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ABOVEGROUND BIOMASS ESTIMATION OF CAOHAI
WETLAND VEGETATION BASED ON OPTICAL AND
RADAR REMOTE SENSING

Z.H. WANG™, H.Y. DAI? J.B. LIU®, J.T. REN*

The aboveground biomass (AGB) of wetland vegetation is an important
characterization of the structure and function of wetland ecosystems. Taking Caohai
National Nature Reserve (CNNR) as the research object, three polarization
combinations of two backscattering coefficients and 10 vegetation indexes were
extracted from the GF-3 and Sentinel-2A, and the correlation between them and
biomass were analyzed. Then, the AGB estimation models based on the integration
of optical image and radar image were constructed. Based on the above research,
the integration of optical and radar remote sensing was able to obtain the complete
spatial distribution of biomass in the study area; which serves as a good reference
value for the estimation of grassland AGB in cloudy and rainy areas.
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1. Introduction

The continuous development of remote sensing technology has led to great
progress in research on remote sensing inversion of the aboveground biomass
(AGB) of wetland vegetation. Many scholars have studied the use of NDVI, EVI,
and other vegetation indexes to estimate the AGB of grassland based on the light
energy utilization model [1,2], and satisfactory results have been achieved, but the
model is complex, and its application is restricted to some extent [3]. The
statistical model between the backscattering coefficient of synthetic aperture radar
(SAR) image and vegetation biomass is simple and easy to implement, and its
ability of penetrating cloud and fog has advantages in cloudy and rainy areas, but
the disadvantages are lack of model parameters, low accuracy, and poor guarantee
[4]. The spectral vegetation indexes can indirectly reflect vegetation coverage and
biomass, so a linear or nonlinear relationship between wetland vegetation biomass
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and vegetation index can be established [4]. In order to get the best inversion
accuracy, many scholars have studied and analyzed the selection of vegetation
indexes [5,6]. In recent years, some indexes and red-edge indexes related to
vegetation physical and chemical parameters, such as red-edge chlorophyll index
(Clre) and green chlorophyll index (Clgren), have been proven to be closely related
to chlorophyll content [7-9]. Therefore, the red-edge bands should also have the
potential to estimate the AGB of wetlands [10]. Sentinel-2A and Sentinel-2B
satellites provide high spatial and temporal resolution multispectral data, and three
red-edge bands were set up to provide more optional information for vegetation
monitoring [8]. Some scholars' research shows that Sentinel-2 red-edge bands are
of important value in estimating vegetation biomass [10,11].

Compared with the single linear regression of the empirical model method,
the multiple regression model and back propagation neural network (BPNN)
model based on optimal vegetation indexes have higher accuracy in the estimation
of vegetation physical and chemical parameters [12,13]. The BPNN model is also
commonly used in recent years, and the research of many scholars shows that it
performs well in biomass estimation [12,14].

With the promotion of the ecological environment protection and
comprehensive treatment project in CNNR, the wetland habitat has been
significantly recovered and improved. Due to the perennial cloudy and rainy
weather in Southwest China, optical images can be easily affected, so the
integration of an optical image and a radar image for biomass estimation can give
full access to the advantages of different remote sensing data [4]. Based on the
above considerations, we first extracted 10 vegetation indexes (NDVI, EVI, SR,
MERIS Terrestrial Chlorophyll Index (MTCI), MSR, MSRre, NDVlre, SRre, Clre,
and Clgreen) from multispectral Sentinel-2A data. Then, the indexes with high
correlation with biomass were selected as the independent variables to construct
the estimation model. For the cloud covered area, based on the dual polarimetric
SAR data of GF-3, the different combinations of backscattering coefficients
(HH/HV, (HH+HV)/(HV-HH), and HH-HV) were calculated, then the BPNN
model was constructed to estimate the biomass.

2. Research Area and Data Acquisition

2.1 Research Area Overview

CNNR, a subtropical plateau wetland ecosystem, is listed as a nationally
important wetland [18]. Its special location and natural environment provides
habitat for rare birds and migratory birds. The reserve is located in the central part
of the Yunnan-Guizhou Plateau and in the hinterland of Wumeng Mountain.
Caohai lake belongs to the Yangtze River system and is the upper source lake of
the Hengjiang River, which is a tributary of the Jinsha River [15]. The scope of
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this study centered on the protected area (center latitude and longitude are
1105°1827" and 27°17'50", respectively), and focused on the AGB of the water
buffer zone and grassland in the catchment areas such as Huyelin, Bojiwan, and
Zhujiawan. The range and distribution of samples of the nature reserve are shown
in Figure 1, whose base map is the Sentinel-2A image taken on July 21, 2018.
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Fig. 1. Reserve and distribution of sampling points
2.2 Field Data Measurement

The vegetation growth on the Guizhou plateau reaches its peak in early
August, and then begins to decline [16]. There were 31 survey points, mainly
distributed in the catchment area and water outlet and other areas with complete
grassland and little human impact. The data collected included grassland biomass
and typical vegetation spectra. The sampling method of biomass was to select a 10
m x 10-m area, then five 0.5 m x 0.5-m sample points in the four corners and
center of the area were selected to collect the aboveground part of vegetation. At
last, the collected vegetation was dried to a constant weight using a dryer in the
laboratory. Then, the AGB dry weight (g-m) of dried vegetables was calculated
as measured values [4][10]. The optical image used was from Sentinel-2A on July
21, 2018, and the radar data was from GF-3 on July 15, 2018. The sampling dates
are July 26 and July 27, both with cloudy and sunny weather.

2.3 Satellite Data and Data preprocessing

The Gaofen-3 satellite (GF-3) is a remote sensing satellite of China's
Gaofen special project. GF-3 is the C-band synthetic aperture radar data, with 12
modes such as SL, UFS, FS and QPS. This study used FS II dual-polarization
SAR data with a resolution of 10x(8~12) m, which consists of HH and HV
polarization channels. Sentinel-2A multispectral data include 13 bands, of which
the visible and near-infrared bands have the highest resolution (10 m). The ESA
SciHub publishes L1C-level data that provide a geometrically corrected
orthophoto without radiometric calibration and atmospheric correction.
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The pretreatment steps of GF-3 dual polarimetric SAR include multi-look
processing, filtering and noise reduction, radiometric calibration, and geocoding.
Sentinel-2A L1C data are derived from atmospheric apparent reflectance, which
needs radiometric calibration and atmospheric correction to obtain surface
reflectance data. For this reason, we used the sen2cor tool of the ESA to process
L1C data into L2A data. Finally, the resulting data of each band were resampled
to 10 m.

3. Research Methods
3.1. Estimation Parameter Selection

The spectral vegetation index method is an effective method for remote
sensing inversion of vegetation parameters. In this study, 10 vegetation indexes
(Table 1) were selected to explore the relationship between vegetation indexes
and grassland biomass based on Sentinel-2A multispectral image data. The
correlation between reflectance and chlorophyll content at 705 nm is better than
that of other red-edge bands [11,12]. Therefore, the 705-nm vegetation red-edge
of Sentinel-2A was used as the red-edge band in the calculation formula.

Research shows that different polarization combinations of the radar can
weaken the impacts of noise on the backscattering coefficient of ground objects
[17] and can reflect the characteristics of ground objects from more angles and
broaden the information scope of ground objects [18]. According to past research
publications and preliminary experiments, three types of backscattering
coefficient polarization combinations, namely HH/HV, (HH+HV)/(HV—HH), and
HH-HV, were selected.

Table 1
Vegetable indexes and polarization combination modes selected in this study
Estimation Parameters Formulas Reference Sources
Normalized Difference
Vegetation Index(NDV/) Ry —Rea) /(R +R) (Schell etc.,1973)[18]
Enhanced Vegetation _ . (Huete etc.,2002)
Index(EVI) 25(Rn|r Rred) / (Rnir + 6Rred 7'SRque +1) [19]
Simple Ratio(SR) R. /R, (Jorda”[zegi"l%g)
MERIS Terrestrial (R. —R )/ (R ~R_,) (Dash and
Chlorophyll Index(MTCI) ir - red —edge red-edge " red Curran,2004)[21]
Modified Simple _ \/7
Ratio(MSR) (R /Ry =D/ R, IRy +1 (Chen etc.,1996)[22]
Modified red-edge Simple _
Ratio(MSRre) (Rnir / Rred—edge 1)/ Rnir / Rred—edge +1 (WU etc,2008)[23]
Red-edge NDVI(NDVIre) (Rur = Reegeage) / (Ruir + Ricg cge) G angi:nmzsogg?[z A

Red-edge Simple Riir / Reeg—eage (Sims and
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Ratio(SRre) Gamon,2002)[24]
red-edge chlorophyll R. /R 1 (Gitelson
index(Clre) mir . red —edige etc.,2005)[7]
Green Chlorophyll R /R -1 (Gitelson
Index(Clgreen) mir - oreen etc.,2005)[7]
HH/HV HH/HV /
HH-HV HH-HV /
(HH+HV)/(HV-HH) (HH+HV)/(HV-HH) /

Note: HH and HV are the corresponding radar backscatter coefficients.
3. 2. Biomass Estimation and Evaluation

With the curve fitting tool in MATLAB, the indexes in Table 1 were
optimally fitted with AGB. The root mean square error (RMSE) and the
coefficient of determination (R2) were used to evaluate the accuracy of the fitted
results of biomass and different indexes. Finally, the vegetation indexes with high
correlation were selected to construct the multiple nonlinear regression model and
BPNN model for biomass estimation.

3. 2.1. Multiple Regression Model and BPNN model

The approach of the multiple nonlinear regression model is to construct
the research object into multiple functions and determine the parameters of each
function [25]. Based on the analysis of the correlation between vegetation indexes
and biomass, the indexes with better correlation and their fitting functions of
biomass were selected, and then the multivariate nonlinear biomass estimation
model was constructed based on the principle of linear superposition. The
expression of the AGB multiple nonlinear regression model is as follows:

AGB = a,e™ +a,x, +a,e*% +c¢ 1)
In the formula, a,a,,a,,b,b, and Care parameters to be determined,

X, X, and X, correspond to the indexes with high correlation with biomass.

BPNN is composed of an input layer, hidden layer, and output layer. Its
core idea is to use gradient descent method to solve the minimum value of the
objective function with the square of network error [25]. It is generally believed
that three-layer BPNN can approximate any continuous function [14]. Based on
the MATLAB R2018a programming environment, the specific processes are as
follows:

(1) The sample values are linearly normalized with the following formula
to ensure that the values are within (0,1).

f=a+h P tm_ 2)
Xex ~ Xin
In the formula, Xis the normalized values, and a and b are the parameter
values for normalization, which can be adjusted appropriately during processing.
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P is the value to be normalized, x,,
and x_;, is the minimum value.

(2) Input the training eigenvectors {X,} and the target vectors {Y,} into
BPNN, X, is the index eigenvector of sample i, Y, is the biomass of sample i.

is the maximum value in the sequence value,

X

(3) In the hidden layer, the actual output value y, of each node neuron is
calculated according to Equations (3) and (4) to complete a forward propagation.

y, = f(Zw”xi) (=1,2,...,k) ©)
f(x) zl_e% (4)

Here, 7., is the weight of the jth neuron in the ith layer of the hidden

layer, 0 is the threshold, and f(x) is the transfer function sigmoid.
(4) The errors between target output Y and target 7 of the network system
is defined as E;, and its formula is as follows:

E =220 -9’ ©

(5) The partial derivative of Ej to W is used to represent the gradient
direction of the weights. Back propagation based on formula (6) is then used to
adjust the weights of each node neuron in each hidden layer.

W (t+1) =W (O +7(-0E /W) |y ©)

Here, 7 is the learning rate.

3.2.2. Evaluation methods

The SPSS Statistics 24.0 software was used for random sampling of 31
measured biomass values, and 16 were selected as modeling samples and 15 as
test samples. The accuracy of the models were evaluated based on the relative
mean error (RME) and mean absolute error (MAE). The formulas used are:

1 ,
MAE =W2L|yi -yl (7

NS (y —y')?
RME:\/ Z.;(y, y|)

x100% (8)

Here, v, is the measured hay weight, y; is the estimated hay weight, and y

is the average hay weight measured in samples. All measurement units of them
are g/m?, and N is the number of sampling points.
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4. Results Analysis and Discussion

4.1. Correlation Analysis

Figure 2 shows the scattered point-fitting curve between indexes and
biomass, with R? greater than 0.60. It can be seen from Figure 2 that SRy (R? =
0.88, RMSE = 110.2 g-m?) performed the best. For the fitting performance
between the radar backscattering coefficient and biomass, ranked by R? from
highest to lowest: (HH+HV)/(HV-HH) > HH/HV = HH-HV. Compared to the
red-edge indexes of SRre, MSRre, and NDV I, along with the common indexes of
SR, MSR, and NDVI, it can be seen that the red-edge indexes increased the
accuracy of biomass estimation to different degrees.

1400k 1400 . 1400}

& 1200} R=088 Ci00f  RP<084 1200} R =083
) RMSE=124.7 g/m? o RMSE=141.9 g/m?
= RMSE=110.2 g/m? E 7 g/m
9‘000 - §’1000 =116.2x+3.554 £1000 y=294.9¢%57%.57.4
o 800f y=11.517%4319.5 o a0 V623 S
@

< o 2 o0 @ 600

400

SRre SR Clre

1400

2_ 2= 1400
1200} =077 ~az00f N 0TS 1200p K072
£ 1000| RMSE=163.9g/m? Eqoof FMSEL72SE/M Erooo] RMSEFIE238/m?
S gool ve18ei4a609 D oo VT4 3322 5yt sensnagan
o Q @
Q 600 Q 600 2 600

.
15 2 25 3 35 4 4.5 5 0.4 0.6 0.8 1 1.2 02 025 03 035 04 045 05 055
Clgreen MSRre NDVire

1400k 1400 Lo o oo a00f
_1200f RFOT ~1200 , 1200 R=0.65
“ 1000} RMSE=186.2 g/m? 1000, RMSE=1928g/m % 1000l AMSE=205.9 g/m?
El =2x10/56255¢ E =31.9¢13%4315.6 E = a6
D oo} v=2x10%en564451.8 2 00 ¥ S g0l V=007 313
§ 600 & 600 8 00
400 400 400,
04 05 06 07 08 1 15 2 25 1 12 14 16 18 2 22
NDVI MSR EVI
1400 1400 1400
o120 2, o 1200 RMSE=181.8 g/m? R 1200 2.
= 2 R2=( =181.8g/m* R"=72 - =178. 2 =
€ 1000 RMSE=182.9 g/m? R2=0.72 E rooof MMEEIELEE % 1000 RMSE=178.3g/m? R?=0.73
E) = 1077 =46.03x+84. > = 1077
2 a00 Yy=246.9x ® gool ¥ . 5 400 y=1846x
[11] o
2 600 © 600 Q 600
400 400 400
. 2
0.2 03 0.4 0.5 0.6 5 10 15 20 25 15 2 25 3 35 4 45 5
HH/HV HH-HV (HH+HV)/(HV-HH)

Fig. 2. Relationships between AGB and vegetation indexes

It was necessary to perform an accuracy test on the simulation results. The
number of check samples was 15 and the RME was used to test the accuracy of
this model. The errors, listed in ascending order, are as follows: SRy (13.5%) >
SR (15.3%) > Cle (17.4%) > Clgreen (20.1%) > MSRe (21.2%) >
(HH+HV)/(HV-HH) (22.1%) > NDVIe (22.4%) > NDVI (22.9%) >
HH/HV(23.9%) > HH-HV (25.3%). The SR had the smallest error, and the
HH—-HYV error was the largest, which was consistent with the accuracy order of the
models. The HH/HV, HH-HV, and (HH+HV)/(HV-HH) were significantly
correlated at 0.05 level.
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4.2. Biomass estimation based on multiple nonlinear regression

Three indexes (SRre, SR, and Clr) with R? greater than 0.8 were selected
to construct the multivariate functional relationship between AGB and Vis.
Sixteen groups of samples were used to calculate the model parameters, and
IstOpt’s “Levenberg Marquardt method + general global optimization method”
was used to solve the parameters in model (1), and then the multiple nonlinear
regression model expression of AGB was obtained as follows:

AGB = 7.67e"** —2.13x, —4997.01e %% +372.39 ©)

The fitting accuracy R? and RMSE of model (9) were 0.9 and 96.85 g-m,
respectively. It can be seen from Figure 3 that the change trend of AGB predicted
value of model (9) was consistent with the measured value, which was close to the
1:1 line, and the determination coefficient R? was 0.89. The mean absolute error
(MAE) and mean relative error (RME) were used to evaluate the accuracy of the
model. The MAE of the multivariate nonlinear model was 89.40 g-m?, and the
RME was 12.2%. The MAE of the multivariate linear model was 121.52 g-m?,
and the RME was 18.1%.
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Fig.3. Fitting effect of prediction model
4.3. Biomass estimation based on BPNN

A standard BPNN was established, where the hidden layer used the tansig
activation function, the output layer used the sigmoid activation function, and the
dynamic gradient function was used to train the samples. The weight and
displacement of the hidden layer were set between rands (—1,1). The optimal
parameters were judged by the minimum mean square error between the predicted
output values and the sample values for verification. In order to improve the
convergence speed and prediction accuracy of the network, the sample values
were normalized by equation (2), parameter a was set to 0.1, parameter b was set
to 0.8, and the sample values were normalized to (0,1). The Levenberg—Marquardt
(LM) algorithm was used to train the sample values. This method not only
retained the local convergence, but also had the global property of gradient
descent method, with fast convergence and fewer iterations so as to improve
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BPNN. The BPNN was constructed by using three vegetation indexes with R?
greater than 0.8 as input variables in Figure 2. The number of nodes in the hidden
layer was determined as 10, learning rate was 0.05, the maximum training times
were 10,000, and the target accuracy was 0.00001. Similarly, for SAR data, the
input variables of BPNN were HH/HV, HH-HV, and (HH+HV)/(HV-HH).

The R2, MAE, and RME between testing samples and biomass predicted
by BPNN based on optical vegetation indexes were 0.93, 75.46 g-m, and 10.2%,
respectively. The R?, MAE, and RME between testing samples and biomass
predicted by BPNN based on SAR were 0.8, 129.26 g-m?, and 18.6%,
respectively.
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4.4. Spatial Distribution of Biomass

The image data of the three polarization combinations were preprocessed
and put into the BPNN model to obtain the biomass estimation results. In order to
remove the influence of noise on biomass mapping, the biomass of grassland and
cultivated land was extracted for mapping (as shown in Figure 5).
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Fig.5. Aboveground biomass distribution inversed by the radar model

Similarly, after preprocessing the SR, SR, and Clr. images, the biomass
estimation results were obtained by the BPNN model. For the cloud-covered parts
of Sentinel-2A optical image, the biomass retrieved from SAR was used to
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supplement the missing parts to obtain the biomass distribution map of the whole
region, as shown in Figure 6.

The areas with biomass value lower than 250 g-m were mainly non-
vegetated areas such as construction land, water area, and unused land, which had
no practical significance and were removed during mapping. In the northeast of
Caohai Lake, the grassland from Xihai to Bojiwan was the most lush, with a large
number of verdant plants such as Acorus calamus, Phragmites australis, and
Alternanthera philoxeroides. Its biomass was the highest, generally more than
1,000 g-m™. In addition to the grassland type, the reason was also related to the
inflow of some eutrophic urban wastewater in northeast Caohai. The biomass of
corn planting areas was also relatively high.
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Fig.6. Biomass distribution of the Caohai Reserve

The catchment basins of Huyelin, Bojiwan, Xihai, Zhujiawan,
Woujiayantou, and Yangguanshan were important foraging and habitats of the
black-necked crane and other rare and migratory birds; there were numerous
hygrophytes (excluding submerged and floating plants), and their vegetation
growth was of great significance to measure ecological changes. In the shallow
water area of Yangguanshan, the biomass of the hygrophytes ranged from 400
g-m2 to 600 g-m2, and they were mainly sedge, cordyceps, and some stretches of
Phragmites australis. In the shallow water area of Huyelin, the hygrophytes were
mainly spartina and bermudagrass, while in the offshore area, it was Phragmites
australis, with biomass ranging from 400 to 850 g-m. Zhujiawan was 2.5-km
long and 1.2-km wide; nearly half of the area was planted with crops, mainly corn
and some vegetables, and the rest were hygrophytes; the biomass ranged from 400
to 800 g-m2. During the period of field investigation, the corn in the corn planting
area was going through silking to filling, and the biomass was between 800 and
1600 g-m2. Bojiwan was connected with the West Sea; it had a large area of
hygrophytes, as well as some grassland and vegetable crops. There were many
kinds of vegetation such as bermudagrass, Phragmites australis, Acorus calamus,
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Alternanthera philoxeroides, and Polygonum hydropiper. It was the most
prosperous area around the lake. There was a large reed area in Jiangjiawan with a
biomass of about 1,100 g-m™. The total biomass calculated in this paper was
about 360 kilotons and the annual average NPP of MODIS NPP from 2007 to
2015 was about 500 kilotons.

5. Conclusions

(1) The three polarization combinations of backscattering coefficient extracted
from Sentinel-1A had significant correlations with biomass (0.72 < R? < (.73,
178.3g-m?<RMSE < 182.9 g'm?).

(2) The vegetation indexes calculated by Sentinel-2A were significantly
correlated with AGB of wetland vegetation (0.55 < R? < 0.88, 110.2 gm?2 <
RMSE < 216 g:m?). Of them, SR had the highest correlation (R? = 0.88,
RMSE = 110.2 g-m?), followed by SR and Cle; the correlation between
vegetation indexes (SRr, NDVle, MSRr) and biomass were improved by
adding red-edge bands.

(3) SRre, SR, and Clr with R? values greater than 0.8 were selected to construct
the multivariate nonlinear regression model and BPNN model. The results
showed that the BPNN model was the best model, and the MAE and RME of
the simulated values tested by test data were 75.46 g-m?2and 10.2%,
respectively. Based on the BPNN model constructed by three polarization
combinations of backscattering coefficient, R?, MAE, and RME tested by test
data were 0.79, 130.27 g-m™, and 18.5%, respectively.

(4) In the cloudy and rainy Guizhou province, it was possible that the BPNN
model based on vegetation indexes and the polarization combinations of the
model were integrated to retrieve vegetation biomass, which compensated for
the limitation that optical images could not obtain biomass in a cloudy area.
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