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GENERAL SOLUTION OF FULL ROW RANK LINEAR SYSTEMS OF

EQUATIONS VIA A NEW EXTENDED ABS MODEL

Leila Asadbeigi1, Mahmoud Paripour2, Esmaeil Babolian3

ABS methods have been used broadly for solving linear and nonlinear sys-
tems of equations comprising large number of constraints and variables. Also, ABS
methods provide a unification of the field of finitely terminating methods for the general
solution of full row rank linear systems of equations. In this paper, we theoretically
describe a new ABS algorithm based on the two-step ABS methods for solving general
solution of full row rank linear systems of equations. This new algorithm requires the
same number of multiplications as Gaussian elimination method, but does not need piv-
oting. Computational complexity and numerical results indicate that our new version
of ABS algorithm needs less work than the corresponding two-step ABS algorithms and
Huang’s method.
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1. Introduction

ABS methods were introduced by Abaffy, Broyden and Spedicato initially for solving
a determined or underdetermined linear system and later extended for linear least squares,
nonlinear equations, optimization problems and Diophantine equations [1, 4]. These ex-
tended ABS algorithms offer some new approaches that are better than classical ones under
several respects. Also, extensive computational experience has shown that ABS methods
are implementable in a stable way, being often more accurate than the corresponding initial
algorithm. ABS methods can be more effective than some of the other traditional methods.
See more about ABS algorithms in [5, 6, 7]. A review of ABS algorithms is observed in [8].
The basic ABS algorithm works on a system of the form

Ax = b (1)

where A = [a1, · · · , am]T , ai ∈ Rn, 1 ≤ i ≤ m, x ∈ Rn, b ∈ Rm , m ≤ n.
The basic ABS methods determine the solution of (1) or signify lack of its existence in at
most m iterates. Now, we present a new extended ABS algorithm based on the two-step
ABS algorithms that were proposed in [2, 3] for the general solution of full row rank linear
systems of equations. In order to have less numerical complexity, we modify some of the
parameters of the basic two-step ABS methods. The remainder of this paper is organized
as follows;
In Section 2, we construct a new two-step ABS model for solving general solution of full
row rank linear systems of equations. Rank reducing process is done in two phases, for
per iterate. The first phase helps us to have a solution of the i-th iteration and the next
phase leads to compute general solution of that iterate. Also, we state and prove related
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theorems. In Section 3, we present a new extended two-step ABS algorithm for the general
solution of full row rank linear equations. The i-th iteration solves the first 2i equations in
at most

[
m+1
2

]
steps. Furthermore, we propose some parameters to have less computational

complexity. Computational complexity and numerical results are discussed in Section 4,
in details. In Section 5, we conclude that our new algorithm requires the same number of
multiplications as Gaussian elimination method, but does not need pivoting. Moreover, we
need less work than those corresponding two-step ABS methods and Huang’s algorithm.

2. Constructing a new two-step ABS model

The basic ABS algorithm starts with an initial vector x0 ∈ Rn and a nonsingular
matrix H0 ∈ Rn×n (Spedicato’s parameter). Given that xi is a solution of the first i
equations, the ABS algorithm computes xi as the solution of the first i+1 equations as the
following steps [1]:

(1) Determine zi (Broyden’s parameter) so that zTi Hiai ̸= 0 and set Pi = HT
i zi,

(2) Update the solution by xi+1 = xi+αiPi where the stepsize αi is given by αi =
bi−aT

i xi

aT
i Pi

.

(3) Update the Abaffian matrix Hi by Hi+1 = Hi − Hiaiw
T
i Hi

wT
i Hiai

.

Here, we are motivated to study on a method that satisfies two new equations at a time. We
consider the system (1) under the assumption that A is full rank in row, i.e., rank(A)=m and
m ≤ n. Suppose that m = 2l (if m is odd, we can add a trivial equation to the system). Take

A2i =
[
a1, · · · , a2i

]T
, b2i =

[
b1, · · · , b2i

]T
and rj(x) = aTj x− bj(j = 1, · · · ,m).

Assume that we are at the i-th iteration and xi satisfies A2ix = b2i. We determine Hi ∈
Rn×n, zi ∈ Rn and λi ∈ R so that xi = xi−1 − λiH

T
i zi is a solution of the first 2i equations

of the system (1), which is A2ixi = b2i. As a result, we have rj(xi) = 0, j = 1, · · · , 2i. Thus,
for j = 2i− 1 and j = 2i, we have aT2i−1

(
xi−1 − λiH

T
i zi

)
− b2i−1 = 0,

aT2i
(
xi−1 − λiH

T
i zi

)
− b2i = 0,

or equivalently  λi(Hia2i−1)
T zi = r2i−1(xi−1),

λi(Hia2i)
T zi = r2i(xi−1).

(2)

Suppose that r2i−1(xi−1) ̸= 0 and r2i(xi−1) ̸= 0. Then, λi must be nonzero and (2) is
compatible if and only if we take

λi =
r2i−1(xi−1)

(Hia2i−1)T zi
=

r2i(xi−1)

(Hia2i)T zi
(3)

where r2i−1(xi−1) = r2i(xi−1) = r2i−1(xi−1)r2i(xi−1). There are various ways to satisfy (3).
We consider the following model:

1. Choose an appropriate update for Hi so that
Hia2i−1 = Hia2i ̸= 0,
and
2. Select a vector zi from an orthogonal space to the vector Hia2i, so that

zTi Hia2i ̸= 0.

Now, since two new equations are considered in each iterate, we use a rank one update as
(4) and another rank one update as (5). Therefore, we have a new rank two update for each
iterate. Here, we present Hi and Hli satisfying the following properties;

Hia2i−1 = Hia2i ̸= 0, i = 1, · · · , l, (4)

and
Hliaj = 0, j = 1, · · · , 2i. (5)
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Now, assume

cj =

{
a2i − aj , j ̸= 2i,
a2i, j = 2i.

(6)

As relations (4), (5) and (6), we will construct (7) and (8) such that

Hicj = 0, j = 1, · · · , 2i− 1, (7)

and
Hlicj = 0, j = 1, · · · , 2i. (8)

We compute Hi+1 from Hli , such that the relations (7) and (8) hold and proceed inductively.
We define Hi+1 = Hli + g2i+1d

T
2i+1 where g2i+1, d2i+1 ∈ Rn. We need to have Hi+1cj = 0, j = 1, · · · , 2i+ 1,

Hlicj = 0, j = 1, · · · , 2i.

So, we have 
(
Hli + g2i+1d

T
2i+1

)
cj = 0, j = 1, · · · , 2i+ 1,

Hlicj = 0, j = 1, · · · , 2i.
Thus, we must define g2i+1, d2i+1 ∈ Rn in such a way that

Hlicj +
(
dT2i+1cj

)
g2i+1 = 0, j = 1, · · · , 2i+ 1, (9)

and Hlicj = 0, j = 1, · · · , 2i. By defining d2i+1 = HT
li
w2i+1, the condition (9) is satisfied

for j ≤ 2i− 1 by the induction hypothesis . Letting j = 2i+ 1 in (9), we get

(dT2i+1c2i+1)g2i+1 = −Hlic2i+1. (10)

We consider the choice g2i+1 = −Hlic2i+1 with dT2i+1c2i+1 = 1, which clearly holds in (10).
Now, we define w2i+1 ∈ Rn such that

wT
2i+1Hlic2i+1 = 1. (11)

Later, as Theorem 2.2., we will conclude that the above system has solution and Hli is
well-defined. Therefore, the updating formula for Hi is given by

Hi+1 = Hli −Hlic2i+1w
T
2i+1Hli (12)

where w2i+1 can be any vector satisfying (11). Now to satisfy (12) and complete the induc-
tion, H1 should be chosen so that H1a1 = H1a2 ̸= 0 or

H1c1 = 0. (13)

Let H0 be an arbitrary nonsingular matrix. We obtain H1 from H0 by using a rank one
update. Take H1 = H0−u1v

T
1 where u1, v1 ∈ Rn are chosen so that (13) is satisfied. So, we

have H0c1 − (vT1 c1)u1 = 0. The above equation is satisfied if we set u1 = H0c1, v1 = HT
0 w1,

and we choose w1 ∈ Rn satisfying the next condition

wT
1 H0c1 = 1. (14)

Clearly, (14) can be held with a proper choice of w1 ∈ Rn, whenever a1 and a2 are linearly
independent. Thus, we have a rank one update

H1 = H0 −H0c1w
T
1 H0 (15)

where w1 is an arbitrary vector satisfying (14). In order to compute the general solution and
update the second phase for the i-th iteration, we introduce a matrix Hli with properties
Hlicj = Hliaj = 0, j = 1, · · · , 2i. So, we define the matrix Hli by a rank one update as the
next formula

Hli = Hi −Hia2iw
T
2iHi = Hi −Hic2iw

T
2iHi, i = 1, · · · , l. (16)
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Notice that w2i ∈ Rn is an arbitrary vector satisfying the following condition:

wT
2iHia2i = 1.

(
wT

2iHic2i = 1
)

(17)

Hence, the general solution of the i-th iteration is given by xli = xi −HT
li
s where s ∈ Rn is

arbitrary. Clearly, the general solution for the last iteration is presented by

xll = xl −HT
ll
s (18)

where s ∈ Rn is arbitrary.

Lemma 2.1. The vectors a1, · · · , am are linearly independent if and only if the vectors
c1, · · · , cm are linearly independent.

Therefore, we proved the following theorem.

Theorem 2.1. Assume that we have m = 2l arbitrary linearly independent vectors a1, · · · , am ∈
Rn and an arbitrary nonsingular matrix H0 ∈ Rn×n. Let H1 be generated by (15) and w1

is satisfying (14) and the sequence of matrices Hi, i = 2, · · · , l, be generated by

Hi = Hli−1 −Hli−1c2i−1w
T
2i−1Hli−1 , (19)

with w2i−1 ∈ Rn satisfying the following condition:

wT
2i−1Hli−1c2i−1 = 1. (20)

Also, let the sequence of matrices Hl1 , · · · ,Hll be generated by (16) with w2i ∈ Rn satisfying
(17). Then, when we are at the i-th iteration, the following properties ((i)− (iv)) hold for
i = 1, · · · , l:
(i) Hia2i−1 = Hia2i ̸= 0,
(ii) Hliaj = 0, j = 1, · · · , 2i,
(iii) Hicj = 0, j = 1, · · · , 2i− 1,
(iv) Hlicj = 0, j = 1, · · · , 2i.

Theorem 2.2. Assume that a1, · · · , am are linearly independent vectors in Rn. Let H0 ∈
Rn×n be an arbitrary nonsingular matrix and H1 be defined by (15), with w1 ∈ Rn satisfying
(14) and for i = 2, · · · , l, the sequence of matrices Hi be generated by (19) with w2i−1 ∈ Rn

satisfying (20). Then, for all i, 1 ≤ i ≤ l, and j, 2i ≤ j ≤ m, the vectors Hiaj are nonzero
and linearly independent.

Proof. We proceed by induction. For i = 1, the theorem is true. Since if
m∑
j=2

αjH1aj = 0,

we have
m∑
j=2

αj

(
H0 −H0c1w

T
1 H0

)
aj = 0,

m∑
j=2

αjH0aj −

 m∑
j=2

αjw
T
1 H0aj

H0c1 = 0,

or

β1H0a1 − (β1 − α2)H0a2 +

m∑
j=3

αjH0aj = 0

where β1 =
m∑
j=2

αjw
T
1 H0aj . Now, since a1, · · · , am are nonzero and linearly independent and

H0 is nonsingular, H0aj for 1 ≤ j ≤ m are nonzero and linearly independent.
Hence, β1 = α2 = α3 = · · · = αm = 0. Therefore, the vectors H1aj , for 2 ≤ j ≤ m,
are nonzero and linearly independent. Now, we assume that the theorem is true up to
1 ≤ i ≤ l − 1, and then we prove it for i+ 1. From (12), for 2i+ 2 ≤ j ≤ m, we have

Hi+1aj = Hliaj − (wT
2i+1Hliaj)Hlic2i+1. (21)
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We need to show that the relation
m∑

j=2i+2

αjHi+1aj = 0, (22)

implies that αj = 0, for 2i + 2 ≤ j ≤ m. Using (21) we can write (22) as follows:∑m
j=2i+2 αjHliaj − β′

1Hlic2i+1 = 0, where β′
1 =

m∑
j=2i+2

αjw
T
2i+1Hliaj . Thus, we have∑m

j=2i+2 αjHliaj − β′
1Hli(a2i+2 − a2i+1) = 0. As a result

m∑
j=2i+3

αjHliaj + β′
1Hlia2i+1 − (β′

1 − α2i+2)Hlia2i+2 = 0. (23)

By the induction hypothesis, the vectors Hiaj , for 2i ≤ j ≤ m, are nonzero and linearly
independent. Now as the assumption of the induction, we are going to prove that the vectors
Hliaj are nonzero and linearly independent for 2i+ 1 ≤ j ≤ m. Using (16), we have

Hliaj = Hiaj −Hia2iw
T
2iHiaj . (24)

We must prove the relation
m∑

j=2i+1

α′
jHliaj = 0, (25)

implies that α′
j = 0, for j ≥ 2i+ 1. Using (24), we can write (25) as follows:

m∑
j=2i+1

α′
jHiaj −

 m∑
j=2i+1

α′
jw

T
2iHiaj

Hia2i = 0.

As the linearly independence ofHiaj , for 2i ≤ j ≤ m, we conclude that α′
j = 0, for j ≥ 2i+1.

Consequently, for relation (23), we have β′
1 = α2i+2 = α2i+3 = · · · = αm = 0. Hence, the

vectors Hi+1aj , for 2i+ 2 ≤ j ≤ m are nonzero and linearly independent. �

Corollary 2.1. Considering the assumptions of Theorem 2.2., the following statement are
true;

(i) When we are at the i-th iteration, we have Hia2i−1 = Hia2i ̸= 0. Also, there exist
zi ∈ Rn and w2i ∈ Rn such that zTi Hia2i ̸= 0 and wT

2iHia2i ̸= 0.
(ii) Each of the systems (14) and (20) has solution.
(iii) Hi, Hli , xi and xli are well-defined for i = 1, · · · , l.

Theorem 2.3. For the matrices Hi generated by (15) and (19) and the matrices Hli given
by (16), we have

dimR(Hi) = n− 2i+ 1, 1 ≤ i ≤ l,

dimN(Hi) = 2i− 1, 1 ≤ i ≤ l,

dimR(Hli) = n− 2i, 1 ≤ i ≤ l,

dimN(Hli) = 2i, 1 ≤ i ≤ l,

dimR(Hll) = n−m,

dimN(Hll) = m.

Remark 2.1. For the matrices Hi generated by (15) and (19), we have xi = xi−1 −
λiH

T
i zi, (i = 1, · · · , l), where xi is a solution of the first 2i equations of the system and λi

will be discussed in Algorithm 1.
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3. Introducing a new two-step ABS algorithm

Algorithm 1. Assume that Am×n =
[
a1, a2, · · · , am

]T
is a full row rank linear

matrix where m = 2l and Ax = b is a compatible full row rank linear system, x ∈ Rn and
b ∈ Rm.

(1) Let x0 ∈ Rn be an arbitrary vector and choose H0 ∈ Rn×n (an arbitrary nonsingular
matrix). Set i = 1.

(2) (a) Compute r1(x0) = aT1 x0 − b1 and r2(x0) = aT2 x0 − b2.
(b) If r1(x0)r2(x0) ̸= 0, we let{

a1 = r2(x0)a1,
b1 = r2(x0)b1,

{
a2 = r1(x0)a2,
b2 = r1(x0))b2.

(c) If r1(x0)r2(x0) = 0 and one of the residual values is nonzero, without loss of
generality we assume that r2(x0) ̸= 0 and we let{

a1 = a2 + a1,
b1 = b2 + b1,

{
a2 = a2,
b2 = b2.

(d) If r1(x0)r2(x0) = 0, and both of the residual values are zero, x1 will be x0 and go
to (5).

(3) (a) Take c1 = a2 − a1.
(b) Select w1 ∈ Rn such that wT

1 H0c1 = 1 and compute H1 = H0 −H0c1w
T
1 H0.

(c) Select w2 ∈ Rn such that wT
2 H1a2 = 1 and compute Hl1 = H1 −H1a2w

T
2 H1.

(d) Select z1 ∈ Rn so that zT1 H1a2 ̸= 0 and compute

λ1 = r1(x0)r2(x0)

zT
1 H1a2

, if r1(x0)r2(x0) ̸= 0,

λ1 = r2(x0)

zT
1 H1a2

, if r1(x0) = 0 and r2(x0) ̸= 0.

(4) Take x1 = x0 − λ1H
T
1 z1.

(5) Set i = 2 and go to 6.
(6) While i ≤ m

2 , do steps 6(a)-8(b).

(a) Compute r2i−1(xi−1) = aT2i−1xi−1 − b2i−1 and r2i(xi−1) = aT2ixi−1 − b2i.
(b) If r2i−1(xi−1)r2i(xi−1) ̸= 0, then we let{

a2i−1 = r2i(xi−1)a2i−1,
b2i−1 = r2i(xi−1)b2i−1,

{
a2i = r2i−1(xi−1)a2i,
b2i = r2i−1(xi−1)b2i.

(c) If r2i−1(xi−1)r2i(xi−1) = 0 and one of the residual values is nonzero, without loss
of generality we assume that r2i(xi−1) ̸= 0 and we let{

a2i−1 = a2i + a2i−1,
b2i−1 = b2i + b2i−1,

{
a2i = a2i,
b2i = b2i.

(d) If r2i−1(xi−1)r2i(xi−1) = 0 and both of the residual values are zero, xi will be xi−1

and go to 8.(b).
(7) (a) Take c2i−1 = a2i − a2i−1.

(b) Select w2i−1 ∈ Rn such that wT
2i−1Hli−1c2i−1 = 1, and compute Hi = Hli−1 −

Hli−1
c2i−1w

T
2i−1Hli−1

.

(c) Select w2i ∈ Rn such that wT
2iHia2i = 1 and compute Hli = Hi −Hia2iw

T
2iHi.

(d) Select zi ∈ Rn so that zTi Hia2i ̸= 0, and compute λi = r2i−1(xi−1)r2i(xi−1)

zT
i Hia2i

, if

r2i−1(xi−1)r2i(xi−1) ̸= 0,

λi =
r2i(xi−1)

zT
i Hia2i

, if r2i−1(xi−1) = 0 and r2i(xi−1) ̸= 0.

(8) (a) Take xi = xi−1 − λiH
T
i zi.

(b) Set i = i+ 1.
Endwhile.

(9) Stop.(xl is a solution of the system.)
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From (18), we can compute general solution of the system after the final iterate by xll =
xl −HT

ll
s where s ∈ Rn is arbitrary.

Remark 3.1. To reduce computational complexity of the above algorithm, we propose the
following tactics;
1. Taking x0 and H0 as the zero vector and the identity matrix In, respectively, is proper
in step (1) as Algorithm 1.
2. To compute w1 ∈ Rn, we take tj = H0c1 and then we define w1 as follows:

w1 =


1

sign(tjM )tjM
, i = jM ,

0, i ̸= jM .

Then, we take tjM = max
{
|tj | : j ∈ {1, · · · , n} such that wT

1 tj = 1
}
. To determine the

other w2i−1 ∈ Rn, i = 2, · · · , l, we let t′j = Hli−1c2i−1 and then, we continue the similar way.
3. We can choose w2i = zi ∈ Rn, i = 1, · · · , l, by defining the next parameters
dj = Hia2i, and

w2i = zi =


1

sign(djM )djM
, i = jM ,

0, i ̸= jM .

Now, we take djM = max{|dj | : j ∈ {1, · · · , n} such that wT
2idj = zTi dj = 1}.

4. Computational complexity and numerical results

At first, considering the points 2. and 3. as Remark 3.1., we compute the number of
multiplications for Algorithm 1. as follows;

Table 1
Number of multiplications required to solve m linear equations in l = m

2
iterates, for the main

parameters.
The number of multiplications for each iterate

residual values 2n
The products of residual values 1
a2i−1, a2i 2n
b2i−1, b2i 2
Hi (2n+ 1)(n− 2i+ 2)
Hli (2n+ 1)(n− 2i+ 1)
xi 2n

Hence, the total number of multiplications for the l iterates is

N =

l∑
i=1

[
2n+ 1 + 2n+ 2 + (2n+ 1)(n− 2i+ 2) + (2n+ 1)(n− 2i+ 1) + 2n

]
,

N = 2mn2 −m2n+O(mn)−O(m2) +O(m).

The total number for Huang’s method is 3
2mn2+O(mn) multiplications and 3mn2− 7

4m
2n+

1
6m

3 + O(mn) + O(m2) + O(n2) for the two-step methods presented by Amini et al. [2,
3]. Our computations indicate that our numerical results are better than Amini et al.
introduced by two-step algorithm. In addition, when n < 2m, we need the cheaper number
of multiplications up to the corresponding Huang’s algorithm. Also, when m tends to n,
the total number for our two-step method is n3 multiplications, while it is 3

2n
3 for Huang’s

algorithm and 17
12n

3 for those two-step methods given by Amini et al. in 2004 and 2007.
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Obviously, when m and n are not too large, the lower order terms have influence on our
results.

Remark 4.1. We recommend using all of the points as Remark 3.1., and setting of H0 the
identity matrix In. In this case, for the i-th iteration, the number of multiplications of the
matrix Hi is (n− 2i+2)(4i− 1) and it is (n− 2i+1)(4i+1) multiplications for the matrix
Hli . So, our algorithm needs nm2 − 2

3m
3 + O(nm) + O(m2) multiplications. Hence, for

m = n, 1
3n

3, multiplications plus lower order terms are needed.

5. Conclusion

The presented work is a new extended two-step ABS algorithm for solving general
solution of compatible full row rank linear systems of equations in at most

[
m+1
2

]
iterates.

The number of multiplications of our new version ABS algorithm is the same as that in
Gaussian elimination method, but no pivoting is necessary. Moreover, we need less com-
putational complexity up to those corresponding two-step ABS algorithms and Huang’s
method. Furthermore, this work offers more flexibility for the definition of the Abaffian
matrix.
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