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STRUCTURE AND THE FIXED POINT PROPERTY OF GRAPHICAL

METRIC SPACES
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In this paper we first introduce a new class of metric spaces called graphical
uniformly convex spaces and investigate that a graphical complete metric space (X, dG)

has the fixed point property if every group of isometric automorphisms of X with a

bounded orbit has a fixed point in X. We then prove that if (X, dG) is graphical uniformly
convex then the family of graphical admissible subsets of X possesses graphical uniformly

normal structure and if so then it has the fixed point property. We also show that from

other weaker assumptions than graphical uniform convexity, the fixed point property
follows. Our formulation of graphical uniform convexity and its generalization can be

applied not only to geodesic metric spaces. In contrast with the other previous research

works, our results are valid in topological (not necessarily metric) spaces.
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1. Introduction

Fixed points of nonlinear operators is an important research filed in nonlinear func-
tional analysis. It plays an important in differential equations, differential inclusions, integral
equations, optimal control, variational inequalities, equilibrium problems and so on; see, e.g,
[1]-[64] and the references therein. Both the existence and approximation of fixed points are
attracting attentions. For approximation methods of fixed points, they are efficient for var-
ious problems in signal processing, image recovery, machine learning and so on; see, e.g.,
[6, 19, 20, 22, 26] and the references therein. In addition to the approximation methods,
the existence of fixed points has been extensively studied since it guarantes the existence of
various nonlinear operator equations. The concepts of the convex structure and the convex
metric space where first introduced by Takahashi [35] and some fixed point theorems were
extracted for nonexpansive mappings in convex metric spaces. In recent decades, researchers
have developed the Banach’s contarction theorem to all kinds of generalized metric spaces
[28–30]. In 2004, Ran and Reuring [30] extended Banach’s Contraction Principle in the con-
text of partially ordered set. In [13], Jachymski generalized these spaces, by replacing the
previous partially ordered structure with the graph structure. Afterwards, many researchers
extended and generalized kinds of fixed point theorems to the metric space endowed with a
graph. In 2017, Shukla et al. [33] introduced a new class of the graphical metric spaces and
obtained some new fixed point theorems.

In this work, the concepts of the graphical uniformly convex and graphical uniformly
normal structure by means of the convex structure are introduced. We investigate certain
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properties of graphical metric spaces which can be used in the geometric group theory. If
a group acts on a graphical complete metric space isometrically, then it is reasonable to
ask a question about whether it has a fixed point in it or not. Usually we are interested
in what kind of groups satisfy this property when the graphical metric space in question
is canonical such as a Hilbert space. An important concept in this theory is the normal
structure for a certain family of admissible subsets in a metric space and it can be applicable
for investigating the fixed point property of isometric group action. In Section 3, we verify
that under a certain extra assumption the graphical normal structure implies the fixed point
property (Theorem 3.1).

Throughout this paper, we denote the set of real numbers and the set of natural
numbers by R and N, respectively. Let X be a non-empty set and ∆ := {(x, y) ∈ X ×X :
x = y}. Consider G as a directed graph with no parallel edges such that G := (V (G), E(G)),
where V (G) be the set of vertices of graph G and E(G) be the set of edges of graph G, then
we say that a graph G is associated with X if V (G) = X and ∆ ⊂ E(G). In a graph G, if
there exists a sequence {vj}lj=0 of l+1 vertices such that v0 = x, vl = y and (vj−1, vj) ∈ E(G)
for j = 1, 2, . . . , l, then we say that there is path from x to y of length l. If there is a path
between any two vertices of a graph G, then G is called a connected graph. In a directed
graph, vertices x and y are said to be connected if there is a path from x to y and a path from
y to x. In a graph G, if there is a directed path from x to y then it can be written shortly
as (xPy)G. For z ∈ X, we say that z ∈ (xPy)G if there exists a directed path from x to y
containing z. For l ∈ N, [x]Gl := {y ∈ X : (xPy)G of length l}. Let {xn}n∈N be a sequence
in X such that (xnPxn+1)G for all n ∈ N then {xn}n∈N is called a G-termwise connected
sequence. A connected subgraph G1 of a graph G is said to be a connected component of G
if it is not connected to other vertices in the supergraph. Throughout this paper, we assume
that the graphs under consideration are directed, with nonempty sets of vertices and edges.

Definition 1.1. Let X be a non-empty set and G be a graph associated with X. A function
dG : X ×X → R satisfies the following conditions:
(i) dG(x, y) ≥ 0 for all x, y ∈ X;
(ii) dG(x, y) = 0 if and only if x = y;
(iii) dG(x, y) = dG(y, x) for all x, y ∈ X;
(iv) for all x, y, z ∈ X with (xPy)G and z ∈ (xPy)G, we have dG(x, y) ≤ dG(x, z)+dG(z, y).
Then the function dG is called a graphical metric on X and (X, dG) is called a graphical
metric space.

Definition 1.2. Let X be a nonempty set endowed with a graph G and dG : X ×X → R be
a function satisfying the following conditions:
(GM1) dG(x, y) ≥ 0 for all x, y ∈ X;
(GM2) dG(x, y) = 0 if and only if x = y;
(GM3) dG(x, y) = dG(y, x) for all x, y ∈ X;
(GM4) (xPy)G, z ∈ (xPy)G implies dG(x, y) ≤ dG(x, z) + dG(z, y) for all x, y, z ∈ X.
Then, the mapping dG is called a graphical metric on X, and the pair (X, dG) is called a
graphical metric space.

Remark 1.1. It is clear that any metric d on a metric space X is a graphical metric on
X, but the converse is not correct in general, see, for instance, Example 2.5 in [42]. It is
well-known that a graphical metric space (X, dG) need not be a metric space.

In this paper we first introduce a new class of metric spaces called graphical uniformly
convex spaces and investigate that a graphical complete metric space (X, dG) has the fixed
point property if every group of isometric automorphisms of X with a bounded orbit has a
fixed point in X. We then prove that if (X, dG) is graphical uniformly convex then the family
of graphical admissible subsets of X possesses graphical uniformly normal structure and if so
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then it has the fixed point property. We also show that from other weaker assumptions than
graphical uniform convexity, the fixed point property follows. Our formulation of graphical
uniform convexity and its generalization can be applied not only to geodesic metric spaces.
Our results improve and supplement some results in the current literature; see, for example,
[21].

2. Graphical uniformly convexity and graphical normal structure

In this section, we first introduce some basic concepts and notations which are taken
from the papers [13, 42]. Let (V (G), E(G)) be the graph associated with the nonempty set
G, where V (G) is the set of vertices and E(G) is the binary relation on V (G). Elements
of E(G) are called edges. By G−1 we denote the conversion of a directed graph G, i.e.
the graph obtained from G by reversing the direction of edges. Thus we have E(G−1) =

{(x, y) ∈ X ×X : (y, x) ∈ E(G)}. Given a directed graph G, one may generate a graph G̃
where we ignore the directions and replace the resulting multiple edges by single edges. We
define E(G̃) = E(G) ∪ E(G−1), then G̃ is a symmetric directed graph. The directed graph
G is called reflexive, if the set E(G) contains all loops, i.e. (x, x) ∈ G for each x ∈ V (G).
Moreover, a directed graph G is called transitive whenever (x, y) ∈ E(G) and (y, z) ∈
E(G) =⇒ (x, z) ∈ E(G) for all x, y, z ∈ E(G).

Throughout this paper, we always assume that the directed graph G with edge weights
by assigning the distance between two vertices to each edge, is symmetric, reflexive and
transitive.

Definition 2.1. Let u, v ∈ V (G), a path (or directed path) of length l ∈ N between u and v
in G is defined as a sequence {xj}lj=0 of vertices with u = x0, v = xl and (xj−1, xj) ∈ E(G)
for j = 1, 2, . . . , l.

Set [u]lG = {v ∈ U(G) : there exists a path directing from u to v having lenth l}.
Definition 2.2. Let (X, dG) be a graphical metric space. A relation R on X is such that
(uRv)G if there exists a path directing from u to v in G and w ∈ (uRv)G if w is contained in
the path (uRv)G. We say that a sequence {xn}n∈N ∈ Y is G-termwise connected (G−TWC)
if (xnRxn+1)G for all n ∈ N.

Let (X, dG) be a graphical metric space. We define an open ball BG(x, ε) with center
x ∈ X and radius ε > 0 as BG(x, ε) = {y ∈ X : (xPy)G, dG(x, y) < ε}. Since ∆ ⊂ E(G),
then we get x ∈ BG(x, ε) and so BG(x, ε) 6= ∅ for all x ∈ X and ε > 0. The collection
BG = {BG(x, ε) : x ∈ X, ε > 0} is a neighborhood system for the topology τG on X induced
by the graphical metric dG. A subset U of X is called open if for every x ∈ U there exists
an ε > 0 such that BG(x, ε) ⊂ U . Also, a subset C of X is called closed if its complement
X \ C is open.

Next, we define the concepts of convergence, Cauchy sequence and completeness in a
graphical metric space.

Definition 2.3. Let (X, dG) be a graphical metric space. A sequence {xn}n∈N in X is said
to be convergent and converges to x ∈ X if, given ε > 0, there exists n0 ∈ N such that
dG(xn, x) < ε for all n > n0. It is evident that the sequence {xn}n∈N is convergent and
converges to x, if and only if limn→∞ dG(xn, x) = 0.

Definition 2.4. Let (X, dG) be a graphical metric space A sequence {xn}n∈N in X is said
to be a Cauchy sequence if, given ε > 0, there exists n0 ∈ N such that dG(xn, xm) < ε for all
n,m > n0. It can easily be shown that the sequence {xn}n∈N is a Cauchy sequence, if and
only if limn,m→∞ dG(xn, xm) = 0.

Definition 2.5. A graphical metric space (X, dG1
) is said to be complete if every Cauchy

sequence in X converges in X. Let G2 be another graph such that V (G2) = X, then (X, dG1)
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is said to be G2-complete if, every G2-termwise connected Cauchy sequence in X converges
in X.

Let us begin with defining properties of a metric space X which we are concerned
with. The first one is a numerical generalization of the concept of uniform convexity for
Lp spaces to metric spaces. For p = 2, this is called the NC-inequality, which was first
introduced in [5]. The following definition, which is inspired by [3], is slightly different from
the usual one. In particular, we do not have to assume that X is a geodesic metric space
(i.e., for any x, y ∈ X there is a geodesic segment connecting them).

Definition 2.6. A graphical metric space (X, dG) is called graphical (p, c)-uniformly convex
for p ∈ [1,∞) and c > 0 if for any x, y ∈ G with (xRy)G there is some m ∈ (xRy)G such
that every z ∈ G with (zRm)G and z ∈ (xRy)G satisfies that

dG(z,m)
p ≤ 1

2
{dG(z, x)p + dG(z, y)p} − cdG(x, y)p.

If we can find such p and c, then we simply say that X = (X, dG) is graphically uniformly
convex.

Remark 2.1. In the usual definition, it is assumed that X is a geodesic metric space and
the above condition is replaced with a similar condition for each point m on every geodesic
segment connecting x and y. See [23] and [25]. The usual definition for uniform convexity
implies ours and in this case the constants should be restricted to p > 1 and c ≤ 1

2p . However,

when X is complete and when p = 2 and c = 1
4 , our condition automatically implies that X

is a uniquely geodesic metric space (i.e., for any x, y ∈ X there is a unique geodesic segment
connecting them) and X is contractible. These facts were shown in [3]. Moreover, a complete
metric space X is graphically (2, 14 )-uniformly convex if and only if it is a CAT (0)-space.

In the above definition, the freedom of the constant c has the benefit of generalizing
the concept of graphical uniform convexity. This was already done in [25] for geodesic metric
spaces with p = 2. Actually, a CAT (1)-space (X, dG) with diameter not greater than π

2 − ε
for ε ∈ (0, π2 ) is (2, c)-uniformly convex for c = (π2−ε)

sin(ε)
2 cos ε . This in particular shows that the

sphere with diameter less than π
2 is uniformly convex though its spherical distance function

d : X ×X → [0,∞) is not convex on geodesic segments. Furthermore, as an example below
shows, there is a complete metric space X which is uniformly convex but is not a geodesic
metric space. Note that a complete metric space (X, dG) is geodesic if and only if it is
metrically convex, that is, for any two points x, y ∈ X there is a midpoint m ∈ X satisfying
dG(x,m) = dG(y,m) = dG(x, y)/2 (see [3] and [16, Theorem 2.16]. Although the following
example is rather artificial, our definition of graphically uniform convexity might have the
advantage of treating a possible situation where a subspace X with relative distance dG
embedded in an infinite-dimensional Riemannian or Finsler manifold M is not known to be
a geodesic metric space but (X, dG) is graphical uniformly convex.

Example 2.1. Let Sθ = {w ∈ R2 : 0 ≤ argw ≤ θ} be the infinite circular sector with center
at the origin 0 and angle θ ∈ (0, π/3). Then X = Xθ is given as the part of Sθ that is not
contained in the open unit disk D = {w ∈ R2 : |w| < 1}, that is, Xθ = Sθ \ D. We provide
Xθ with the restriction of the Euclidean distance d on R2. Clearly (Xθ, d) is not a geodesic
metric space. However, we see that Xθ is graphically (p, c)-uniformly convex for p = 2 and
c = (2 cos θ − 1)/4. Its proof can be found in [21].

Next, the relation between the graphical radius and the diameter of certain graphical
admissible subsets gives another condition for a metric space. Here, for a subset A of a
graphical metric space (X, dG), we denote its diameter and graphical Chebyshev radius by

diamG(A) = sup{dG(x, y) : x, y ∈ A}; radG(A) = inf{r > 0 : A ⊂ BG(z, r) (for some z ∈ A)},
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where BG(z, r) = {x ∈ X : dG(z, x) ≤ r} is the closed metric ball with center z and radius
r. We regard a non-empty subset A ⊂ X graphical admissible if it is the intersection of some
closed metric balls {BG(zi, ri)}i∈I(I is an index set) of X. The family of all such non-empty
bounded closed subsets A of X is denoted by AG(X).

Let P(Y ) be the collection of all nonempty subsets of a nonempty set Y .

Definition 2.7. Let (X, dG) be a graphical metric space. The family AG(X) of graphically
admissible subsets of a metric space (X, dG) possesses graphical normal structure if every
subset A ∈ AG(X) with diamG(A) > 0 satisfies radG(A) < diamG(A). Moreover, AG(X)
possesses graphical uniformly normal structure if there exists a positive constant α > 0 such
that this inequality is uniformly valid in the form radG(A) ≤ (1− α)diamG(A).

Our first result shows the implication of the above two properties.

Theorem 2.1. If a graphical metric space (X, dG) is graphical (p, c)-uniformly convex, then
AG(X) has graphical uniformly normal structure. More precisely,

radG(A) ≤ (1− c)
1
p diamG(A)

for every A ∈ AG(X).

Proof. Let A ∈ AG(X) be arbitrarily chosen with d = diamG(A) > 0. Let us select an
arbitrary ε > 0. Then there are x, y ∈ A such that dG(x, y) ≥ d− ε. For these x and y, the
definition of graphical (p, c)-uniform convexity finds some point mε ∈ X that satisfies

dG(z,mε)
p ≤ 1

2
[dG(z, x)p + dG(z, y)p]− cdG(x, y)p (1)

for every z ∈ X. First we check that mε belongs to A. Suppose that A is the intersection
of closed metric balls {BG(zi, ri)}i∈I(I is an index set) of X for all indices i ∈ I. From the
assumption x, y ∈ BG(zi, ri), we conclude that dG(zi, x) ≤ ri and dG(zi, y) ≤ ri for each
i ∈ I. This, together with (1) to z = zi, amounts to

dG(zi,mε)
p ≤ 1

2
[dG(zi, x)p + dG(zi, y)p] ≤ rpi . (2)

This implies that mε ∈ BG(zi, ri) and hence mε ∈ A. Now, for an arbitrary z ∈ A we are
let to dG(z, x) ≤ d and dG(z, y) ≤ d. Substituting these bounds and dG(x, y) ≥ d− ε to (2),

we deduce that dG(z,mε)
p ≤ dp − c(d− ε)p. This entails to dG(z,mε) ≤ d(1− c(1− ε

d )p)
1
p ,

and hence A is in the closed ball of center mε ∈ A and radius d(1− c(1− ε
d )p)

1
p . Since ε > 0

is arbitrary, letting ε→ 0, we see that radG(A) ≤ (1− c)
1
p diamG(A). �

3. The fixed point property

In this section, we investigate the following property of a graphical metric space
(X, dG) concerning the action of its automorphism group. We denote by Aut(X, dG) the
group of isometric bijections of X onto itself with respect to graphical distance dG.

Definition 3.1. A graphical metric space (X, dG) has the fixed point property if every sub-
group H ⊂ Aut(X, dG) with a bounded orbit in X has a fixed point in X. We notice that
if the orbit H(x) of x ∈ X is bounded then the orbit H(x′) for any other x′ ∈ X is also
bounded. In particular, if H has a fixed point in X then H has a bounded orbit H(x) for
every x ∈ X.

Now, we use the following notations: the family AG(X) of graphical admissible subsets
of X is compact if every totally ordered sub-family {Ai}i∈I ⊂ AG(X) with respect to the
inclusion relation satisfies ∩i∈IAi 6= ∅ that is, ∩i∈IAi ∈ AG(X).

We will verify that the properties introduced in the previous section imply the fixed
point property. By a similar process to [16, Theorem 5.1], we can verify the following result,
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which has its origin in [17] and whose abstract formulation is due to [27]. We notice that if
AG(X) is compact then (X, dG) is complete (see [16]).

Theorem 3.1. If the graphical admissible family AG(X) of a graphical metric space (X, dG)
possesses graphical normal structure and AG(X) is compact, then (X, dG) has the fixed point
property.

Proof. Let H ⊂ Aut(X, dG) with a bounded orbit H(x) (x ∈ X). For a closed metric
ball containing H(x), we take the intersection A∗ 6= ∅ of all its images under H. Then
A∗ ∈ AG(X) is invariant under H. We consider the H-invariant sub-family of AG(X):

AHG (X) = {A ∈ AG(X)|h(A) = A (∀h ∈ H)}.
Since A∗ ∈ AG(X), this is not an empty family. Also it is evident that if Ai ∈ AG(X) for all
i ∈ I then ∩i∈IAi is H-invariant. Then the compactness of AG(X) implies that AG(X) is
inductive and Zorn’s Lemma ensures the existence of a minimal element A0 ∈ AG(X) with
respect to the inclusion relation. We will prove that A0 consists of a single point a ∈ X.
This shows that a is a fixed point of G. Suppose to the contrary that A0 is not a single
point set. Then diamG(A0) > 0 and the graphical normal structure of AG(X) implies that
radG(A0) < diamG(A0). Choose a constant r with radG(A0) < r < diamG(A0) and set
C = {x ∈ A0 : A0 ⊂ BG(x, r)}. This is not empty since radG(A0) < r. Then we have
y ∈ (∩y∈A0

BG(y, r)) ∩ A0, which can be verified as follows. Take x ∈ C ⊂ A0 arbitrarily.
Since A0 ⊂ BG(x, r) by the definition of C, every y ∈ A0 satisfies dG(x, y) ≤ r. Hence x
belongs to ∩y∈A0BG(y, r).

Conversely, if we select x ∈ (∩y∈A0BG(y, r)) ∩ A0 arbitrarily, then for every y ∈ A0

we deduce that dG(x, y) ≤ r. This ensures A0 ⊂ BG(x, r) and the definition of C implies
that x belongs to C. The above representation of C in particular implies that C ∈ AG(X).
Moreover, we will prove that C ∈ AG(X), that is, h(C) = C for every h ∈ H. It is enough
to show that h(C) ⊂ C for every h ∈ G because this includes h−1(C) ⊂ C and hence
C ⊂ h(C). Take an arbitrary x ∈ C, which satisfies dG(x, y) ≤ r for every y ∈ A0. It follows
that dG(h(x), h(y)) ≤ r for every h ∈ H. This yields that h(y) ∈ BG(h(x), r) for every
y ∈ A0, that is, A0 = h(A0) ⊂ BG(h(x), r). On the other hand, we know that h(x) ∈ A0

from x ∈ C ⊂ A0. Therefore h(x) belongs to C. This means that h(C) ⊂ C. However,
we see that diamG(C) ≤ r. Indeed, for any x and y in C, it holds that dG(x, y) ≤ r
because x ∈ A0 ⊂ BG(y, r). Since diamG(C) ≤ r < diamG(A0), we conclude C ⊂ A0. This
contradicts the minimality of A0 in AG(X). Thus we have proved that A0 = {a}, which is
fixed by H. This completes the proof. �

If (X, d) is complete and AG(X) has uniformly normal structure then AG(X) is com-
pact, which was proved in [2] and [14] for a weaker condition of the compactness (countable
compactness) and completed by the work of [18] (see Section 5). We may also consult
[16, Theorem 5.4]. Consequently, we obtain the following result as a corollary to Theorem
3.1. The fact is that an argument in [14] can directly show this result without using the
compactness.

Corollary 3.1. If the graphical admissible family AG(X) of a graphical complete metric
space (X, dG) has graphical uniformly normal structure, then (X, dG) has the fixed point
property.

Also, Theorem 2.1 and Corollary 3.1 yield the following result.

Corollary 3.2. If a graphical complete metric space (X, dG) is graphical uniformly convex,
then (X, dG) has the fixed point property.

Note that this result is already known and can be proved directly. Actually, every
bounded subset A in a graphical uniformly convex complete metric space (X, dG) has the
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unique graphical circumcenter, which is the center of a closed metric ball containing A
with the minimum circumcenter radius attained. See below in the next section for precise
definition. This fact will be also proved later in Theorem 4.2 under a weaker assumption.
If we take A as the bounded orbit of H ⊂ Aut(X, dG), then its unique circumcenter is a
fixed point of H. This result is called the Bruhat-Tits theorem [5]. Its presentation using
circumcenter circumcenter can be found in [4]. In the case of p in general, see [25, Lemma
2.3].

4. Graphical uniform pseudo-convexity

We extend the concept of graphical uniform convexity of a complete metric space so
that it still holds the fixed point property.

Definition 4.1. A graphical metric space (X, dG) is graphical uniformly k-pseudo-convex
for k ∈ [0, 1) if there are some constants p ≥ 1 and c > 0 such that for any x, y ∈ X there
is some m ∈ X such that every z ∈ X satisfies

dG(z,m)p ≤ 1 + kpc

2
[dG(z, x)p + dG(z, y)p]− cdG(x, y)p.

If there is such k, then we simply say that (X, dG) is graphical uniformly pseudo-convex.

We define the following points close to graphical circumcenter for each bounded subset
A of a graphical metric space (X, dG). For A ⊂ X and x ∈ X, set rx,G(A) = supa∈A dG(x, a).
Let us define the graphical circumradius of A by

rX,G(A) = inf{x ∈ X : rx,G(A) = inf{r > 0 : A ⊂ BG(x, r)(for some x ∈ X)},

which is not greater than the graphical Chebyshev radius radG(A). In general, we see that
rX,G(A) ≤ radG(A) ≤ diamG(A) ≤ 2rG,X(A). For every ε ≥ 0, we say that x ∈ X is a
graphical ε-circumcenter of a bounded subset A ⊂ X if it satisfies rx,G(A) ≤ rX,G(A) + ε.

When ε = 0, this is nothing but a graphical circumcenter of A. Clearly a graphical
ε-circumcenter always exists for every bounded subset A and for every positive ε > 0.

Lemma 4.1. Let A be a bounded subset with rX,G(A) > 0 (or diamG(A) > 0) in a graphical

uniformly k-pseudo-convex metric space (X, dG). Then, for any k̃ ∈ (k, 1), there is some

ε > 0 such that any graphical ε-circumcenters x, y ∈ X of A satisfy dG(x, y) ≤ k̃rX,G(A).

Proof. Let ε > 0 be fixed and x, y in X be arbitrary graphical ε-circumcenters of A. Then
we can select some m ∈ X that satisfies the inequality of graphical uniform k-pseudo-
convexity for some p ≥ 1 and c > 0. Let z in A be such that dG(z,m) ≥ rm,G(A) − ε. By
definition, dG(z, x) ≤ rx,G(A) and dG(z, y) ≤ ry,G(A). Substituting these three estimates
to the graphical uniformly pseudo-convex inequality, we obtain

(rm,G(A)− ε)p ≤ 1 + kpc

2
[rx,G(A)p + ry,G(A)p]− cdG(x, y)p.

Moreover, since rx,G(A) ≤ rX,G(A) + ε and ry,G(A) ≤ rX,G(A) + ε, it follows that

(rX,G(A)− ε)p ≤ (rX,G(A) + ε)p + kpc(rX,G(A) + ε)p − cdG(x, y)p.

Employing (rX,G(A) + ε)p(rX,G(A)− ε)p ≤ 4pε(rX,G(A) + ε)p−1 for p ≥ 1, we conclude that

dG(x, y)p ≤ 4pε

c
(rX,G(A) + ε)p−1 + kp(rX,G(A) + ε)p

=
4pε

c(rX,G(A) + ε) + kp

[
1 +

ε

rX,G(A)

]p
rX,G(A)p.

Then, for any k̃ ∈ (k, 1), we can make the last term bounded by k̃prX,G(A)p if we choose a
sufficiently small ε > 0. �
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The following result can be proved by the previous lemma.

Theorem 4.1. If a graphical complete metric space (X, dG) is graphical uniformly pseudo-
convex, then it has the fixed point property.

Proof. Suppose that (X, dG) is graphical uniformly k-pseudo-convex for k ∈ [0, 1) and that

H ⊂ Aut(X, dG) has a bounded orbit H(x0) for x0 ∈ X. Choose any k̃ ∈ (k, 1) and fix
it. First we apply Lemma 4.1 to A0 = H(x0). We may assume that diamG(A0) > 0 for
otherwise we obtain a fixed point x0 of H. Then there is some ε1 ∈ (0,diamG(A0)) such that

any graphical ε1-circumcenters x1 and y1 of A0 satisfy dG(x1, y1) ≤ k̃rX,G(A0). Note that
every point of the orbit H(x1) is a graphical ε1-circumcenter of A0. Hence, for A1 = H(x1),
the above inequality implies that

diamG(A1) ≤ k̃rX,G(A0) ≤ k̃diamG(A0).

Next we apply Lemma 4.1 to A1 = H(x1), for which we may assume that diamG(A1) > 0.
Then there is some ε2 ∈ (0,diamG(A1)) such that any graphical ε2-circumcenters x2 and y2
of A1 satisfy dG(x2, y2) ≤ k̃rX,G(A1). For A2 = H(x2), we have diamG(A2) ≤ k̃rX,G(A1) ≤
k̃diamG(A1). Continuing this process, we obtain a sequence {xn}n∈N ⊂ X such that each xn
is a graphical ε-circumcenter of the orbit An−1 = H(xn−1) for some εn ∈ (0,diamG(An−1))

and that the orbits satisfy diamG(An) ≤ k̃diamG(An−1) for every n ∈ N. Since k̃ < 1, this
implies that diamG(An)→ 0 as n→∞.

It is readily checked that {xn}n∈N is a Cauchy sequence. Indeed, since xn is a graphical
εn-circumcenter of An−1 = H(xn−1), dG(xn, xn−1) ≤ rX,G(An−1) + εn ≤ 2diamG(An−1).
Then

∞∑
n=0

dG(xn, xn−1) ≤ 2(diamG(A0))

∞∑
n=0

k̃n <∞,

which shows that {xn}n∈N is a Cauchy sequence. By the completeness of (X, dG) is complete,
we deduce that the limit x∞ of {xn}n∈N exists in X. For every h ∈ H, we deduce that

dG(g(x∞), x∞) = lim
n→∞

dG(g(xn), xn) ≤ lim
n→∞

diamG(An) = 0.

Thus x∞ is a fixed point of H which completes the proof. �

We notice that the graphical uniform pseudo-convexity is preserved under a bi-
Lipschitz homeomorphism with a small Lipschitz constant.

Definition 4.2. We say that a (surjective) homeomorphism f : X1 → X2 between metric
spaces (X1, dG1

) and (X2, dG2
) is λ-bi-Lipschitz for λ ≥ 1 if

1

λ
dG1

(x, y) ≤ dG2
(f(x), f(y)) ≤ λdG1

(x, y)

is satisfied for any x, y ∈ X1.

Theorem 4.2. Let (X1, dG1
) be a graphical (p, c)-uniformly convex metric space. If f :

X1 → X2 is a λ-bi-Lipschitz homeomorphism onto another graphical metric space (X2, dG2
)

with Lipschitz constant λ < (1 + c)
1
2p , then (X2, dG2

) is graphical uniformly pseudo-convex.

Proof. Take any x2, y2 ∈ X2. For x1, y1 ∈ X1 with f(x1) = x2 and f(y1) = y2, we choose
m1 ∈ X1 that satisfies the inequality for graphical (p, c)-uniform convexity of (X1, dG1

). If
we set m2 = f(m1) ∈ X2, then for every z2 ∈ X2, we get

dG2
(z2,m2)p + cdG2

(x2, y2)p ≤ λp[dG(z1,m1)p + cdG(x1, y1)p]

≤ λ2p

2
[dG2(z2, x2)p + dG2(z2, y2)p],
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where z1 ∈ X1 is taken as f(z1) = z2. Here, since 1 ≤ λ2p < 1 + c, there is some k ∈ [0, 1)
such that λ2p = 1+kpc. This shows that (X2, dG2) is graphical uniformly pseudo-convex. �

Similarly, we can prove that if (X1, dG1) is uniformly pseudo-convex and f : X1 → X2

is a λ-bi-Lipschitz homeomorphism onto another metric space (X2, dG2) with λ ≥ 1 suffi-
ciently close to 1, then (XG2

, dG2
) is also uniformly pseudo-convex. If there is a bi-Lipschitz

homeomorphism f : (X1, dG1
)→ (X2, dG2

), then the conjugate G′1 = fG1f
−1 for an isome-

try group G ⊂ Aut(X1, dG1
) acts on (X2, dG2

) as uniformly bi-Lipschitz homeomorphisms,
meaning that the Lipschitz constants λ are uniformly bounded for all elements of G′. In this
situation, the existence of a fixed point of G1 is equivalent to that of G′. In [15, Theorem
3.1], a certain fixed point property of a uniformly Lipschitz map is investigated.

The following example shows that neither uniform convexity nor normal structure of
the admissible family are invariant under bi-Lipschitz homeomorphisms.

Example 4.1. Let ds(x, y) =
√
dx2 + dy2 be the Euclidean metric on R2. Define a new

metric d̃s(x, y) on R2 by ds̃(x, y) = ds(x, y) if (x, y) ∈ R2 \ D and ds̃(x, y) = λds(x, y)

if (x, y) ∈ D, where D is the unit disk and λ is a constant with 1 < λ < ( 5
4 )

1
4 . Then the

identity map is a λ-bi-Lipschitz homeomorphism between (R2, ds) and (R2, ds̃). Since (R, ds)
is (2, 1/4)-uniformly convex, Theorem 4.2 shows that (R2, ds̃) is uniformly pseudo-convex.
On the other hand, the family of admissible subsets of (R, ds̃) does not have normal structure.
Indeed, by taking two closed balls with large radii and centers far away from the origin, which
are put in a symmetric position with respect to the origin, we can make an admissible subset
A as the intersection of these balls that consists of exactly two points. Actually, the distance
between (R + 1, 0) and the origin with respect to ds̃ is R + λ whereas the distance between
(R+ 1, 0) and (0, 1) is less than (R+ 1) cos θ− sin θ+ 2θ(tan θ = (R+ 1)− 1). This verifies
that radG(A) = diamG(A), which implies that the admissible family of (R, ds̃) does not have
normal structure. In fact, although (R, ds̃) is a geodesic metric space, the distance function
is not convex on geodesic segments.

5. Graphical uniform convexity in the wider sense

This section is added in revision. We will see here that our fashion of defining graphical
uniform convexity also works for more general graphical uniform convexity, which is the
generalization of uniform convexity of Banach spaces to metric spaces. See [15] for a recent
account of such usual definition.

Definition 5.1. A graphical metric space (X, dG) is graphical uniformly convex in the wider
sense if there is a function δ(r, t) : [ t2 ,∞) × [0,∞) → [0, 1], which is called the modulus of
convexity, such that
(1) δ(r, t) = 0 if and only if t = 0;
(2) for each fixed r, δ(r, t) is increasing with respect to t;
(3) for each fixed t, δ(r, t) is decreasing with respect to r, and if for any x, y ∈ X there is
some m ∈ X such that, for every z ∈ X,

dG(z,m) ≤ max{dG(z, x), dG(z, y)}(1− δ(max{dG(z, x), dG(z, y)}, dG(x, y))).

It is easy to see that if (X, dG) is graphical (p, c)-uniformly convex, then it is graphical

uniformly convex in the wider sense for modulus of convexity δ(r, t) = ctp

prp . We will state

two theorems which are closely related to the fixed point property of a graphical complete
metric space uniformly convex in the wider sense. The first one is concerning the existence
and uniqueness of a graphical circumcenter of every bounded subset. This property implies
the fixed point property. Indeed, the circumcenter of a bounded orbit of the isometric action
of G is fixed by G. This is well-known as the Bruhat-Tits theorem, which was mentioned at
Corollary 3.1.
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Theorem 5.1. Let (X, dG) be a graphical complete metric space that is graphical uniformly
convex in the wider sense. Then every bounded subset A ⊂ X has the unique graphical
circumcenter.

Proof. For any x, y ∈ X, there is some m ∈ X that satisfies the inequality for the definition
of uniform convexity in the wider sense. We consider rm(A) for this m. For every ε > 0,
there is zε ∈ A such that dG(zε,m) ≥ rm(A)− ε. Then we have

rX,G(A)−ε ≤ dG(zε,m) ≤ max{dG(zε, x), dG(zε, y)}(1−δ(max dG(zε, x), dG(zε, y), dG(x, y))).

Using property (3) of δ for dG(zε, x) ≤ rx,G(A), ry,G(A), and taking ε → ∞, we obtain an
inequality

rX,G(A) ≤ max{rx,G(A), ry,G(A)}(1− δ(max{rx,G(A), ry,G(A)}, dG(x, y))) (3)

for any x, y ∈ X. The existence of a graphical circumcenter of A is proved as follows. We may
assume that rX,G(A) > 0. Take a sequence {xn}n∈N ⊂ X such that rxn,G(A)→ rX,G(A) as
n → ∞. For every k ∈ N, there is nk such that n ≥ nk implies rxn,G(A) < rX,G(A) + 1

k .
We apply inequality (3) for x = xn and y = xl with n, l ≥ nk. It turns out that

rX,G(A) ≤ max{rxn,G(A), rxl,G(A)}(1− δ(max{rxnmG(A), rxl
(A)}, dG(xn, xl)))

≤ (rX,G(A) +
1

k
)(1− δ(rX,G(A) +

1

k
, dG(xn, xl)))

≤ rX,G(A) +
1

k
− rX,G(A)δ(rX,G(A) + 1, dG(xn, xl)).

Here, the latter two estimates come again from property (3) of δ. This implies that
δ(rX,G(A) + 1, dG(xn, xl)) ≤ 1

k − rX,G(A) for any n, l ≥ nk. Letting k → ∞ and using
properties (1) and (2) of δ, we see that dG(xn, xl) → 0 as n, l → ∞. Hence {xn}n∈N is
a Cauchy sequence. Since X is complete, there is the limit x0 = limn→∞ xn in X. By
rx0,G(A) = limn→∞ rxn,G(A) = rX,G(A), we find that x0 is a circumcenter of A. The
uniqueness is already seen from the above argument. Or, if x and y are circumcenters
of A, then the substitution of rx,G(A) = rX,G(A) and ry,G(A) = rX,G(A) to (3) gives
δ(rX,G(A), dG(x, y)) = 0. This is possible only when x = y. �

The second one is concerning graphical normal structure and compactness of the
family of graphical admissible subsets. For the graphical normal structure, it is sufficient to
modify the proof of Theorem 5.1. For the (countable) compactness, we refer to [15, Theorem
2.2] in the case of geodesic metric spaces.

Theorem 5.2. If a metric space (X, d) is graphical uniformly convex in the wider sense,
then the family AG(X) of admissible subsets has graphical normal structure. If (X, dG) is
complete in addition, then AG(X) is compact.

Proof. Take an arbitrary A ∈ AG(X) with d = diamG((A)) > 0. Then there are x, y ∈ Asuch
that dG(x, y) ≥ d− ε for an arbitrary ε > 0. For these x and y, there is m ∈ Xthat satisfies
the inequality for uniform convexity in the wider sense. We will check that m belongs to
A. Suppose that A is the intersection of closed metric balls BG(zi, ri) for all indices i ∈ I.
Since x, y ∈ A ⊂ BG(zi, ri), we have dG(zi, x) ≤ ri and dG(zi, y) ≤ ri for each i ∈ I. It
follows from the inequality that dG(zi,m) ≤ max{dG(zi, x), dG(zi, y)} ≤ ri. This implies
that m ∈ B(zi, ri) and hence m ∈ A. Consider an arbitrary z ∈ A. Then dG(z, x) ≤ d and
dG(z, y) ≤ d. Substituting these bounds and dG(x, y) ≥ d − ε > 0 to the inequality and
using the properties of δ, we obtain

dG(z,m) ≤ dG(1− δ(d, d− ε)) < d.

Thus we have radG(A) < diamG((A)).
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Now we assume that (X, dG) is complete and consider a decreasing sequence of ad-
missible subsets {An}n∈N ⊂ AG(X). For a fixed point z ∈ X \ A1, the distances dG(z,An)
from z to An are bounded and increasing, so we have R = limn→∞ dG(z,An) ∈ (0,∞).
Also, we can choose a point xn ∈ An for each n ∈ N such that limn→∞ dG(z, xn) = R. We
will show that {xn}n∈N is a Cauchy sequence. Then there is the limit point x∞ ∈ X of
{xn}n∈N since X is complete. Each An contains x∞ because xnl

∈ An for every nl ≥ n.
Thus x∞ ∈ ∩n∈NAn, which shows that the intersection is not empty. Suppose to the con-
trary that {xn}n∈N is not a Cauchy sequence. Then there is some ε > 0 such that for every
n ∈ N there are n1, n2 ≥ n with dG(xn1

, xn2
) ≥ ε. We apply the inequality of graphical

uniform convexity in the wider sense to xn1
and xn2

; there is some mn ∈ X such that
dG(z,mn) ≤ max{dG(z, xn1

), dG(z, xn2
)}(1 − δ(max{dG(z, xn1

), dG(z, xn2
)}, dG(xn1

, xn2
)))

for every z ∈ X. Let z be a fixed element satisfying the above inequality. Then we obtain
dG(z,mn) ≤ R(1 − δ(R, ε)) < R. Here mn is contained in An by the same reason as in
the first paragraph. Hence dG(z,An) ≤ dG(z,mn). Taking the limit as n → ∞, we have a
contradiction. This proves that {xn}n∈N is a Cauchy sequence. We have shown that any
decreasing sequence of admissible subsets {An}n∈N ⊂ AG(X) as non-empty intersection.
This property is called countably compact. By the similar arguments as in [18] (see also [16,
Theorem 5.5]) we conclude that if AG(X) has graphical normal structure then compactness
and countable compactness of AG(X) are equivalent. �

If we corporate this theorem with Theorem 5.1, then we conclude that a complete
metric space that is uniformly convex in the wider sense has the fixed point property.

Remark 5.1. We can modify the definition of uniformly convexity in the wider sense by
changing the modulus of convexity δ to an increasing function δ̃ : [0, 2]→ [0, 1](δ̃(s) = 0⇐⇒
s = 0) and the inequality to

dG(z,m) ≤ max{dG(z, x), dG(z, y)}
(

1− δ̃
(

dG(x, y)

max{dG(z, x), dG(z, y)}

))
.

This condition is stronger than the previous one because δ(r, t) = δ̃
(
t
r

)
gives the implication.

The above proof of Theorem 5.2 shows that if X is uniformly convex in this sense then AG(X)
has uniformly normal structure with the property radG(A) ≤ (1 − α)diamG((A)) for α =

lims→0+ δ̃(s). Note that if (X, d) is an ultrametric space where dG(x, y) ≤ max {dG(z, x), dG(z,

y)} is always satisfied, then the modulus of convexity is uniformly bounded by δ̃(1).

6. Concluding Remarks

In this paper we study the fixed point property in a graphical metric space (X, dG).
We say that a complete graphical metric space (X, dG) has the fixed point property if every
group of isometric automorphisms of (X, dG) with a bounded orbit has a fixed point in X.
We prove that if (X, dG) is graphically uniformly convex then the family of admissible subsets
of (X, dG) possesses uniformly normal structure and if so then it has the fixed point property.
We also show that from other weaker assumptions than uniform convexity, the fixed point
property follows. Our formulation of graphical uniform convexity and its generalization can
be applied not only to geodesic metric spaces.
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