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OPTIMUM DESIGN OF BUMPERS FOR IMPACT
APPLICATION USING KKT, SLP, CSD AND PLBA
ALGORITHMS AGAINST IMPACT

Reza HEDAYATI', Meysam JAHANBAKHSHI?

Elastic energy absorbers which consist of ring-liked plate and springs can
be a good choice for increasing the impact duration during an accident. In the
current paper, an energy absorber system is optimized using four optimizing
methods Karush-Kuhn-Tucker (KKT), Sequential Linear Programming (SLP),
Constrained  Steepest-Descent (CSD), and Pshenichny-Lim-Belegundu-Arora
(PLBA). Time solution, convergency, programming length and accuracy of the
results were considered in order to find the best solution algorithm. Results showed
the superiority of PLBA and modified CSD over the other algorithms.

Keywords: Sequential Linear Programming (SLP); Constrained Steepest-Descent
(CSD); Pshenichny-Lim-Belegundu-Arora (PLBA)

1. Introduction

The energy absorber system in this study consists of 4 rings, four springs
and a bumper. A schematic view of this system is shown in Figure 1. Two elastic
rings riveted to the bumper are connected to the two corresponding rings riveted
to the car body by means of springs. When a car impacts an external obstacle, the
distance between the bumper and the car body decreases which leads to
compaction of the rings and the springs. The energy absorbed by the rings and
springs increases the impact duration which decreases the peak force applied to
the car and passengers.

Dynamic mechanical optimization problems involve integration of
material and mechanical parameters as to determine the response of the system to
external inputs [1]. Then, using the response variables, cost and constraint
functions for the problem are formulated. These constraints are implicit functions
of the design variables. In mechanical and structural design problems, various
state variables, such as the displacements, dimensions and velocities, are treated
as independent variables. The kinetic and internal energies become equality
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constraints in the formulations. Several possible ways to parameterize these
variables have been investigated by Wang and Arora [2-4].

In the current paper, an energy absorber system is optimized using four
optimizing methods namely KKT, Sequential Linear Programming (SLP),
Constrained Steepest-Descent (CSD), and Pshenichny-Lim-Belegundu-Arora
(PLBA). The reviews of the applications of the optimization algorithms can be
found under their related subsection in the following.

Spring
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Fig. 1. A schematic view of energy absorber system in the bumper (a) Side view (b) Front view

2. Constraints and Objective Function of the problem

The objective function of the problem is the price of the energy absorber.
For calculating the total price, the relationship below can be used [5]:

F=981pmtLxC, +C, O
in which C, is the price of steel per unit volume and C, is the price of the four
springs. Using a steel type of SAE 960X which has a yield stress of 413 MPa and
costs 65%/lb [5], and considering the price of springs as 0.1Yk, the objective
function can be stated as:

£(x) =9.81(7800) x 10077 + 0.4k (2)
In order to avoid spring flatting, the inequality below must be governed:
P, =2(ry —+/2r, sin(5°)=5 >0 3)

For the car considered, it is usually seen that after an accident, the frontal
part of the car is crushed about 1 meter. Ignoring the energy absorbed by the
crushing of the frontal parts of the car, which then leads to a safer design of the
springs, the impact force can be calculated as [6]:

F,=1/2mv* = F x1=1/2x1200x 225 = 375000 4)
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The force applied to all the springs should not exceed 375 kN. Therefore,
by considering a safety factor of 1.33, the force applied to each of the rings is
calculated to be 125 kN. The relevant constraint can be stated as:

1150, Lt S0 ©)
2(r, —5/2)

Cold forming of absorber is possible if the mean radius of the ring 7, is
greater than three times of the thickness. Regarding a minimum thickness of
0.18034 cm for the rings (the reason will be explained furthur), the third
constraint can be written as:

P, =7y~ T 209, =1, —0.54102x107 >0 (6)

By considering a height of 35 cm for the bumper, the maximum radius for
each ring is approximately calculated as 0.15 m. This can be written as:

0, = —1,20=>9,=0.15-7,20 (7)

@, = Fyp — F 2 0= , =125000 —

The minimum length of each ring is taken as four times of its thickness.
This will make its size suitable for embedding it between the bumper outer
surface and the springs. By considering L, =1.442 cm , the fifth constraint will
be:
p,=L-L, >0=>p,=L-1.442x107>>0 )
Since the bumper consists of four rings, and each spring can have a
maximum length of 0.7 m, the total length of the springs is 2.8 m, which can be
stated as:
@=L, ~L>20=p,=28-L>0 9)
As stated above, cold forming of absorber is possible if the mean radius of
the ring is greater than three times of its thickness. Therefore, the seventh
constraint can be written as:
@, =1,-3t>0 (10)

Rings with thicknesses higher than 0.071 inch (0.18034 cm) can be found
much easier than the ones with lower thicknesses. Therefore the eighth constraint
can be taken as:

P, =t—0.18034x107 >0 (11)

Regarding the connection between 7, and ¢, an approximate value of .,
can be found by ryax=3tmax. Therefore:
P, =0.05-1>0 (12)
The available spring constants for connective springs (between 1 and 10%)
can be considered as two other constraints:
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Po=k—k ;. 20=9,=k-1>0 (13)
Py =k —k>0=9,=10"-k>0 (14)
The displacement of the of the absorbing rings, § , must always be positive,
therefore a minimum value of 0.001 was taken for it. Regarding the space limit in
the frontal part of the car, § can be chosen to have a maximum value of 1. Then:
?,=020.001=¢,=-6+0.001<0 (15)
P;=051=¢,=0-1<0 (16)
The energy capacity of the bumper is enough if the potential energy gained
after elastic deformation of the springs is higher than the initial kinetic energy, i.e.
P.E-K.E.>0, where K.E.=1/2mv* and:
17
PE="26 1om | Lis {17
127 r—-05/2) 2
Since the car mass is 1200 kg and its initial velocity is 25 m/s, the above
constraint can be rewritten as:

(18)

B, = 375000+ 2 6 Lt — |+ Lisr 20
12 7 7 _5/2 2

The above equation can get infinite if the amount into logarithm gets
negative. So the fifteenth constraint can be written as:

b So0=0 >2 (19
ry—96/2 2
Therefore:
_ o 20
Dis =r0—5>0 0)

In numerical calculations, it is needed to normalize the constraints. It is
due to the fact that the constraints are different in magnitude and unit. As a result
when a constraint is violated, it is difficult to judge about how intense the
violation has been. Therefore, in the current study we first normalize the
constraints and then use them in different algorithms. Before normalizing the
constraints, the notation of the variables are changed as: », > x,, L > x,, t > x;,

6 — x,,k — x5. Then:

. 20, —2%5in(s) _ 1)
Xy
7 2 22
%:1.15x40x10 %Y g (22)
250000(x, —x, /2)
@, =1-184.83x, <0 (23)

@, =6.67x,—1<0 (24)
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@ =1-69.348x, <0 (25)
0, =x,/2.8-1<0 (26)

@, =1-x/3x,<0 27
@, =1-555.56x,<0 (28)
@y =20x,-1<0 (29)

@, =1-x,<0 (30)

@, =x,/10°-1<0 €1y
¢, =—1000x, +1<0 32)
@, =x,—-1<0 (33)

o :1_{ X5X, X5 1n( X, J+ XeXs }S 0 (34)

3000000 | x, —x,/2) 187500

s =1-2x,/x, <0 (35)

Using the new notation for the variables, the objective function (i.e. Eq.
(2)) becomes

£(x) =9.81(7800) x 1007.x, X, x5 + 0.4+/x, (36)
3. Optimization Algorithms

3.1. KKT

By the method of weight coefficients, as one of the oldest method of
multi-criteria optimization, solutions are obtained by solving the scalar task [7]. In
mathematics, the Karush—Kuhn-Tucker (KKT) conditions (also known as the
Kuhn-Tucker conditions) are first order necessary conditions for a solution in
nonlinear programming to be optimal, provided that some regularity conditions
are satisfied. Allowing inequality constraints, the KKT approach to nonlinear
programming generalizes the method of Lagrange multipliers, which allows only
equality constraints. The system of equations corresponding to the KKT
conditions is usually not solved directly, except in the few special cases where a
closed-form solution can be derived analytically. In general, many optimization
algorithms can be interpreted as methods for numerically solving the KKT system
of equations [8, 9]. If x* is a regular local minimum point for f{x) which has the
equality and inequality constraints of [10]:

h(x)=0 i=Itop (37)
g,(x)<0 i=ltop
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The Lagrangian function is defined as:
)4 m
L(x,v,u,8) = f(xX)+ D vk (x) + D u,(g,(x) +57)
i=1 i=1

There are Lagrangian constants v* (a vector of size p) and u* (a vector of
size m) for which the Lagrangian is stable with respect to x; v; u; and s;. It means:

(3%)

STZ; axfj Z*ah Z *ﬁg, =0 j=lton
hl.(x*) =0 i=lwp
g,(x)+s7 =0 i=ltom (39)
u,*s; =0 i=ltom
u,*>0 i=1tom

in which the derivatives are calculated in point x* Solving the equations (39)
simultaneously, the candidate minimum points can be found. For the current
problem, the Lagrangian can be stated as:

(40)
L=7.651810" x| x, x, + 400x3° + u,
2 (x, —0.0872/2 [x
20 ),
Xy
4.60010 x

) 3
“2 | 250000x, — 125000x,

+ s%) + u, (6.67x1 -1+ 52) + u (1 — 69.348x + sé)

2 LA
ug (0.35714x, — 1+ 57) + [1— 3 x3 + 52

— 555.56x; + 53 ) + g (2023 — 1+ 55) + uyg (1= x5 + 57,
uyy (1100 % — 14 s7,) 4wy, (=1000x, + 1+ 57,
+ Uy <x4 — 14 Si,))

2
+ —1 +s2] +uy (1 — 184.83x,

+u8<1

3.2. Sequential Linear Programming (SLP) algorithm

The sequential linear programming (SLP) method is one of the easiest
optimization techniques used to treat non-linear optimization problems.
Successful application of the method depends on the proper selection of the move
limits, which are unfortunately uncertain in the SLP algorithm [11]. The SLP
algorithm is [10]:
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Step 1: Guess an initial design point x”. Set cycle number to zero (k=0). Set
two positive small amounts for & and &, .

Step 2: Calculate the constraints and objective function values in the current
design point x® i.e.:

fi=1(x") (41)
e,=—h,(x")  j=ltom (42)
b =—g,x*) j=ltop (43)
Step 3: Calculate the gradients of the constraints and objective functions, i.e.:
c, =i i=lton (44)
ox;,
oh, (45)
=— i=1ton, =1 to
y axi ] p
;= %, i=lton;, j=ltop (46)
T ox,
Step 4: Choose an appropriate move limit A%’ and A} as a fraction of current
design.
Step 5: Define the relevant LP sub-problem by:
F=cd (47)
N'd =e (48)
A'd<b (49)

Step 6: If needed, convert the LP sub-problem into standard Simplex form and
calculate d* solving it.

Step 7: Check the convergence. If the following inequalities are satisfied, stop
the solution, otherwise continue to Step 8.

A B ) B (50)

Step 8: Update the design point by:

x4 = 381 4 g0 (51)
and set k=k+1/ and go to step 2. It must be kept in mind that in this algorithm,
convergence is highly dependent on move limits. In fact, move limits can be so
limiting that no solution is found for the LP sub-problem. For example, in the
current project a move limit of u=0.26=26% was found to be appropriate. A small
change in the appropriate amount of u decreased the convergence speed very
quickly. It must also be mentioned that the convergence is also dependent on the
initial point. The appropriate initial point must be chosen by try and error (as it

was for the u). For example in the current paper, if the initial point has 6 greater
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than 0.01, L greater than 0.03, and 7y greater than 0.03, the solution will be
divergent.

3.3. Constrained Steepest-Descent (CSD) algorithm

CSD is an effective method, in which model-based design decisions can be
applied to multidisciplinary, conceptual design. Of particular concern is the ability
to implement this framework without having to extensively modify or adapt the
software used for the multidisciplinary system optimization. The CSD algorithm
is [10]:

Step 1: Set k=0. Guess an initial design point x. Choose an appropriate
initial value for penalty parameterR,, a constant y between 0 and 1, and two
positive small amounts for &, and &,. R, =1and y = 0.25 are suitable choices.

Step 2: Calculate objective function, constraint functions and their
gradients at x*. Calculate the highest constraint violation by:

V. :max{O; M) |hy sl ;gl,gz,...,gm} (32)

s sesey

Step 3: Using the objective function, constraint functions and their
gradients, define the (Quadratic Programming) QP sub-problem:

f=c"d+05d"d (53)
N'd =e (54)
A'd<b (55)

Solve the QP problem for searching direction d® and Lagrange
coefficients v* and u™®.

Step 4: Check the convergence criterion Hd(“Hggz and the highest

constraint violation V. If the optimization criterion is satisfied stop the solution,
otherwise continue.
Step 5: Calculate r, summation:

P m
— (k) (k)
ro=> P+ D
i=1 i=1
Set R=max {Ry,ri}.
Step 6: Set x*™ =x* +,d", where «, is a suitable step size.

(56)

Step 7: save the current penalty parameter R;+;=R. Update the counter
(k=k+1) and go to step 2.

It must be noted that in the CSD method there is no need to define move
limits. In the SLP method, choosing an unsuitable amount of move limit decreases
the convergence rapidly. Another advantage of this method is that, unlike the SLP
method, this convergence is not dependent on the initial point.
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3.4. Pshenichny-Lim-Belegundu-Arora (PLBA) algorithm

The recursive quadratic programming algorithm, PLBA algorithm, uses
the derivatives of the objective function and the constraint function with respect to
design variables to search for an optimum direction [12]. The PLBA algorithm is
[13, 14]:

Step 1: Set k=0. Guess an initial design point x©. Choose an appropriate
initial value for penalty parameter Ry, a constant ) between 0 and 1, and two

positive small amounts for & and &,. R, =1 and y = 0.25 are suitable choices.

Choose a unit matrix for initial Hessian matrix (i.e. H”=I)

Step 2: Calculate objective function, constraint functions and their
gradients at x™ Calculate the highest constraint violation by (46).

If k=0 go to step 3, otherwise if k>0, update the Hessian matrix using
equations below:

s® =g ,d® (57)
RNy S (O (58)
PO 2 VLGED 1 ® 0y _yp(x® 0,0 (59)

The difference between the gradients of the Lagrangian function between
two points is:

& = s p® (60)

g =s"z® (61)

£,2028, >60=1 (62)

if 0.8,
£ <028 > 0=
(4:2 _681)

w® =g +(1-0)z" (63)

£, =5 (64)

p® 1w e (65)

3
E® — LZ(MZ(/«)T (66)

2
And finally the Hessian matrix is updated by:
H*) — g® 4 p _ gk (67)
Step 3: Using the objective function, constraint functions and their
gradients, define the (Quadratic Programming) QP sub-problem:

f=c"d+0.5d"Hd (68)
N'd =e (69)
A"d<b (70)



120 Reza Hadayati, Meysam Jahanbakhshi

Solve the QP problem for searching direction d* and Lagrange

. C k
coefficients v©' and u® .

Steps 4-7: Like steps 4-7 for the CSD algorithm (subsection 3.3)
4. Results and Discussion

The optimization problem was solved using the five methods mentioned.
Table 1 shows the optimum points and optimum prices resulted from different
methods. As it can be seen all the codes show very close results and their results
can be considered coincident. The optimum price for KKT and SLP was 10.565 §.
For CSD, modified CSD, and PLBA algorithms the optimum price was 10.495 §.
The main difference between the codes can be the differences in solution
parameters, i.e. solution time, convergence, etc. Table 2 lists the specifications of
the solutions done by the methods. All the problems were solved using MATLAB
on a PC having 2.26 GHz Core2Due CPU and 3 GB of RAM.

After solving the problem using the CSD algorithm, it was seen that in the
optimum point, four design variables are at their lowest boundary. In order to get
better results new boundaries were considered for the variables. This is called
modified CSD in Tables 1 and 2.

0.0054102<x;<0.15 0.01<x;<0.1 71)
0.01442< x,<2.8 0.01442< x,<0.1

0.0018034< x3<0.05 = 0.0018034< x3<0.05

0.001< x4<0.1 0.001< x4<0.1

1< x5<10° 1< x5< 107

It was seen that the CSD, PLBA, and KKT methods are convergent to a
local minimum point starting from any point. On the other hand, the SLP method
should not be used as a black box approach for engineering design problems. The
selection of move limits is one of trial and error and can be best achieved in an
interactive mode. Also, the SLP method may not converge to the precise
minimum since no descent function is defined, and line search is not performed
along the search direction to compute a step size [10]. While the KKT algorithm
is relatively simple and short in length, it also has some shortcomings. The KKT
conditions are not applicable at the points that are not regular. In those cases their
use may yield candidate minimum points; however, the Lagrange multipliers may
not be unique [10].

It was seen that the CSD algorithm converges to a local minimum point
starting from an arbitrary point, feasible or infeasible. The starting point can affect
performance of the algorithm. For example, at some points the QP subproblem
may not have any solution. This need not mean that the original problem is
infeasible. The original problem may be highly nonlinear, and the linearized
constraints may be inconsistent, giving an infeasible QP subproblem. This
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situation can be handled by either temporarily deleting the inconsistent linearized
constraints or starting from another point. For more discussion on the
implementation of the algorithm, Tseng and Arora [15] may be consulted [13].

It seems that the modified CSD method is the best choice for optimizing
the problem introduced in the paper. It is because it needs a short programming
and it converges relatively fast. In general, the PLBA algorithm converges quicker
than modified CSD but anyway it needs a lengthy programming. Therefore it can
be stated that in large problems, the PLBA algorithm is preferred, while in the

small problems the modified-CSD is suggested.
Table 1: Optimum points and prices resulted from different methods

Method Optimum Point Optimu
(ro L t 5 KT m Price
KKT (0.016292 0.01442 0.0018 0.001 1) | 10.565$
SLP (0.016292 0.01442 0.0018 0.001 1) | 10.565$
CSD (0.0162 0.0144 0.0018 0.001 1)' 10.495 §
Modified-CSD (0.0162 0.0144 0.0018 0.001 1)' 10.495 $
PLBA (0.0162 0.0144 0.0018 0.001 1)' 10.495 $
Table 2: Specifications of optimization codes
Method Solution | Convergence | Length [ Number
Time Dependency of of Steps
(Minutes) on Initial Program | Required
Point
KKT 60 No Short -
SLP 30 Yes Medium 2
CSD 480 No Medium 5
Modified- 60 No Medium 4
CSD
PLBA 45 No Lengthy 3

5. Conclusions

In this work, an energy absorber system was optimized using four
optimizing methods namely Karush-Kuhn-Tucker (KKT), Sequential Linear
Programming (SLP), Constrained Steepest-Descent (CSD), and Pshenichny-Lim-
Belegundu-Arora (PLBA). Time solution, convergence, programming length and
accuracy of the results were considered in order to find the best solution
algorithm. It sounds that the modified CSD method is the best choice for
optimizing the problem introduced in the paper. It is because it needs a short
programming and it converges relatively fast. In general, the PLBA algorithm
converges quicker than modified CSD but anyway it needs a lengthy
programming. Therefore it can be stated that in large problems, the PLBA
algorithm is preferred, while in the small problems the modified-CSD is
suggested.
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