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EFFICIENT MODELING OF POLARIZED REFLECTION SPECTRA IN
METASURFACES USING DEEP LEARNING FRAMEWORKS

Alexandra Ilie!, Doina Miniili-Maximean?:3, Octavian Dinili*

Modeling the electromagnetic responses of metasurfaces, advanced
materials engineered to manipulate electromagnetic waves, remains computation-
ally intensive, particularly for complex geometries such as polygonal and ring-
like designs. This study explores the potential of frequency-domain prediction,
followed by spectral transformation, as a viable approach for capturing x- and
y-polarized reflection spectra of metasurfaces. To this end, a deep learning frame-
work is developed, combining Variational Autoencoders (VAEs) and Convolu-
tional Neural Networks (CNNs). The VAE effectively encodes spectral features
in a low-dimensional latent space, while the CNN utilizes residual connections
to directly map metasurface patterns to their spectral responses. By integrating
[frequency-domain representations with inverse Fourier transforms, the framework
ensures compatibility with traditional time-domain data while maintaining com-
putational efficiency. The proposed models achieve high predictive accuracy, with
the VAE outperforming the CNN across multiple error metrics. This dual focus on
methodological development and performance evaluation demonstrates the feasi-
bility and advantages of integrating machine learning for rapid and precise meta-
surface analysis and design.

Keywords: Metasurfaces, Deep Learning, Variational Autoencoders, Convolu-
tional Neural Networks, Electromagnetic Response Prediction

1. Introduction

Metasurfaces are advanced engineered materials designed to manipulate elec-
tromagnetic waves [1]] [2] [3] with exceptional precision. These materials have rev-
olutionized various fields, including wireless communications [4], [3], [6], imaging
technologies [7], [8], [9], and sensing systems [10], [L1], [12] [13] [14]. Despite
their potential, accurately modeling and predicting the electromagnetic responses
of metasurfaces poses significant computational challenges. Traditional simulation
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techniques, such as finite-difference time-domain (FDTD) methods [[15], [16], are
computationally intensive, particularly when dealing with intricate geometrical de-
signs like PLG (Polygonal) and PLR (Polygonal Ring) metasurfaces, which feature
concentric polygonal arrangements. As the complexity of these metasurface ge-
ometries increases, scalability and efficiency bottlenecks emerge, limiting the prac-
tical application of traditional simulation methods. To address these limitations,
we propose a predictive modeling approach that efficiently captures the complex
response patterns of metasurfaces while significantly reducing computational over-
head. Unlike conventional time-domain simulations that solve Maxwell’s equations
iteratively, our method operates in the frequency domain. Specifically, given an in-
put metasurface design D, we predict its frequency-domain response R(®), which
consists of the x- and y-polarization components:

o 1]
y
Here, R (®) and R, (®) denote the reflection spectra for x- and y-polarizations
as functions of frequency . By leveraging spectral characteristics, such as reso-
nance peaks, our predictive model eliminates the need for iterative field calculations.
To convert the frequency-domain data back to the time domain, we employ
the inverse Fourier transform:

S(r) = ' [R(w)] = / ZR(a))ej“”dw

This transformation ensures compatibility with traditional simulation outputs
while maintaining computational efficiency. Our framework leverages state-of-the-
art deep learning models, including Variational Autoencoders (VAEs) and Convo-
lutional Neural Networks (CNNs), which are trained to minimize prediction errors
through metrics like Mean Squared Error (MSE) and Mean Absolute Error (MAE).

A Variational Autoencoder (VAE) is a type of deep generative model that
combines variational Bayesian principles with autoencoder architectures. It com-
prises an encoder that maps input data into a latent space represented by a prob-
ability distribution, and a decoder that reconstructs data samples from this latent
representation. This probabilistic design enables VAEs to model data distributions
and generate realistic samples resembling the original dataset [[17]].

Convolutional Neural Networks (CNNs), on the other hand, are a class of deep
learning models well-suited for processing structured data, such as images. CNNs
utilize convolutional layers to apply filters to local regions of the input, effectively
capturing spatial hierarchies and patterns. This ability to extract meaningful features
makes CNNs particularly powerful for tasks involving complex visual or structural
data [18]].

By shifting focus to the frequency domain, this modeling strategy enhances
the ability to capture intricate spectral features that are difficult to resolve in the time
domain [[19]]. The resulting predictive framework streamlines the metasurface de-
sign process, enabling real-time predictions and rapid optimization. This capability
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is essential for advancing metasurface applications in high-performance technolo-
gies, where speed and precision are critical.

2. Methodology
2.1 Dataset Description

The dataset utilized in this study comprises binary metasurface patterns en-
coded as 16 x 16 matrices. Each matrix element represents the presence (1) or
absence (0) of a square copper patch (0.5mm x 0.5mm x 0.018 mm) on a dielec-
tric substrate. The substrate material is characterized by a permittivity of g, =
2.65 x (1+0.003i) and a permeability of u, = 1, backed by a 0.18 mm-thick cop-
per plate. A 1-mm padding surrounds the unit cell, providing periodic boundary
conditions in the x- and y-directions and open boundaries in the z-direction.

Electromagnetic (EM) responses for these patterns were calculated using fi-
nite element methods (FEM) in CST Studio Suite. An x-polarized plane wave was
normally incident on the metasurface, and the reflected spectra were computed for
x-polarized (Ry) and y-polarized (Ry) components over a frequency range of 2GHz
to 12 GHz, sampled at 1001 points. The spectral data effectively captures the meta-
surface’s key resonance and reflection behaviors [20]]

For this study, the dataset was divided into two primary classes of metasur-
face geometries: the Polygonal (PLG) class, characterized by solid and connected
polygonal shapes, and the Polygonal Ring (PLR) class, which consists of concen-
tric polygonal patterns resembling rings. To optimize the learning process, the EM
responses were transformed into the frequency domain using a real Fast Fourier
Transform (FFT). This preprocessing step enhances the models’ ability to capture
meaningful spectral features, such as resonance peaks, while reducing computa-
tional complexity.
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tern. the time domain.

FIGURE 1. Metasurface dataset visualization. (A) Binary metasur-
face pattern and (B) corresponding time-domain reflection spectra.
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2.2 Model Architectures

Two deep learning models were developed to predict the frequency-domain
reflection spectra of metasurfaces: a Variational Autoencoder (VAE) and a Convolu-
tional Neural Network (CNN) with residual connections. Each model was tailored
to exploit the spectral characteristics of metasurface responses, enabling efficient
prediction.

2.2.1 Variational Autoencoder (VAE)

The VAE is a deep generative model designed to encode metasurface patterns
into a low-dimensional latent space while retaining sufficient information for ac-
curate reconstruction. The VAE architecture comprises three core components: an
encoder, a reparameterization layer, and a decoder.

The encoder consists of three 1D convolutional layers, each followed by Rec-
tified Linear Unit (ReLU) activations [21]] and dropout layers [22] to prevent over-
fitting. These layers reduce the input data to a compact latent representation by
computing the mean (1) and log variance (log 62) of a Gaussian distribution. The
reparameterization layer samples latent variables (z) from this distribution using:

z=u+e-o, e€~N(0,I),

ensuring differentiability for gradient-based optimization.

The decoder reconstructs the reflection spectra from z using a fully connected
layer followed by three transposed convolutional layers. The output layer ensures
that the reconstructed spectra have the same dimensions as the target (2 x 501).

To optimize the VAE, the loss function combines reconstruction loss, mea-
sured by Mean Squared Error (MSE), and a Kullback-Leibler (KL) divergence term
[17] that regularizes the latent space:

Ltotal = Lreconstruction + B : £KL-

Here, B controls the trade-off between reconstruction fidelity and latent space reg-
ularization.

2.2.2 Convolutional Neural Network (CNN) with Residual Connections

The CNN model is designed to directly predict the reflection spectra from
the input metasurface patterns by leveraging convolutional layers and residual con-
nections [23]]. The architecture effectively captures spatial hierarchies in the input
patterns while mitigating gradient degradation through the use of skip connections.

The network begins with three 1D convolutional layers, each followed by
ReLU activations. These layers progressively extract spatial features from the input
patterns. Residual connections, implemented using 1 X 1 convolutions, allow the
input of intermediate layers to bypass the transformations and directly contribute
to the output. This mechanism preserves low-level features and facilitates more
efficient gradient flow during backpropagation.

After the convolutional layers, the model applies max pooling [18] to reduce
the feature dimensions. Fully connected layers then map the extracted features to
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the desired output size (2 x 501), corresponding to the frequency-domain spectra
for Ry and R,.

The CNN model minimizes the MSE between the predicted and actual spec-
tra, ensuring robust learning of the metasurface response.

2.3 Training and Evaluation

Both models were trained on the PLG and PLR datasets using the Adam op-
timizer. The datasets were split into training and testing subsets in an 80:20 ratio.
During training, the models optimized their parameters to minimize prediction er-
rors based on metrics such as MSE, Mean Absolute Error (MAE), and the R? score.
These metrics evaluate the accuracy and robustness of the models in capturing the
spectral response of metasurfaces.

To validate the models’ performance, predicted spectra were compared with
the actual spectra, and qualitative visualizations were generated to assess the fidelity
of the predictions. The results demonstrate the capability of the models to efficiently
predict the EM responses of complex metasurface designs.

3. Evaluation Metrics and Results

The performance of the Variational Autoencoder (VAE) and Convolutional
Neural Network (CNN) models was evaluated using three standard error metrics:
Mean Squared Error (MSE), Mean Absolute Error (MAE), and the coefficient of de-
termination (R?). These metrics provide a comprehensive assessment of the models’
predictive accuracy and their ability to generalize over the PLG and PLR metasur-
face datasets.

The MSE is a widely used metric for regression tasks and measures the aver-
age squared difference between the predicted values and the ground truth. Formally,

it is defined as: .

MSE = -} (vi = 9)%,
i=1
where y; and y; denote the actual and predicted values, respectively, and n represents
the total number of samples. MSE is particularly sensitive to larger errors, making it
useful for highlighting significant deviations between predictions and ground truth.
In contrast, the MAE quantifies the average magnitude of prediction errors,
irrespective of their direction. It is expressed as:

1 & .
MAE = ZZ |yl'—yl'|.
i=1

Unlike MSE, MAE is less sensitive to outliers and provides a more interpretable
measure of the average error magnitude.

The R? score, or coefficient of determination, evaluates how well the model
explains the variance in the target data. It is defined as:

Y i —9i)?

RP=1- AL
Y (vi—y)?
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where ¥ is the mean of the actual values. An R? score close to 1 indicates that the
model captures most of the variability in the data, whereas a negative R” suggests
poor predictive performance.

These metrics were implemented using Python’s scikit-learn library to
ensure computational precision. Each metric provides unique insights into the mod-
els’ performance. While MSE emphasizes the impact of large errors, MAE offers a
straightforward interpretation of average deviation, and R? captures the proportion
of variance explained by the model.

3.1 Performance Analysis

Table [1| summarizes the error metrics for the VAE and CNN models on the
PLG and PLR datasets. The VAE consistently achieves lower MSE and MAE values
and higher R? scores compared to the CNN, particularly on the PLG dataset, which
features simpler polygonal structures. For the more complex PLR dataset, the VAE
still outperforms the CNN, albeit with a smaller margin.

Model | Metasurface | MSE | MAE R?
VAE PLG 1.5091 | 0.1639 | 0.8037
VAE PLR 1.5907 | 0.2317 | 0.6001
CNN PLG 1.7921 | 0.2111 | 0.7247
CNN PLR 5.2395 | 0.3270 | 0.5432

TABLE 1. Performance metrics for VAE and CNN models on PLG
and PLR metasurface datasets.

The results highlight significant differences in how the Variational Autoen-
coder (VAE) and Convolutional Neural Network (CNN) capture the spectral fea-
tures of metasurfaces, particularly at resonance peaks where sharp variations domi-
nate. As seen in Figure[2] the VAE closely follows the actual spectra for both x- and
y-polarized components, successfully identifying resonance peaks and maintaining
consistency across the frequency range. This consistency is especially notewor-
thy for x-polarized components, which often exhibit more abrupt resonance fea-
tures due to their stronger dependence on geometric and material anisotropies of
the metasurface. X-polarized components frequently interact more sensitively with
edge effects, surface current distributions, and localized resonances, making them
inherently more challenging to predict accurately. The VAE’s latent space repre-
sentation likely excels here because it leverages probabilistic modeling to capture
a distribution over these complex spectral patterns, rather than relying solely on
deterministic feature extraction. This approach enables the VAE to generalize bet-
ter across a diverse dataset of metasurface designs, including those with intricate
patterns like the Polygonal Rings, which are particularly sensitive to polarization
effects.
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Actual vs Predicted Reflection Spectrum in Time Domain (Sample 7)
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FIGURE 2. Actual vs Reconstructed Reflection Spectrum (Sample
7). The plot compares the actual and reconstructed reflection spec-
tra for the x- and y-polarized components in the frequency domain,
highlighting the VAE model’s capability to accurately capture spec-
tral features.

Actual vs Predicted Reflection Spectrum in Time Domain (Sample 12)
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FIGURE 3. Actual vs Reconstructed Reflection Spectrum (Sample
7). The plot compares the actual and reconstructed reflection spec-
tra for the x- and y-polarized components in the frequency domain,
highlighting the CNN model’s capability to accurately capture spec-
tral features.

In contrast, the CNN predictions (Figure [3) show noticeable deviations from
the actual spectra at critical resonance points. This is particularly evident for x-
polarized components, where the CNN’s reliance on spatial feature extraction with-
out a mechanism for explicitly modeling spectral dependencies limits its ability to
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resolve sharp variations. The smoothing effect observed in CNN predictions likely
arises from its tendency to minimize error across the entire spectrum, which can lead
to underestimation or overestimation of peak amplitudes at critical frequencies.

Evidence from other research supports our observations. Valleti et al. [24]
demonstrated the superior performance of Variational Autoencoders (VAEs) in physics
and chemistry datasets by effectively disentangling complex variability factors such
as rotational and translational invariances in imaging data. Their study focused on
atomic-scale imaging datasets, such as those derived from Scanning Transmission
Electron Microscopy (STEM), which involve intricate spatial patterns, symmetry-
breaking phenomena, and localized variations.

These challenges share similarities with our metasurface datasets, where in-
tricate geometrical patterns dictate resonance behavior and sharp spectral features.
In both cases, the datasets exhibit high-dimensional, non-linear dependencies that
arise from the underlying physical structures. For metasurfaces, these dependencies
are rooted in material anisotropies and edge effects that influence resonance peaks,
while in the STEM data, they emerge from atomic-scale features, defects, and vari-
ations in crystalline arrangements.Their work underscores the relevance of VAEs
in handling complex spectral features, directly aligning with the challenges in this
study.

Notably, resonance peaks represent critical spectral features, as they gov-
ern the metasurface’s electromagnetic behavior by dictating key properties such as
phase, amplitude, and polarization control [25]. For x-polarized responses, these
peaks often determine performance characteristics essential to applications like po-
larization sensitive filtering [26]], beam steering [27], or sensing [28]], where the con-
trol of sharp frequency-dependent features is paramount. The ability of the VAE to
resolve these peaks highlights its potential for high-precision metasurface analysis.

3.2 Comparison with Related Work

The integration of deep learning in metasurface engineering has proven to be
a powerful tool for addressing the computational challenges inherent in traditional
simulation methods. Recent studies, such as An et al. [29], have demonstrated
the utility of convolutional neural networks (CNNs) for modeling freeform dielec-
tric metasurfaces, enabling rapid predictions of spectral responses across varying
geometries. Their work, however, focuses on broad-spectrum responses without
explicitly targeting polarized reflection spectra, as addressed in our study.

Similarly, Ghorbani et al. [30] developed a deep neural network (DNN)-based
approach for the inverse design of metasurfaces under dual-polarized waves. While
their work illustrates the potential of machine learning for metasurface optimization,
the emphasis lies on generating metasurface patterns rather than predicting spectral
responses. This differentiates their approach from ours, which directly predicts the
x- and y-polarized reflection spectra of metasurfaces.

An et al. [31] further explored CNNs for accounting mutual coupling effects
in metasurfaces. While their study enhances applications such as beam deflectors
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and metalenses by considering inter-element interactions, it does not explicitly ad-
dress predictive modeling of polarized responses. In contrast, our model leverages
the frequency domain to effectively capture polarized spectral characteristics intrin-
sic to metasurfaces.

In comparison to these works, our study uniquely combines the use of VAEs
and CNNs to predict polarized reflection spectra in the frequency domain. The
integration of Fourier transforms allows our models to focus on the spectral char-
acteristics of metasurfaces, resulting in enhanced accuracy and computational effi-
ciency. This focus on polarized reflection spectra not only advances the predictive
modeling of metasurfaces but also addresses practical applications in wireless com-
munications and imaging, where polarization is a critical factor.
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