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SEVERAL ITERATIVE ALGORITHMS FOR THE MULTIPLE-SETS

SPLIT EQUALITY PROBLEM

Junlei Li1, Rudong Chen 2

Very recently, A. Moudafi and C. Byrne proposed the split equality problem

(SEP), and established several iterative algorithms for solving the SEP. In this paper, we

consider the multiple-sets split equality problem (MSSEP) which generalizes the multiple-

sets split feasibility problem (MSSFP) and the SEP. Some iterative algorithms for solv-

ing the MSSEP are proposed in this paper. Two main ideas are stated for solving the

MSSEP. On one hand, the MSSEP is transformed to a problem that obtain a common

fixed point of finite averaged mappings; on the other hand, the MSSEP is proved to be

equivalent to an optimization problem.
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1. Introduction

Let H1, H2, H3 be real Hilbert spaces, let {Ci}ti=1 ⊂ H1, {Qj}rj=1 ⊂ H2 be nonempty

closed convex sets, let A : H1 → H3, B : H2 → H3 be two bounded linear operators. The

multiple-sets split equality problem (MSSEP), proposed and studied here, is

to find x ∈
t∩

i=1

Ci and y ∈
r∩

j=1

Qj such that Ax = By. (1.1)

When B = I, the MSSEP reduces to the multiple-sets split feasibility problem

(MSSFP), and if we take t = r = 1, the MSSEP becomes the split equality problem (SEP).

What’s more, if we take B = I and t = r = 1, the MSSEP becomes the split feasibility

problem (SFP) proposed by Censor and Elfving [4]. For information of the SFP and MSSFP,

please see [4-20]; For information of the SEP, please see [1-3].

Let H1, H2, H3 be real Hilbert spaces, let C ⊂ H1, Q ⊂ H2 be two nonempty closed

convex sets, let A : H1 → H3, B : H2 → H3 be two bounded linear operators. The SEP

proposed by Moudafi [1,2] is that

to find x ∈ C, y ∈ Q such that Ax = By; (1.2)

For solving the SEP, A. Moudafi proposed the alternating CQ-algorithms (ACQA)

in [1] and the relaxed CQ-algorithm (RACQA) in [2]; For solving the approximate split

equality problem (ASEP), C. Byrne proposed a simutaneous iterative algorithm (SSEA),

the relaxed SSEA (RSSEA) and the perturbed version of the SSEA (PSSEA) in [3].
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In this paper, we propose and study the MSSEP which generalizes the MSSFP and the

SEP. Some iterative algorithms for solving the MSSEP are proposed and we will establish

their convergence.

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥, respectively,
and let K be a nonempty closed convex subset of H. Recall that the projection from H

onto K, denoted PK , is defined in such a way that, for each x ∈ H, PKx is the unique point

in K with the property

∥x− PKx∥ = min{∥x− y∥ : y ∈ K}.
The following important properties of projections are useful to our study.

Proposition 2.1. Given x ∈ H and z ∈ K.

(a) z = PKx if and only if ⟨x− z, y − z⟩ ≤ 0, ∀y ∈ K.

(b) ⟨PKu− PKv, u− v⟩ ≥ ∥PKu− PKv∥2, ∀u, v ∈ H.

Definition 2.1. A mapping T : H → H is said to be:

(a) nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ H;

(b) firmly nonexpansive if 2T − I is nonexpansive, or equivalently,

⟨Tx− Ty, x− y⟩ ≥ ∥Tx− Ty∥2, ∀x, y ∈ H;

alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =
1

2
(I + S),

where S : H → H is nonexpansive. It is well known that projections are nonexpansive

and firmly nonexpansive.

Definition 2.2. Let T be a nonlinear operator whose domain is D(T ) ⊆ H and

whose range is R(T ) ⊆ H.

(a) T is said to be monotone if

⟨Tx− Ty, x− y⟩ ≥ 0, ∀x, y ∈ D(T ).

(b) Given a number β > 0, T is said to be β-strongly monotone if

⟨Tx− Ty, x− y⟩ ≥ β∥x− y∥2, ∀x, y ∈ D(T ).

(c) Given a number ν > 0, T is said to be ν-inverse strongly monotone (ν − ism) if

⟨Tx− Ty, x− y⟩ ≥ ν∥Tx− Ty∥2,∀x, y ∈ D(T ).

(d) Given a number L > 0, T is said to be L-Lipschitz if

∥ Tx− Ty ∥≤ L ∥ x− y ∥, ∀x, y ∈ D(T ).

It is easily seen that projections are 1-ism.

Definition 2.3. A mapping T : H → H is said to be an averaged mapping if it can

be written as the average of the identity I and a nonexpansive mapping, that is,

T = (1− α)I + αS,
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where α ∈ (0, 1) and S : H → H is nonexpansive. In this case, we also say that T is

α-averaged. Averaged mappings are nonexpansive, projections are averaged.

Proposition 2.2 ([6]). We have the following assertions:

(a) T is nonexpansive if and only if the complement I − T is 1
2 -ism.

(b) If T is ν-ism and γ > 0, then γT is ν
γ -ism.

(c) T is averaged if and only if the complement I−T is ν-ism for some ν > 1
2 . Indeed,

for α ∈ (0, 1), T is α-averaged if and only if I − T is 1
2α -ism.

(d) If T1 is α1-averaged and T2 is α2-averaged, where α1, α2 ∈ (0, 1), then the com-

posite T1T2 is α-averaged, where α = α1 + α2 − α1α2.

Lemma 2.1. Suppose T : C → C is nonexpansive with a fixed point, where C is a

closed convex subset of a Hilbert space. Define the sequence {xn} be generated by Mann’s

algorithm:

xn+1 = (1− αn)xn + αnTxn, n ≥ 0 (2.1)

if
∑∞

n=1 αn(1− αn) = ∞, then the sequence {xn} generated by (2.1) converges weakly to a

fixed point of T .

Lemma 2.2. Suppose T : C → C is nonexpansive with a fixed point, where C is a

closed convex subset of a Hilbert space. Define the sequence {xn} be generated by Halpern’s

algorithm:

xn+1 = tnu+ (1− tn)Txn, n ≥ 0 (2.2)

where u, x0 ∈ C. Assume the following conditions are satisfied

(i) limn→∞ tn = 0;

(ii)
∑∞

n=0 tn = ∞;

(iii)
∑∞

n=0 | tn+1 − tn |< ∞ or limn→∞(tn/tn+1) = 1.

Then the sequence {xn} generated by (2.2) converges strongly to the projection of u

onto the fixed point set of T .

Lemma 2.3 ([11]). Let f : H → R be a continuously differentiable function such that

the gradient ∇f is Lipschitz continuous

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, x, y ∈ H.

Assume the minimization problem

min{f(x) : x ∈ K} (2.3)

is consistent, where K is a closed convex subset of H. Then, for 0 < γ < 2/L, the sequence

{xn} generated by the gradient-projection algorithm

xn+1 = PK(xn − γ∇f(xn)) (2.4)

converges weakly to a solution of (2.3).

Lemma 2.4 ([26]). Let H be a real Hilbert space. Then, ∀x, y ∈ H and ∀λ ∈ [0, 1],

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.
Lemma 2.5 ([27]). Let K be a nonempty closed convex subset of a real Hilbert space

H. Let {xn} be a bounded sequence which satisfies the following properties:

(i) every weak limit point of {xn} lies in K;

(ii) limn→∞ ∥xn − x∥ exists for every x ∈ K.

Then {xn} converges weakly to a point in K.
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Lemma 2.6 ([6]). If T is an averaged mapping in a Hilbert space with a fixed point,

then, for every x, the sequence of iterates of T at x, {Tnx}, converges weakly to a fixed

point of T .

3. Iterative methods for the MSSEP

Let S = C ×Q. Define

G = [A −B],

w =

[
x

y

]
.

We have the following proposition.

Proposition 3.1. w∗ solves the SEP (1.2) if and only if w∗ solves the fixed point

equation PS(I − γG∗G)w∗ = w∗(γ > 0).

Proof. If the SEP is consistent, it can now be reformulated as

finding w∗ ∈ S with minimizing the function ∥Gw∥ over w ∈ S,

if and only if w∗ ∈ S satisfies the variational inequality

⟨w − w∗, G∗Gw∗⟩ ≥ 0, ∀w ∈ S,

We can rewrite the above variational inequality as, for any γ > 0

⟨w − w∗, w∗ − (w∗ − γG∗Gw∗)⟩ ≥ 0, ∀w ∈ S,

if and only if

PS(w
∗ − γG∗Gw∗) = w∗.

Next we will state the idea for solving the MSSEP.

Without loss of generalization, suppose t > r in (1.1), we can define Qr+1 = Qr+2 =

· · · = Qt = H2. Then the MSSEP (1.1) is equivalent to the following problem:

to find x ∈
t∩

i=1

Ci and y ∈
t∩

j=1

Qj such that Ax = By. (3.1)

Proposition 3.2. w∗ solves the MSSEP (1.1) if and only if

w∗ ∈
t∩

i=1

Fix(PSi(I − γG∗G)),

where Fix(T ) denote the fixed point set of T , and Si = Ci ×Qi (i=1,2,...,t).

Proof. Assume that

w∗ =

[
x∗

y∗

]
solves the MSSEP (1.1), by the equivalent definition (3.1) of the MSSEP, for any 1 ≤ i ≤ t,

we have x∗ ∈ Ci, y∗ ∈ Qi and Ax∗ = By∗. By proposition 3.1, for any 1 ≤ i ≤ t,

w∗ ∈ Fix(PSi(I − γG∗G)). So w∗ ∈
∩t

i=1 Fix(PSi(I − γG∗G)).



Several iterative algorithms for the multiple-sets split equality problem 91

Now we assume that w∗ ∈
∩t

i=1 Fix(PSi(I − γG∗G)), for any 1 ≤ i ≤ t, we have

w∗ ∈ Fix(PSi(I − γG∗G)). By proposition 3.1, for any 1 ≤ i ≤ t, x∗ ∈ Ci, y
∗ ∈ Qi and

Ax∗ = By∗. Hence x∗ ∈
∩t

i=1 Ci, y
∗ ∈

∩t
i=1 Qi such that Ax∗ = By∗, in other words,

w∗ =

[
x∗

y∗

]
solves the MSSEP (1.1). The proof is complete.

By proposition 3.2, to obtain a solution of the MSSEP (1.1), we have to search for a

common fixed point of the operators {Ti}ti=1, where Ti = PSi
(I − γG∗G) (i=1,2,...,t). Since

G∗G is ∥G∥2-lipschitz, G∗G is 1/∥G∥2 − ism, by proposition 2.2 (b), γG∗G is 1/(γ∥G∥2)−
ism. Hence by proposition 2.2 (c), when 0 < γ < 2/∥G∥2, I−γG∗G is (γ∥G∥2)/2−averaged,

where 0 < (γ∥G∥2)/2 < 1. What’s more, we know that PSi is averaged, so the composite

PSi(I − γG∗G) is also averaged by proposition 2.2 (d).

Through the analysis above, we have to search for a common fixed point of the

averaged mappings {Ti}ti=1. Since Fix(Ti) (i=1,2,...,t) is convex, we can see this problem

as a convex feasibility problem.

First we propose a fully sequential iterative algorithm which generates a sequence

{wn} by

wn+1 = PSm(n)
(I − γG∗G)wn, n ≥ 0 (3.2)

where the initial guess w0 ∈ H1 ×H2 and m(n) = n mod t +1.

Theorem 3.1. Assume the MSSEP (1.1) is consistent and 0 < γ < 2/∥G∥2. Then

the sequence {wn} generated by (3.2) converges weakly to a solution of the MSSEP (1.1).

Proof. Since, for each 1 ≤ i ≤ t, Ti = PSi(I − γG∗G) is averaged, there exist

αi ∈ (0, 1) and nonexpansive mapping Ni such that Ti = (1 − αi)I + αiNi. Thus, the

algorithm (3.2) can be written as

wn+1 = (1− αm(n))wn + αm(n)Nm(n)wn, n ≥ 0

where m(n) = n mod t +1 for all n. Let Γ denote the solution set of the MSSEP (1.1) which

is the set of common fixed points of the mappings {T1, T2, ..., Tt} (and also of the mappings

{N1, N2, ..., Nt}). Take an arbitrary z ∈ Γ to deduce that (by lemma 2.4)

∥wn+1−z∥2 = (1−αm(n))∥wn−z∥2+αm(n)∥Nm(n)wn−z∥2−αm(n)(1−αm(n))∥wn−Nm(n)wn∥2

≤ ∥wn − z∥2 − αm(n)(1− αm(n))∥wn −Nm(n)wn∥2.
However, αm(n)(1 − αm(n)) ≥ αmin(1 − αmax) > 0, where αmin = min{αi : 1 ≤ i ≤

t} ∈ (0, 1) and αmax = max{αi : 1 ≤ i ≤ t} ∈ (0, 1). It follows that

∥wn −Nm(n)wn∥2 ≤ 1

αmin(1− αmax)
(∥wn − z∥2 − ∥wn+1 − z∥2).

This implies that

limn→∞ ∥wn − z∥ exists for all z ∈ Γ. (3.3)

Hence, {wn} is bounded and

lim
n→∞

∥wn −Nm(n)wn∥ = 0. (3.4)

Since ∥wn+1 − wn∥ = αm(n)∥wn −Nm(n)wn∥, we obtain that

lim
n→∞

∥wn+1 − wn∥ = 0. (3.5)
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Since the family of nonexpansive mappings {Nm(n)} is finite, we get that (3.4) and

(3.5) are sufficient to imply that the weak ω-limit set of the sequence {wn} is contained in

the set of common fixed points of the mappings {Ni}ti=1; that is

ωw(wn) ⊂ Γ. (3.6)

By lemma 2.5, (3.3) and (3.6) imply that {wn} converges weakly to a member of Γ. The

proof is complete.

Remark 3.1. We can give an iterative algorithm like this

wn+1 = [PSt(I − γG∗G)][PSt−1(I − γG∗G)] · · · [PS1(I − γG∗G)]wn, n ≥ 0 (3.7)

where the initial guess w0 ∈ H1 ×H2.

Assume the MSSEP (1.1) is consistent and 0 < γ < 2/∥G∥2. Then the sequence {wn}
generated by (3.7) is a sub-sequence of the sequence generated by (3.2), so it converges weakly

to a solution of the MSSEP (1.1).

Second we propose a simultaneous algorithm as follows

wn+1 =
t∑

i=1

λiPSi(I − γG∗G)wn, n ≥ 0 (3.8)

where the initial guess w0 ∈ H1 ×H2, λi > 0 for all i and
∑t

i=1 λi = 1.

Theorem 3.2. Assume the MSSEP (1.1) is consistent and 0 < γ < 2/∥G∥2. Then

the sequence {wn} generated by (3.8) converges weakly to a solution of the MSSEP (1.1).

Proof. Since each Ti = PSi(I − γG∗G) is averaged, the convex combination S :=∑t
i=1 λiTi is also averaged. Note that (3.8) can be written as wn = Snw0. Hence, by lemma

2.6, the sequence {wn} generated by (3.8) converges weakly to a fixed point of S. But

Fix(S) =
∩t

i=1 Fix(Ti) is the solution set of the MSSEP (1.1). The proof is complete.

We can also use Mann’s iterative algorithm to solve the MSSEP (1.1):

wn+1 = (1−αn)wn+αn[PSt(I−γG∗G)][PSt−1(I−γG∗G)]···[PS1(I−γG∗G)]wn, n ≥ 0 (3.9)

where the initial guess w0 ∈ H1 ×H2.

Theorem 3.3. Assume the MSSEP (1.1) is consistent and the following conditions

are satisfied:

(i)0 < γ < 2/∥G∥2;
(ii)

∑∞
n=1 αn(1− αn) = ∞.

Then the sequence {wn} generated by (3.9) converges weakly to a solution of the

MSSEP (1.1).

Proof. By lemma 2.1, the sequence {wn} generated by (3.9) converges weakly to a

fixed point of

PSt(I − γG∗G)PSt−1(I − γG∗G) · · · PS1(I − γG∗G),

which is exactly a common fixed point of {PSi(I−γG∗G)}ti=1, by proposition 3.2, the proof

is complete.

The simultaneous algorithm (3.8) has also its Mann’s iterative form:

wn+1 = (1− αn)wn + αn

t∑
i=1

λiPSi(I − γG∗G)wn, n ≥ 0 (3.10)

where the initial guess w0 ∈ H1 ×H2, λi > 0 for all i and
∑t

i=1 λi = 1.
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Theorem 3.4. Assume the MSSEP (1.1) is consistent and the following conditions

are satisfied:

(i)0 < γ < 2/∥G∥2;
(ii)

∑∞
n=1 αn(1− αn) = ∞.

Then the sequence {wn} generated by (3.10) converges weakly to a solution of the

MSSEP (1.1).

Proof. Since each Ti = PSi(I − γG∗G) is averaged, the convex combination S :=∑t
i=1 λiTi is also averaged. By lemma 2.1, the sequence {wn} generated by (3.10) converges

weakly to a fixed point of S, which is exactly a common fixed point of {Ti}ti=1. By proposition

3.2, the proof is complete.

Mann’s algorithm has only weak convergence in general, some modifications are

needed to obtain strong convergence, related information please see [21] and the reference

therein.

Halpern’s iteration is an important tool for obtaining a fixed point of nonexpansive

mappings because of its strong convergence.

Let {wn} be generated by the following Halpern’s iterative algorithm:

wn+1 = tnu+ (1− tn)PSm(n)
(I − γG∗G)wn, n ≥ 0 (3.11)

where the initial guess w0 ∈ H1 ×H2 and m(n) = n mod t +1.

We have the following result.

Theorem 3.5. Given u ∈ H1 ×H2. Assume the MSSEP (1.1) is consistent, 0 < γ <

2/∥G∥2 and the following conditions are satisfied:

(i) limn→∞ tn = 0;

(ii)
∑∞

n=0 tn = ∞;

(iii)
∑∞

n=0 | tn+t − tn |< ∞ or limn→∞(tn/tn+t) = 1.

Then the sequence {wn} generated by (3.11) converges strongly to a solution of the

MSSEP (1.1) which is nearest to u from the solution set of the MSSEP (1.1). In particular,

if we take u = 0, then {wn} converges strongly to the minimum-norm solution of the MSSEP

(1.1).

Proof. Since each Ti = PSi(I − γG∗G) is averaged, the common fixed point set of

these mappings satisfies the property (proposition 2.2 [6]):

∅ ̸=
t∩

i=1

Fix(Ti) = Fix(TtTt−1 · · · T1) = Fix(T1Tt · · · T2) = · · · = Fix(Tt−1Tt−2 · · · Tt).

By theorem 4.1 of [23], the sequence {wn} generated by (3.11) converges strongly to

the projection of u onto
∩t

i=1 Fix(Ti), but
∩t

i=1 Fix(Ti) is the solution set of the MSSEP

(1.1). The proof is complete.

Theorem 3.6. Given u ∈ H1 ×H2. Assume the MSSEP (1.1) is consistent, 0 < γ <

2/∥G∥2 and the following conditions are satisfied:

(i) limn→∞ tn = 0;

(ii)
∑∞

n=0 tn = ∞;

(iii)
∑∞

n=0 | tn+1 − tn |< ∞ or limn→∞(tn/tn+1) = 1.

Define {wn} be generated by the algorithm

wn+1 = tnu+(1−tn)[PSt(I−γG∗G)][PSt−1(I−γG∗G)]···[PS1(I−γG∗G)]wn, n ≥ 0 (3.12)

where the initial guess w0 ∈ H1 ×H2.
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Then the sequence {wn} generated by (3.12) converges strongly to a solution of the

MSSEP (1.1) which is nearest to u from the solution set of the MSSEP (1.1). In particular,

if we take u = 0, then {wn} converges strongly to the minimum-norm solution of the MSSEP

(1.1).

Proof. By lemma 2.2, the sequence {wn} generated by (3.12) converges strongly to

the projection of u onto the fixed point set of

T = TtTt−1 · · · T1 = PSt(I − γG∗G)PSt−1(I − γG∗G) · · · PS1(I − γG∗G).

But Fix(T ) =
∩t

i=1 Fix(Ti) is the solution set of the MSSEP (1.1). The proof is

complete.

The simultaneous algorithm (3.8) has also its Halpern’s iterative form:

wn+1 = tnu+ (1− tn)
t∑

i=1

λiPSi
(I − γG∗G)wn, n ≥ 0 (3.13)

where the initial guess w0 ∈ H1 ×H2, λi > 0 for all i and
∑t

i=1 λi = 1.

Theorem 3.7. Given u ∈ H1 ×H2. Assume the MSSEP (1.1) is consistent, 0 < γ <

2/∥G∥2 and the following conditions are satisfied:

(i) limn→∞ tn = 0;

(ii)
∑∞

n=0 tn = ∞;

(iii)
∑∞

n=0 | tn+1 − tn |< ∞ or limn→∞(tn/tn+1) = 1.

Then the sequence {wn} generated by (3.13) converges strongly to a solution of the

MSSEP (1.1) which is nearest to u from the solution set of the MSSEP (1.1). In particular,

if we take u = 0, then {wn} converges strongly to the minimum-norm solution of the MSSEP

(1.1).

Proof. By lemma 2.2, the sequence {wn} generated by (3.13) converges strongly to

the projection of u onto the fixed point set of S :=
∑t

i=1 λiPSi(I − γG∗G). But Fix(S) =∩t
i=1 Fix(PSi(I − γG∗G)) is the solution set of the MSSEP (1.1). The proof is complete.

Recently, Halpern’s iteration has received much attention. Some good results that

use weaker condition to obtain strong convergence have been achieved. The following is an

example that gets rid of the condition (iii) in theorem 3.6.

Define the sequence {wn} generated by the formula

wn+1 = tn(λu+(1−λ)wn)+(1−tn)PSt(I−γG∗G)PSt−1(I−γG∗G)···PS1(I−γG∗G)wn, n ≥ 0

(3.14)

where the initial guess w0 ∈ H1 ×H2, {tn} ⊂ [0, 1] and λ ∈ (0, 1).

Theorem 3.8. Given u ∈ H1 × H2. Assume the MSSEP (1.1) is consistent, 0 <

γ < 2/∥G∥2 and {tn} satisfies (i) and (ii) stated in theorem 3.6, then the sequence {wn}
generated by (3.14) converges strongly to a solution of the MSSEP (1.1) which is nearest

to u from the solution set of the MSSEP (1.1). In particular, if we take u = 0, then {wn}
converges strongly to the minimum-norm solution of the MSSEP (1.1).

Proof. By theorem 3.1 in [22], the sequence {wn} generated by (3.14) converges

strongly to the projection of u onto the fixed point set of

S := PSt(I − γG∗G)PSt−1(I − γG∗G) · · · PS1(I − γG∗G)wn.

But Fix(S) =
∩t

i=1 Fix(PSi(I − γG∗G)) is the solution set of the MSSEP (1.1). The

proof is complete.

More information about Halpern’s iteration please see [22-25] and the reference therein.
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We can also transform the MSSEP (1.1) to an optimization problem.

Recall the equivalent definition (3.1) of the MSSEP (1.1), we have the following

proposition.

Proposition 3.3. Assume the MSSEP (1.1) is consistent, then w∗ solves the MSSEP

(1.1) if and only if w∗ solves the following optimization problem:

min
w∈Ω

f(w) :=
1

2
∥Gw∥2 + 1

2

t∑
i=1

αi∥PCi×Qiw − w∥2, (3.15)

where Ω ⊆ H1 ×H2 is an additional closed convex set and αi > 0 for all i.

Proof. Suppose that

w∗ =

[
x∗

y∗

]
solves the MSSEP (1.1), by the equivalent definition (3.1) of the MSSEP (1.1), we know that

x∗ ∈ Ci, y
∗ ∈ Qi for any i = 1, 2, ..., t and Ax∗ = By∗. So w∗ ∈ Ci×Qi for any i = 1, 2, ..., t

and Gw∗ = 0, hence f(w∗) = 0. In other words, w∗ minimizes f(w) in Ω.

Now we assume that

w∗ =

[
x∗

y∗

]
solves the optimization problem (3.15), then f(w∗) = 0. So w∗ ∈ Ci×Qi for any i = 1, 2, ..., t

and Gw∗ = 0, hence x∗ ∈ Ci, y
∗ ∈ Qi for any i = 1, 2, ..., t and Ax∗ = By∗. We get that

x∗ ∈
∩t

i=1 Ci, y
∗ ∈

∩t
i=1 Qi and Ax∗ = By∗, by the equivalent definition (3.1) of the MSSEP

(1.1), w∗ solves the MSSEP (1.1). So we complete the proof.

By proposition 3.3, we formulate the MSSEP (1.1) as a minimization problem. An

additional condition like
∑t

i=1 αi = 1 is sometimes very useful in practical application to

real world problems when αi are weights of importance attached to the constraints. But

this condition is not necessary for our analysis below.

The function

f(w) =
1

2
∥Gw∥2 + 1

2

t∑
i=1

αi∥PCi×Qiw − w∥2

is continuously differentiable with gradient given by

∇f(w) = G∗Gw +
t∑

i=1

αi(I − PCi×Qi)w.

Due to the fact that I −PCi×Qi is (firmly) nonexpansive, we get that ∇f is Lipschitz

continuous with Lipschitz constant L = ∥G∥2 +
∑t

i=1 αi, thus the gradient-projection algo-

rithm (2.4) is applicable to solve the minimization problem (3.15). This method generates

a sequence {wn} via the procedure:

wn+1 = PΩ{I − γ[G∗G+

t∑
i=1

αi(I − PCi×Qi)]}wn, n ≥ 0 (3.16)

where the initial guess w0 ∈ H1 ×H2, γ > 0 is a parameter and αi > 0 for all i.

By lemma 2.3, we immediately get the following convergence result.

Theorem 3.9. Assume the MSSEP (1.1) is consistent. If 0 < γ < 2/(∥G∥2 +∑t
i=1 αi), then the sequence {wn} generated by the gradient-projection algorithm (3.16)

converges weakly to a solution of the MSSEP (1.1).

We can also use the fixed point method to solve the MSSEP (1.1).
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By proposition 3.3, we have the following result.

Proposition 3.4. Assume the MSSEP (1.1) is consistent, then w∗ solves the MSSEP

(1.1) if and only if w∗ solves the fixed point equation

PΩ{I − γ[G∗G+
t∑

i=1

αi(I − PCi×Qi)]}w = w. (3.17)

Proof. It is well-known that w∗ solves the minimization problem (3.15)

if and only if w∗ ∈ Ω satisfies the variational inequality

⟨w − w∗, [G∗G+
t∑

i=1

αi(I − PCi×Qi
)]w∗⟩ ≥ 0, ∀w ∈ Ω,

We can rewrite the above variational inequality as, for any γ > 0

⟨w − w∗, w∗ − {w∗ − γ[G∗G+

t∑
i=1

αi(I − PCi×Qi)]w
∗}⟩ ≥ 0, ∀w ∈ Ω,

if and only if

PΩ{w∗ − γ[G∗G+
t∑

i=1

αi(I − PCi×Qi)]w
∗} = w∗.

The proof is complete.

Through the analysis above, we can use the iterative algorithms that get a fixed point

of an averaged mapping to solve the MSSEP (1.1).

By lemma 2.6, define {wn} be generated by Picard iteration:

wn+1 = PΩ{I − γ[G∗G+

t∑
i=1

αi(I − PCi×Qi)]}wn, n ≥ 0 (3.18)

where the initial guess w0 ∈ H1 ×H2, γ > 0 is a parameter and αi > 0 for all i. Assume

the MSSEP (1.1) is consistent. If 0 < γ < 2/(∥G∥2 +
∑t

i=1 αi), then the sequence {wn}
generated by (3.18) converges weakly to a solution of the MSSEP (1.1). In fact, the algorithm

(3.18) is exactly the gradient-projection algorithm (3.16).

We can also use Mann’s algorithm to get a fixed point:

wn+1 = (1− αn)wn + αnPΩ{I − γ[G∗G+
t∑

i=1

αi(I − PCi×Qi)]}wn, n ≥ 0 (3.19)

where the initial guess w0 ∈ H1 ×H2, γ > 0 is a parameter and αi > 0 for all i.

By lemma 2.1 and proposition 3.4, we immediately obtain the following result.

Theorem 3.10. Assume the MSSEP (1.1) is consistent and the following conditions

are satisfied:

(i)0 < γ < 2/(∥G∥2 +
∑t

i=1 αi);

(ii)
∑∞

n=1 αn(1− αn) = ∞.

Then the sequence {wn} generated by (3.19) converges weakly to a solution of the

MSSEP (1.1).

If we use Halpern’s algorithm, we can obtain the strong convergence.

Define the sequence {wn} be generated by Halpern’s iteration:
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wn+1 = tnu+ (1− tn)PΩ{I − γ[G∗G+

t∑
i=1

αi(I − PCi×Qi)]}wn, n ≥ 0 (3.20)

where the initial guess w0 ∈ H1 ×H2, γ > 0 is a parameter and αi > 0 for all i.

By lemma 2.2 and proposition 3.4, we immediately obtain the following theorem.

Theorem 3.11. Given u ∈ H1 × H2. Assume the MSSEP (1.1) is consistent,

0 < γ < 2/(∥G∥2 +
∑t

i=1 αi) and the following conditions are satisfied:

(i) limn→∞ tn = 0;

(ii)
∑∞

n=0 tn = ∞;

(iii)
∑∞

n=0 | tn+1 − tn |< ∞ or limn→∞(tn/tn+1) = 1.

Then the sequence {wn} generated by (3.20) converges strongly to a solution of the

MSSEP (1.1) which is nearest to u from the solution set of the MSSEP (1.1). In particular,

if we take u = 0, then {wn} converges strongly to the minimum-norm solution of the MSSEP

(1.1).

4. Conclusions

In this paper, the MSSEP is proposed and some iterative algorithms are considered.

The MSSEP has abroad applicability in modeling significant real world problem.

In some cases, notably when the convex sets are not linear, the exact computation

of the projections onto convex sets calls for the solution of a separate optimization problem

for each projection. In such cases the efficiency of methods that use projections onto convex

sets is seriously reduced. Yang [7] proposed a relaxed CQ-algorithm where projections onto

convex sets are replaced by projections onto, well-defined and easily derived, half-spaces

that contain the convex sets, and are, therefore, easily executed. Our algorithm (3.16)

has also its relaxed version, more generally, it has its perturbed version which consists in

taking approximate sets that involve the ρ−distance between two closed convex sets. We

will discuss these techniques in another paper.
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