
constraints, the notation of the variables are changed as: 10 xr → , 2xL → , 3xt → ,

4x→δ , 5xk → . Then: 
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083.1841 13 ≤−= xϕ   (23) 

0167.6 14 ≤−= xϕ   (24) 
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0348.691 25 ≤−= xϕ   (25) 
018.226 ≤−= xϕ   (26) 

031 317 ≤−= xxϕ   (27) 

056.5551 38 ≤−= xϕ   (28) 

0120 39 ≤−= xϕ   (29) 

01 510 ≤−= xϕ   (30) 

0110/ 8
511 ≤−= xϕ   (31) 

011000 412 ≤+−= xϕ  (32) 
01413 ≤−= xϕ   (33) 
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021 4115 <−= xxϕ  
 

(35) 

Using the new notation for the variables, the objective function (i.e. Eq. 
(2)) becomes 

5321 4.0.100)7800(81.9)( xxxxxf +×= π   (36) 

3. Optimization Algorithms 

3.1. KKT 

By the method of weight coefficients, as one of the oldest method of 
multi-criteria optimization, solutions are obtained by solving the scalar task [7]. In 
mathematics, the Karush–Kuhn–Tucker (KKT) conditions (also known as the 
Kuhn–Tucker conditions) are first order necessary conditions for a solution in 
nonlinear programming to be optimal, provided that some regularity conditions 
are satisfied. Allowing inequality constraints, the KKT approach to nonlinear 
programming generalizes the method of Lagrange multipliers, which allows only 
equality constraints. The system of equations corresponding to the KKT 
conditions is usually not solved directly, except in the few special cases where a 
closed-form solution can be derived analytically. In general, many optimization 
algorithms can be interpreted as methods for numerically solving the KKT system 
of equations [8, 9]. If x*  is a regular local minimum point for f(x) which has the 
equality and inequality constraints of [10]: 

0)( =xhi    i=1 to p
0)( ≤xgi     i=1 to p 

(37) 
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The Lagrangian function is defined as: 

))(()()(),,,( 2

11
ii

m

i
i

p

i
ii sxguxhvxfsuvxL +++= ∑∑

==

 
(38) 

There are Lagrangian constants v*  (a vector of size p) and u* (a vector of 
size m) for which the Lagrangian is stable with respect to xi, vi, ui and si. It means: 
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(39) 

in which the derivatives are calculated in point x*. Solving the equations (39) 
simultaneously, the candidate minimum points can be found. For the current 
problem, the Lagrangian can be stated as: 

 
(40) 

3.2. Sequential Linear Programming (SLP) algorithm 

The sequential linear programming (SLP) method is one of the easiest 
optimization techniques used to treat non-linear optimization problems. 
Successful application of the method depends on the proper selection of the move 
limits, which are unfortunately uncertain in the SLP algorithm [11]. The SLP 
algorithm is [10]: 
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Step 1: Guess an initial design point  x(0). Set cycle number to zero (k=0). Set 
two positive small amounts for 1ε  and 2ε . 

Step 2: Calculate the constraints and objective function values in the current 
design point x(k) ,i.e.: 

)( )(k
k xff =   (41) 
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jj xhe −=         j=1 to m (42) 

)( )(k
jj xgb −=        j=1 to p (43) 

Step 3: Calculate the gradients of the constraints and objective functions, i.e.: 
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Step 4: Choose an appropriate move limit )(k
ilΔ  and )(k

iuΔ  as a fraction of current 
design. 

Step 5: Define the relevant LP sub-problem by: 
dcf T=  (47) 

NTd =e (48) 
ATd ≤ b (49) 

Step 6: If needed, convert the LP sub-problem into standard Simplex form and 
calculate d(k)  solving it. 

Step 7: Check the convergence. If the following inequalities are satisfied, stop 
the solution, otherwise continue to Step 8. 

,2
)( ε≤kd          ,1ε≤ih       1ε≤ig  

 

(50) 

Step 8: Update the design point by: 
)()()1( kkk dxx +=+  (51) 

and set  k=k+1 and go to step 2. It must be kept in mind that in this algorithm, 
convergence is highly dependent on move limits. In fact, move limits can be so 
limiting that no solution is found for the LP sub-problem. For example, in the 
current project a move limit of u=0.26=26% was found to be appropriate. A small 
change in the appropriate amount of u decreased the convergence speed very 
quickly. It must also be mentioned that the convergence is also dependent on the 
initial point. The appropriate initial point must be chosen by try and error (as it 
was for the u). For example in the current paper, if the initial point has δ greater 
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than 0.01, L greater than 0.03, and r0 greater than 0.03, the solution will be 
divergent. 

3.3. Constrained Steepest-Descent (CSD) algorithm 

CSD is an effective method, in which model-based design decisions can be 
applied to multidisciplinary, conceptual design. Of particular concern is the ability 
to implement this framework without having to extensively modify or adapt the 
software used for the multidisciplinary system optimization. The CSD algorithm 
is [10]: 

Step 1: Set k=0. Guess an initial design point x(0). Choose an appropriate 
initial value for penalty parameter 0R , a constant γ  between 0 and 1, and two 

positive small amounts for 1ε  and 2ε . 10 =R  and 25.0=γ  are suitable choices. 
Step 2: Calculate objective function, constraint functions and their 

gradients at x(k). Calculate the highest constraint violation by: 
{ }mpk ggghhhV ,...,,;,...,,;0max 2121=  

 

(52) 

Step 3: Using the objective function, constraint functions and their 
gradients, define the (Quadratic Programming) QP sub-problem: 

dddcf TT 5.0+=  (53) 
NTd =e (54) 
ATd ≤ b (55) 

Solve the QP problem for searching direction d(k) and Lagrange 
coefficients )(kv  and )(ku . 

Step 4: Check the convergence criterion 2
)( ε≤kd  and the highest 

constraint violation Vk. If the optimization criterion is satisfied stop the solution, 
otherwise continue. 

Step 5: Calculate rk summation: 
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Set R=max {Rk ,rk}. 
Step 6: Set )()()1( k

k
kk dxx α+=+ , where kα  is a suitable step size. 

Step 7: save the current penalty parameter Rk+1=R. Update the counter 
(k=k+1) and go to step 2. 

It must be noted that in the CSD method there is no need to define move 
limits. In the SLP method, choosing an unsuitable amount of move limit decreases 
the convergence rapidly. Another advantage of this method is that, unlike the SLP 
method, this convergence is not dependent on the initial point. 
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3.4. Pshenichny-Lim-Belegundu-Arora (PLBA) algorithm 

The recursive quadratic programming algorithm, PLBA algorithm, uses 
the derivatives of the objective function and the constraint function with respect to 
design variables to search for an optimum direction [12]. The PLBA algorithm is 
[13, 14]: 

Step 1: Set k=0. Guess an initial design point x(0). Choose an appropriate 
initial value for penalty parameter R0, a constant γ  between 0 and 1, and two 
positive small amounts for 1ε  and 2ε .  10 =R  and 25.0=γ  are suitable choices. 
Choose a unit matrix for initial Hessian matrix (i.e. H(0)=I) 

Step 2: Calculate objective function, constraint functions and their 
gradients at x(k).Calculate the highest constraint violation by (46). 

If k=0 go to step 3, otherwise if k>0, update the Hessian matrix using 
equations below: 

)()( k
k

k ds α=   (57) 
)()()( kkk sHz =   (58) 
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The difference between the gradients of the Lagrangian function between 

two points is: 
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And finally the Hessian matrix is updated by: 
)()()()1( kkkk EDHH −+=+ (67) 

Step 3: Using the objective function, constraint functions and their 
gradients, define the (Quadratic Programming) QP sub-problem: 

Hdddcf TT 5.0+=   (68) 
NTd =e (69) 
ATd ≤ b (70) 
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Solve the QP problem for searching direction )(kd   and Lagrange 
coefficients )(kv  and )(ku . 

Steps 4-7: Like steps 4-7 for the CSD algorithm (subsection 3.3) 

4. Results and Discussion 

The optimization problem was solved using the five methods mentioned. 
Table 1 shows the optimum points and optimum prices resulted from different 
methods. As it can be seen all the codes show very close results and their results 
can be considered coincident. The optimum price for KKT and SLP was 10.565 $. 
For CSD, modified CSD, and PLBA algorithms the optimum price was 10.495 $. 
The main difference between the codes can be the differences in solution 
parameters, i.e. solution time, convergence, etc. Table 2 lists the specifications of 
the solutions done by the methods. All the problems were solved using MATLAB 
on a PC having 2.26 GHz Core2Due CPU and 3 GB of RAM.  

After solving the problem using the CSD algorithm, it was seen that in the 
optimum point, four design variables are at their lowest boundary. In order to get 
better results new boundaries were considered for the variables. This is called 
modified CSD in Tables 1 and 2.  

0.01≤ x1 ≤0.1 
0.01442≤  x2 ≤ 0.1 
0.0018034≤  x3 ≤ 0.05 
0.001≤  x4 ≤ 0.1 
1≤  x5 ≤ 102

 
 
⇒  

0.0054102≤ x1 ≤0.15 
0.01442≤  x2 ≤ 2.8 
0.0018034≤  x3 ≤ 0.05 
0.001≤  x4 ≤ 0.1 
1≤  x5 ≤ 108 

 

(71) 

It was seen that the CSD, PLBA, and KKT methods are convergent to a 
local minimum point starting from any point. On the other hand, the SLP method 
should not be used as a black box approach for engineering design problems. The 
selection of move limits is one of trial and error and can be best achieved in an 
interactive mode. Also, the SLP method may not converge to the precise 
minimum since no descent function is defined, and line search is not performed 
along the search direction to compute a step size [10]. While the KKT algorithm 
is relatively simple and short in length, it also has some shortcomings. The KKT 
conditions are not applicable at the points that are not regular. In those cases their 
use may yield candidate minimum points; however, the Lagrange multipliers may 
not be unique [10]. 

It was seen that the CSD algorithm converges to a local minimum point 
starting from an arbitrary point, feasible or infeasible. The starting point can affect 
performance of the algorithm. For example, at some points the QP subproblem 
may not have any solution. This need not mean that the original problem is 
infeasible. The original problem may be highly nonlinear, and the linearized 
constraints may be inconsistent, giving an infeasible QP subproblem. This 
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situation can be handled by either temporarily deleting the inconsistent linearized 
constraints or starting from another point. For more discussion on the 
implementation of the algorithm, Tseng and Arora [15] may be consulted [13]. 

It seems that the modified CSD method is the best choice for optimizing 
the problem introduced in the paper. It is because it needs a short programming 
and it converges relatively fast. In general, the PLBA algorithm converges quicker 
than modified CSD but anyway it needs a lengthy programming. Therefore it can 
be stated that in large problems, the PLBA algorithm is preferred, while in the 
small problems the modified-CSD is suggested. 

Table 1: Optimum points and prices resulted from different methods 
Optimu
m Price 

Optimum Point 
(r0   L    t    δ    k)T 

Method 

10.565 $ (0.016292   0.01442   0.0018   0.001   1)T KKT 
10.565 $ (0.016292   0.01442   0.0018   0.001   1)T SLP 
10.495 $ (0.0162   0.0144   0.0018   0.001   1)TCSD 
10.495 $ (0.0162   0.0144   0.0018   0.001   1)T Modified-CSD 
10.495 $ (0.0162   0.0144   0.0018   0.001   1)T PLBA 

 
Table 2: Specifications of optimization codes 

Number 
of Steps 
Required 

Length 
of 

Program 

Convergence 
Dependency 

on Initial 
Point 

Solution 
Time 

(Minutes)

Method 

- Short No 60 KKT 
2 Medium Yes 30 SLP 
5 Medium No 480 CSD 
4 Medium No 60 Modified-

CSD 
3 Lengthy No 45 PLBA 

5. Conclusions 

In this work, an energy absorber system was optimized using four 
optimizing methods namely Karush-Kuhn-Tucker (KKT), Sequential Linear 
Programming (SLP), Constrained Steepest-Descent (CSD), and Pshenichny-Lim-
Belegundu-Arora (PLBA). Time solution, convergence, programming length and 
accuracy of the results were considered in order to find the best solution 
algorithm. It sounds that the modified CSD method is the best choice for 
optimizing the problem introduced in the paper. It is because it needs a short 
programming and it converges relatively fast. In general, the PLBA algorithm 
converges quicker than modified CSD but anyway it needs a lengthy 
programming. Therefore it can be stated that in large problems, the PLBA 
algorithm is preferred, while in the small problems the modified-CSD is 
suggested. 
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