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LAPLACE TRANSFORM APPROACH FOR ONE-

DIMENSIONAL FOKKER-PLANCK EQUATION 

 
S. ZARRINKAMAR1* , H. PaNAHI2 and F. HOSSEINI2 

The Fokker-Planck equation is considered in (1+1)-dimensions. Using already 

established transformations, the time dependence is removed and the spatial part is 

written as a Schrödinger-like equation. The equation is then considered with 

quadratic, exponential and logarithmic drift terms and the analytical solutions are 

reported using Laplace transform approach.  
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1. Introduction 

The Fokker-Planck equation (FPE) was originally formulated to study 

Brownian motion [1]. Now a day, however, it is used to investigate the stochastic 

phenomena [2]. In a very efficient method, the FPE is transformed into a linear 

ordinary second order differential equation which resembles the nonrelativistic 

Schrödinger equation with an effective potential. Consequently, we expect that the 

common techniques of quantum mechanics are applied to the FPE. In particular, we 

recognize the idea of supersymmetry as a powerful tool in mathematical physics. 

In recent interesting papers, the supersymmetry structure of the FPE has been 

discussed with Morse and Hulthén terms [3-6].  

On the other hand, the Laplace integral transform has already been applied to 

various wave equations of quantum mechanics including Schrödinger, Dirac and 

Klein-Gordon equations for different potentials including harmonic, Morse, 

Coulomb, etc [7-13]. Unlike many common analytical techniques of ordinary 

differential equations which cannot be generalized to nonlinear, partial or fractional 

cases, the Laplace transform has been successfully applied to such problems. In 

particular, the transformation is used to study nonlinear Klein-Gordon equation [14] 

and fractional Schrödinger equation [15]. In our short note, we are going to consider 
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the FPE in one spatial equation with quadratic and exponential terms and solve the 

arising differential equations using the Laplace transform.  

 

2. Fokker-Planck Equation in (1+1)-Dimensions 

 

In order to preserve the brevity, we start from [3-6] 

 
1

( , ) ( , ) ( ) ( , ) 0, (1)
2

t xx x
f x t f x t U x f x t    

where ( )U x  is called the drift term. Using the transformation [3-6]  

 
1

( , ) exp ( ) ( , ), (2)
2

f x t U x x t   

we are left with 

  2
( , ) ( , ) ( ) ( ) ( , ). (3)t xxx t x t U x U x x t       

Now, using the expansion 

( , ) exp( ) ( ), (4)k k k

k I

x t c t x  


   

where k denotes the eigenvalue, as well as introducing  

( , ) exp ( ) ( , ), (5)
2

f x t U x t x t



 

   
 

 

the time component is removed and we obtain the Schrödinger-like equation [3-6]  

  2
( ) ( ) ( ) ( ) 0. (6)x U x U x x         

 

3. Laplace Transform Approach 

3.1. Quadratic Drift Potential  

We first consider a quadratic drift potential of the form 

   2 7U x ax   

which yields the differential equation 

 
        

2
2

2
2 2 0. 8

d x
a ax x

dx


       

Introducing

1
4

2

1

4
c

a

 
  
 

and  2 2k c a  , as well as applying the change of 

variable  

 9x c  
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Eq. (8) appears as 

   
2

2

2
10. 0

d
k

d


 


     

,one can factor out the asymptotic solution    as  
2 2e   Since   

defined by   and focus on the function   
2 2e    

   
2 2 .e       

Substituting Eq. (11) into (10), it becomes 

   2 1 0. 12k        

Now, using  
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
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
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
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the corresponding Laplace space equation appears as  

   22 1 0. 14sV s k V       

which possesses the solution  
 

 
21

2 4 . 15
k s

V C s e
 


    

Applying the Laplace inverse transform 

 

3 3

4 4 4 41 1
16

2 2

k k

sC s s e ds

   



   
      

   
  

Note that in the following we shall denote all the constants by C, although they 

may represent different values in different place. Only when  
 1

1
2

k
n


       

and  0,1,2,3...n    the residue in Eq. (16) is nonzero and one has 

   , 17nCH    

where 
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is the integral form of the Hermite function. One can also use    

   
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
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
 


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This is the series form of the Hermite function.The residue for the integral in Eq.  

(19) is nonzero only for the terms with 
2

nk  
 

  . The solution of  , from Eqs. 

(11 )  and (17) ,appears as      
2 2 . 21nCe H     

 

3.2. Exponential Drift Potential  

In this section, we consider a drift term of exponential type 

     
2 2 . 22nCe H     

Therefore, we have to deal with  

        2 2 2 2 0 23bx bxx ab e a b e x         

Introducing c
b


   and applying the change of variable 

 2 24bxae    

we find 

   
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1 1 1
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4 2

d d c

d d
 

    

  
        

  
 

 

using the gauge transformation,  

     26c       

we have 

   
1

2 1 0 27
4 2

c


  
 

       
 

 

At this stage, we use the boundary conditions and basic formulae  
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   

   

   

          2 2

,

2 , (28)

L V s

L sV s

L V s

L L s V s s V s sV s

 





 

  

  

 

           

 

which gives the first-order Laplace space equation 

       2 1 1
2 1 0 29

4 2
s V s c s V s

   
         

   
 

Eq. (29) possesses the solution  

   
1

1 1
30

2 2

c c

V s C s s



   
      

   
 

Applying the Laplace inverse transform  

 
1

1 1
31

2 2

c c

sC s s e ds



   
       

   
  

and using the change of variable   
1

2
s t  ,one can see that 

   2
1 1

, ; 32Ce F d N


 


   

where 

     
11

1 1
, ; 1 33

N dd tF d N C t t e dt
 


    

is the integral form of the confluent hypergeometric function and 

 2 34d c c      

Recalling  

     
1

0

1
1 , 35

N d k

k

N d
t t

k


 



  
    

 
  

where 

   
 

1 ... 1
, 36

!

k

k k

      
  

 
 

Eq. (33) can be writen as 

     
1

1 1
0

1
, ; . 37

k d t

k

N d
F d N C t e dt

k




 




  
   

 
   

Only when  d n    and  0,1,2,3,...n  , the residue is nonzero and one has 
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   
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1
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  
   

  





 

The solution of       is then by Eq.  (26) and (32) 

     2
1 1

, ; 39cC e F n N


   


    

3.3. Logarithmic Drift Potential 

In this section, we consider  

     2log 40U x a bx   

which corresponds to the equation 
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 
 

A gauge transformation of the form  

     42x x xf     

brings Eq. (28) into the form  

   
   

2 2

2 2 2

2 2 4
0 43

d f x df x a a
f x

dx x dx x x

 

      
 

 

Using the chance of variable  

 44x   
 

we have  

      
2

2 2

2
2 2 2 1 0 45

d d
a a f

d d
   

 

 
      

 
 

which, via 

     
1

2 46f z  


    

appears as 

   
   

22

2 2

2

1
2 0 47

2

d z dz
a z

d d

 
   

 

  
          

 

   
   

2

2

2 2

1
2

1 2
1 0 48

a
d z dz

z
d d

 


   

  
  

      
 
 
 

 

Finally, using  
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     49z        

We are left with 

     
   

2

2
2

2 2

1
2

2 1 2
1 0 50

a
d d

d d


    

 
   

  
          

 
 
 

 

Considering 

 
2

2 1 1
2 0 ; 2 51

2 2
a a  

   
            
   

 

Eq. (46) takes the form 

   2 1 0 52          

or, in Laplace space 

         2 1 2 1 0 53s V s sV s       

Eq. (50) possesses the solution 

 
 

 
2 1

2 21 54V C s

 

    

Applying the Laplace inverse transform  

 
 

 
2 1

2 21 55sC s e ds







    

where 

1
1,2,3,... ; 2 (56)

2
a  

 
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 
 

 

 

   

2 1

2
2 1 2 1 2

2
0

2 1
1

521 7
ks s

k

C s e ds s e dsC

k
s


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











   




   
  
  

 

 
     






  




  

we obtain 

 

 

 
 

2 2 2 2

2
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1
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2 2 !
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! ! 2
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k
k k
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k k k
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


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
 

  


 

 
 
 



 
    

    
   

   

with
 2 1 !!

C
C


 


. In summary, the final solution is written in terms of Bessel 

function as 

 
 
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   
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1
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
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



  
    

  
  



220                                S. Zarrinkamar, H. Panahi and F. Hosseini 

4. Conclusions  

In this article, we considered the Fokker-Planck equation in (1+1)-

dimensions. Bearing mind, the merits of analytical solution and the physical insight 

they provide, we used the Laplace transform in the calculations to solve the equation 

with quadratic and exponential drift terms. The calculations revealed that the arising 

equations respectively appeared as the nonrelativistic one-dimensional harmonic, 

Morse and free particle problems. The Laplace approach has the potential to be 

extended to more realistic three-dimensional case with time-dependence terms. In 

addition, the generalized exponential-type interactions have been successfully used 

in the modeling of tumor growth and we hope the present work motivates further 

studies in the field.  
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