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GENERAL SOLUTION OF FULL ROW RANK LINEAR SYSTEMS OF
EQUATIONS VIA A NEW EXTENDED ABS MODEL

Leila Asadbeigi', Mahmoud Paripour?, Esmaeil Babolian®

ABS methods have been used broadly for solving linear and nonlinear sys-
tems of equations comprising large number of constraints and wvariables. Also, ABS
methods provide a unification of the field of finitely terminating methods for the general
solution of full row rank linear systems of equations. In this paper, we theoretically
describe a new ABS algorithm based on the two-step ABS methods for solving general
solution of full row rank linear systems of equations. This new algorithm requires the
same number of multiplications as Gaussian elimination method, but does not need piv-
oting. Computational complexity and numerical results indicate that our new version
of ABS algorithm needs less work than the corresponding two-step ABS algorithms and
Huang’s method.
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1. Introduction

ABS methods were introduced by Abaffy, Broyden and Spedicato initially for solving
a determined or underdetermined linear system and later extended for linear least squares,
nonlinear equations, optimization problems and Diophantine equations [1, 4]. These ex-
tended ABS algorithms offer some new approaches that are better than classical ones under
several respects. Also, extensive computational experience has shown that ABS methods
are implementable in a stable way, being often more accurate than the corresponding initial
algorithm. ABS methods can be more effective than some of the other traditional methods.
See more about ABS algorithms in [5, 6, 7]. A review of ABS algorithms is observed in [8].
The basic ABS algorithm works on a system of the form

Az =1b (1)

where A = [ay, -+ ,am|’, a; ER?, 1<i<m, 2€R?, becR™ , m<n.

The basic ABS methods determine the solution of (1) or signify lack of its existence in at
most m iterates. Now, we present a new extended ABS algorithm based on the two-step
ABS algorithms that were proposed in [2, 3] for the general solution of full row rank linear
systems of equations. In order to have less numerical complexity, we modify some of the
parameters of the basic two-step ABS methods. The remainder of this paper is organized
as follows;

In Section 2, we construct a new two-step ABS model for solving general solution of full
row rank linear systems of equations. Rank reducing process is done in two phases, for
per iterate. The first phase helps us to have a solution of the i-th iteration and the next
phase leads to compute general solution of that iterate. Also, we state and prove related
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theorems. In Section 3, we present a new extended two-step ABS algorithm for the general
solution of full row rank linear equations. The i-th iteration solves the first 2i equations in
at most [mTH] steps. Furthermore, we propose some parameters to have less computational
complexity. Computational complexity and numerical results are discussed in Section 4,
in details. In Section 5, we conclude that our new algorithm requires the same number of
multiplications as Gaussian elimination method, but does not need pivoting. Moreover, we
need less work than those corresponding two-step ABS methods and Huang’s algorithm.

2. Constructing a new two-step ABS model

The basic ABS algorithm starts with an initial vector xg € R™ and a nonsingular
matrix Hy € R™*" (Spedicato’s parameter). Given that x; is a solution of the first i
equations, the ABS algorithm computes z; as the solution of the first i + 1 equations as the
following steps [1]:

(1) Determine z; (Broyden’s parameter) so that z! H;a; # 0 and set P; = H} z;,
bi—a;rzi
a;.FPi

(2) Update the solution by ;11 = x;+«; P; where the stepsize «; is given by a; =
(3) Update the Abaffian matrix H; by H; 1 = H; — %
Here, we are motivated to study on a method that satisfies two new equations at a time. We
consider the system (1) under the assumption that A is full rank in row, i.e., rank(A)=m and
m < n. Suppose that m = 2[ (if m is odd, we can add a trivial equation to the system). Take
- T o T .
A?lz[ah cee a%] ,bm:[bl, SRR bgz} and’f‘j.(ﬂf):afx*bj(]:]-v"'7m)'
Assume that we are at the i-th iteration and z; satisfies A%z = b%*. We determine H; €
R**" 2z, € R™ and \; € R so that x; = x;_1 — )\lHszl is a solution of the first 27 equations
of the system (1), which is A%z; = b*". As a result, we have rj(z;) =0, j =1,---,2i. Thus,
for j =2i — 1 and j = 24, we have

adi 1 (wic1 — NHI 2;) — bai—1 =0,

ag; (wim1 — N HE 2;) — by = 0,
or equivalently
Ni(Hiazi—1)T 2 = roi—1(2i—1),
(2)
)\i(Hia%)TZi = 7'22'(531'71)
Suppose that ro;_1(x;—1) # 0 and r9;(w;—1) # 0. Then, \; must be nonzero and (2) is
compatible if and only if we take

A = Toi—1(Ti—1) _ Tai(Ti—1) )
(Hiazi—1)T 2 (Hia:)T 2

where To;_1(zi—1) = Toi(xi—1) = roi—1(xi—1)r2;(x;—1). There are various ways to satisfy (3).

We consider the following model:

1. Choose an appropriate update for H; so that

H;ai—1 = H;ag; # 0,

and

2. Select a vector z; from an orthogonal space to the vector H;as;, so that

ZiTHiagi 75 0.

Now, since two new equations are considered in each iterate, we use a rank one update as
(4) and another rank one update as (5). Therefore, we have a new rank two update for each
iterate. Here, we present H; and H;, satisfying the following properties;

HiaZi—l :H’La2i #07 1= 17 717 (4)

and
Hyja; =0, j=1,---,2i. (5)
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Now, assume

e ©)
As relations (4), (5) and (6), we will construct (7) and (8) such that
Hic; =0, j=1,---,2t -1, (7)
and
Hj,c; =0, j=1,--- 2 (8)

We compute H;y1 from Hj,, such that the relations (7) and (8) hold and proceed inductively.
We define Hyy 1 = Hy, + gair1d3;,, where ga;i1,d2i41 € R". We need to have

HiJrlcj:O, ]:1372Z+17

Hic;j=0, j=1,---,2.

So, we have
(Hli +927)+1d%;+1) Cj :07 ]: 1a 72Z+17

Hj,c; =0, j=1,--- 2.
Thus, we must define go;41,d2;+1 € R™ in such a way that
Hl,icj + (dg;+10j) g2i+1 = 0, j=1,---,2i4+1, (9)

and Hy,c; =0, j =1,---,2i. By defining do;y1 = Hlfng_l, the condition (9) is satisfied
for j < 2i — 1 by the induction hypothesis . Letting j = 2i + 1 in (9), we get

(d5;4102i41)92i41 = —Hi, C2iq1- (10)

We consider the choice g2;4+1 = —Hj, 2,41 with d;+1czi+1 = 1, which clearly holds in (10).
Now, we define wsy;+1 € R™ such that

Wyi Hiyezipn = 1. (11)

Later, as Theorem 2.2., we will conclude that the above system has solution and Hj, is
well-defined. Therefore, the updating formula for H; is given by

Hipy = Hy, — Hycoipawy, o H, (12)
where ws; 11 can be any vector satisfying (11). Now to satisfy (12) and complete the induc-
tion, H; should be chosen so that Hiay = Hias # 0 or

chl = 0. (13)

Let Hy be an arbitrary nonsingular matrix. We obtain H; from Hj by using a rank one

update. Take H; = Hy —ujv! where uy,v; € R™ are chosen so that (13) is satisfied. So, we

have Hyci — (Ufcl)ul = 0. The above equation is satisfied if we set w1 = Hycy,v1 = Hépwh
and we choose w; € R™ satisfying the next condition

w{Hocl =1. (14)

Clearly, (14) can be held with a proper choice of w; € R™, whenever a; and as are linearly

independent. Thus, we have a rank one update
H1 = HO — HQCl’LUfHO (15)

where w; is an arbitrary vector satisfying (14). In order to compute the general solution and
update the second phase for the i-th iteration, we introduce a matrix H;, with properties
Hj,c; = Hj,a; =0, j=1,---,2i. So, we define the matrix H;, by a rank one update as the
next formula

H), = H; — Hyap;wl, H; = H; — Hico;wl, H;, i=1,---,L (16)
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Notice that wo; € R™ is an arbitrary vector satisfying the following condition:
wiHias; = 1. (w3;Hica; = 1) (17)
Hence, the general solution of the ¢-th iteration is given by x;, = x; — Hgs where s € R" is
arbitrary. Clearly, the general solution for the last iteration is presented by
x, =z — H's (18)
where s € R” is arbitrary.

Lemma 2.1. The vectors ay,--- ,a, are linearly independent if and only if the vectors
c1, -, Cm are linearly independent.

Therefore, we proved the following theorem.

Theorem 2.1. Assume that we have m = 21 arbitrary linearly independent vectors ay,- -+ , am €
R™ and an arbitrary nonsingular matriz Hy € R™ ™. Let Hy be generated by (15) and wq
is satisfying (14) and the sequence of matrices H;, i = 2,--- |1, be generated by
Hi = Hli71 - Hliflchflw%;lel
with we;—1 € R™ satisfying the following condition:
w%;—lHli71c2i—1 =1. (20)

Also, let the sequence of matrices Hy,,- -+ , H;, be generated by (16) with we; € R™ satisfying
(17). Then, when we are at the i-th iteration, the following properties ((i) — (iv)) hold for
i=1,-- 1

(i) Hiagi—1 = Hiaz; # 0,

(19)

i—17

(13) Hj,a; =0, j=1,--- 2,

(’LZZ) I’IZ‘CJ‘:O7 j:1,~-~,2i—1,

(iv) Hycj =0, 7=1---, 2

Theorem 2.2. Assume that ay,- -+ ,a.,, are linearly independent vectors in R™. Let Hy €

R™ ™ be an arbitrary nonsingular matriz and Hy be defined by (15), with wy € R™ satisfying
(14) and fori=2,--- 1, the sequence of matrices H; be generated by (19) with we;—1 € R™
satisfying (20). Then, for alli, 1 <i <1, and j, 2i < j < m, the vectors H;a; are nonzero
and linearly independent.

m
Proof. We proceed by induction. For ¢ = 1, the theorem is true. Since if ) a;Hqa; = 0,
j=2
we have
m
Zaj (HO — H()Cl’w,{Ho) aj; = 0,
j=2
m m
Z ajHoaj — Z ajw?Hoaj HOC1 = 0,
j=2 j=2
or
m
BrHopay — (1 — az)Hoaz + Z ajHoa; =0
j=3
m
where 81 = > ajw?Hoaj. Now, since a1, - , a,, are nonzero and linearly independent and
=2
Hj is nonsingular, Hya; for 1 < j < m are nonzero and linearly independent.
Hence, 1 = as = ag = --- = ay, = 0. Therefore, the vectors Hia;, for 2 < j < m,

are nonzero and linearly independent. Now, we assume that the theorem is true up to
1 <i<1—1, and then we prove it for ¢ + 1. From (12), for 2i + 2 < j < m, we have

Hipva; = Hya; — (wa; g Hya) Hy e (21)
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We need to show that the relation

m
> ajHipia; =0, (22)
j=2i+2

implies that a; = 0, for 2¢ + 2 < j < m. Using (21) we can write (22) as follows:
m

Y iaiio ajHia; — BiHy 001 = 0, where g = _ ;Hajw%;HHliaj. Thus, we have
7j=2i
Yot oo i a; — BIH) (agit2 — aziy1) = 0. As a result

Z ajHya; + B1Hya0i41 — (8] — a2ip2) Hi a9i42 = 0. (23)
j=2i+3

By the induction hypothesis, the vectors H;a;, for 2¢ < j < m, are nonzero and linearly
independent. Now as the assumption of the induction, we are going to prove that the vectors
Hj,a; are nonzero and linearly independent for 2i + 1 < j < m. Using (16), we have

Hliaj = Hiaj — Hiagiwg;-Hiaj. (24)
We must prove the relation
m
Z o Hy,a; =0, (25)
j=2i+1

implies that o/, = 0, for j > 2i + 1. Using (24), we can write (25) as follows:

m m
2 : / 2 : /T
osziaj — aijiHiaj Hiagi =0.
j=2i+1 j=2i+1

As the linearly independence of H;a;, for 2i < j < m, we conclude that a;- =0, for j > 2i+1.
Consequently, for relation (23), we have 8] = @912 = agit+3 = -+ = @, = 0. Hence, the
vectors H;tqa;, for 20 42 < j < m are nonzero and linearly independent. |

Corollary 2.1. Considering the assumptions of Theorem 2.2., the following statement are
true;

(i) When we are at the i-th iteration, we have H;as;—1 = Hiag; # 0. Also, there exist
zi € R" and we; € R™ such that ziTHiagi #0 and w;Hiagi £ 0.
(ii) Fach of the systems (14) and (20) has solution.
(iii) H;, Hy,, x; and x;, are well-defined fori=1,--- 1.

Theorem 2.3. For the matrices H; generated by (15) and (19) and the matrices H;, given
by (16), we have

dim R(H;) n—2i+1, 1<i<],
dimN(H;) = 2i—1, 1<i<,
dmR(H,) = n—2, 1<i<l,
dimN(H;,) = 2i, 1<i <,
dimR(H;,) = n—m,

dimN(H;,) = m.

Remark 2.1. For the matrices H; generated by (15) and (19), we have z; = x;_1 —
NHT 2z, (i=1,---,1), where z; is a solution of the first 2i equations of the system and \;
will be discussed in Algorithm 1.
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3. Introducing a new two-step ABS algorithm

Algorithm 1. Assume that A,,x, = [a1,a2, e ,am}T is a full row rank linear

matrix where m = 20 and Az = b is a compatible full row rank linear system, x € R™ and
beR™.

(1)
(2)

(8)

(9)

Let 2p € R™ be an arbitrary vector and choose Hy € R™*™ (an arbitrary nonsingular
matrix). Set ¢ = 1.

(a) Compute r(x¢) = al'zg — by and ro(z0) = ad 2o — bo.

(b) If 71 (zg)r2 (o) # 0, we let

{ a; = TZ(xO)aflv { a2 = 7’1(550)02,

b1 = 7"2(1‘0)1)1, bg = 7‘1(1‘0))()2.

(c) If r1(zo)ra(xo) = 0 and one of the residual values is nonzero, without loss of
generality we assume that r9(zg) # 0 and we let

a1 =az +ap, az = ag,
by = by + by, by = bs.
) If r1(zo)ra(x0) = 0, and both of the residual values are zero, x; will be z¢ and go
(5)-
a) Take C1 = ag —aj.
b) Select w; € R™ such that wl THycy =1 and compute Hy = Hy — HoclwlTHo.
¢) Select wo € R™ such that wy THias =1 and compute H,=H — HlangTHl.
d) Select 21 € R" so that 2{ Hyas # 0 and compute
Ay = mlo)ra(@o) e (10Yrg (20) # 0,

z?Hlag

A= AT iy (w0) = 0 and ra(zo) # 0.

z?Hlaz
Take ©1 = xg — Alezl.
Set ¢« = 2 and go to 6.
While i < 7, do steps 6(a)-8(b).
(a) Compute 7’21',1(%1',1) = (L%;_ll'i,1 - b27;71 and Tgi(ifi,l) = a%;l’i,1 — bgi.
(b) If 7“21'—1(331'—1)7"21‘(1'1'—1) 7é 0, then we let

a2;—1 = 7“21‘(%71)@21'717 a2 = 7”21'71(961'71)@21'7
boi—1 = Tzi(ﬂfi—l)bzi—h by = 7'21'—1('131‘—1)1)21'-

(d
to
(
(
(
(

(¢) If ro;—1(w;—1)r2:(z;—1) = 0 and one of the residual values is nonzero, without loss
of generality we assume that r9;(z;—1) # 0 and we let

agi—1 = 2; + a2;—1, ag; = a2,
boi—1 = baj + b2i_1, bo; = bo;.

(d) If r9;—1(wi—1)72i(x;—1) = 0 and both of the residual values are zero, x; will be z;_1
and go to 8.(b).

(a) Take Coi—1 = Qg; — A2;—1.

(b) Select wq;—; € R™ such that wl, | H;. ,coi—1 = 1, and compute H; = H,,_,
Hli—102i*1w§i—lHli—1

(c) Select wy; € R™ such that wi H;as; = 1 and compute H;, = H; — H;az;wl H;.

(d) Select z; € R™ so that z! H;as; # 0, and compute )\; = "= L(@i—1)ras (@i 1) if

2T Hiag;
roi—1(xi—1)r2i(xi—1) # 0,

)\i = 2%}(57:;213, if 7"21’—1(7;1'—1) =0 and TQZ‘(l'i_l) 7é 0.

(a) Take Ty = Tj—1 — >\1H;TZZ

(b) Set i =14+ 1.

Endwhile.

Stop.(z; is a solution of the system.)
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From (18), we can compute general solution of the system after the final iterate by z;, =
x; — H, flp s where s € R" is arbitrary.

Remark 3.1. To reduce computational complexity of the above algorithm, we propose the
following tactics;

1. Taking zg and Hy as the zero vector and the identity matrix I, respectively, is proper
in step (1) as Algorithm 1.

2. To compute wy € R"™, we take t; = Hoc; and then we define w; as follows:

1 . .
T N, 0 =M,
wy = SZgn(tjM)tjM
Then, we take ¢;,, = max {[t;| : j € {1,---,n} such that w{t; = 1}. To determine the
other wg;_1 € R™, 1 =2,--- 1, we let t; = H), ,c2;—1 and then, we continue the similar way.
3. We can choose wy; = z; € R™, i =1,--- [, by defining the next parameters
dj = Hiagi, and
1 .
7 7 5 =M,
Wo; = 2; = Slgn(de)de

Now, we take dj,, = max{|d;|: j € {1,---,n} such that wid; = zl'd; = 1}.

4. Computational complexity and numerical results

At first, considering the points 2. and 3. as Remark 3.1., we compute the number of
multiplications for Algorithm 1. as follows;

Table 1
Number of multiplications required to solve m linear equations in [ = 73 iterates, for the main
parameters.
The number of multiplications for each iterate

residual values 2n

The products of residual values 1

a2;—1,a2; 2n

b2i—1, b2; 2

H; 2n+1)(n —2i+2)
Hy, @2n+1)(n—2i+1)
T; 2n

Hence, the total number of multiplications for the [ iterates is

N =

K3

l
2n+1+2n+24+ (2n+1)(n—2i+2) + (2n+ 1)(n — 2i + 1) + 2n],
=1

N =2mn? — m?n + O(mn) — O(m?) + O(m).

The total number for Huang’s method is 3mn?+O(mn) multiplications and 3mn? — %an—i—

tm?® + O(mn) + O(m?) + O(n?) for the two-step methods presented by Amini et al. [2,
3]. Our computations indicate that our numerical results are better than Amini et al.
introduced by two-step algorithm. In addition, when n < 2m, we need the cheaper number
of multiplications up to the corresponding Huang’s algorithm. Also, when m tends to n,
the total number for our two-step method is n® multiplications, while it is 3n?® for Huang’s

2
algorithm and %ng for those two-step methods given by Amini et al. in 2004 and 2007.
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Obviously, when m and n are not too large, the lower order terms have influence on our
results.

Remark 4.1. We recommend using all of the points as Remark 3.1., and setting of Hy the
identity matrix I,,. In this case, for the i-th iteration, the number of multiplications of the
matrix H; is (n — 2i +2)(4i — 1) and it is (n — 2i + 1)(4¢ 4+ 1) multiplications for the matrix
Hy,. So, our algorithm needs nm? — 2m? + O(nm) + O(m?) multiplications. Hence, for

m=n, %n?’, multiplications plus lower order terms are needed.

5. Conclusion

The presented work is a new extended two-step ABS algorithm for solving general
solution of compatible full row rank linear systems of equations in at most [mTH} iterates.
The number of multiplications of our new version ABS algorithm is the same as that in
Gaussian elimination method, but no pivoting is necessary. Moreover, we need less com-
putational complexity up to those corresponding two-step ABS algorithms and Huang’s
method. Furthermore, this work offers more flexibility for the definition of the Abaffian
matrix.
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