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LAPLACE TRANSFORM APPROACH FOR ONE-
DIMENSIONAL FOKKER-PLANCK EQUATION

S. ZARRINKAMAR?Y" | H. PaNAHI? and F. HOSSEINI?

The Fokker-Planck equation is considered in (1+1)-dimensions. Using already
established transformations, the time dependence is removed and the spatial part is
written as a Schrodinger-like equation. The equation is then considered with
quadratic, exponential and logarithmic drift terms and the analytical solutions are
reported using Laplace transform approach.
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1. Introduction

The Fokker-Planck equation (FPE) was originally formulated to study
Brownian motion [1]. Now a day, however, it is used to investigate the stochastic
phenomena [2]. In a very efficient method, the FPE is transformed into a linear
ordinary second order differential equation which resembles the nonrelativistic
Schradinger equation with an effective potential. Consequently, we expect that the
common techniques of quantum mechanics are applied to the FPE. In particular, we
recognize the idea of supersymmetry as a powerful tool in mathematical physics.
In recent interesting papers, the supersymmetry structure of the FPE has been
discussed with Morse and Hulthén terms [3-6].

On the other hand, the Laplace integral transform has already been applied to
various wave equations of quantum mechanics including Schrodinger, Dirac and
Klein-Gordon equations for different potentials including harmonic, Morse,
Coulomb, etc [7-13]. Unlike many common analytical techniques of ordinary
differential equations which cannot be generalized to nonlinear, partial or fractional
cases, the Laplace transform has been successfully applied to such problems. In
particular, the transformation is used to study nonlinear Klein-Gordon equation [14]
and fractional Schrodinger equation [15]. In our short note, we are going to consider
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the FPE in one spatial equation with quadratic and exponential terms and solve the
arising differential equations using the Laplace transform.

2. Fokker-Planck Equation in (1+1)-Dimensions

In order to preserve the brevity, we start from [3-6]

ft(x,t)—%fxx (x.)~(U'X)F (x.1)), =0, 0
whereU (x) is called the drift term. Using the transformation [3-6]
1
f () =Zexp(-U ())w(xt), 2
we are left with
 (0E) = (1) +(U70) = (U 0 Jwrx 1), 3
Now, using the expansion
w(x,t) =D ¢, exp(=A )y (x), (4)
k el
where A, denotes the eigenvalue, as well as introducing
f (x,t)=exp(—U (x)—%tjy/(x,t), (5)
the time component is removed and we obtain the Schrodinger-like equation [3-6]
w'(x) + (/1 +U"(x) - (U"(x))’ )(//(x) -0, (6)

3. Laplace Transform Approach
3.1. Quadratic Drift Potential

We first consider a quadratic drift potential of the form

U (x)=ax?, (7)
which yields the differential equation
dzl/l(x)+(/1+(2a)—(2ax)2)z//(x):0 (8)
dx 2 '

2

%
Introducingc :(%) and k =c*(A+2a), as well as applying the change of

variable

X =C¢, (9)
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Eq. (8) appears as

2
3;; +(k =)y =0,
Since w ~e < as & > oo ,0ne can factor out the asymptotic solution
w=e "> and focus on the function v(&) defined by

y=e<P v($).
Substituting Eq. (11) into (10), it becomes
v"-2&0"+(k -1)v=0.

Now, using

the corresponding Laplace space equation appears as
25V "+(s® +k +1)V =0.
which possesses the solution
V =C sf(“%e'%.

Applying the Laplace inverse transform

3.k 3 k
U:CI s—l v s+E tesids
r 2 2

L[]=~(L[]) ==[sv (5)] =5V '(s)-V (5)

(11)
(12)

—

16)

Note that in the following we shall denote all the constants by C, although they

may represent different values in different place. Only when (k +l% =n+1

and n=0,1,2,3... theresidue in Eqg. (16) is nonzero and one has

v=CH, (cf)
where

H,(¢)=C J'rsf(“l)e “heds

(17)
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is the integral form of the Hermite function. One can also use
e~/ ZZT_O(S%)J /( j!) toobtain
o (_ 4 j esf
Hy()=c [ 3 AL e (19)
j=0

(2 (1 ] 9-2j gn-2]
= j(n-2j)

This is the series form of the Hermite function.The residue for the integral in Eq.
(19) is nonzero only for the terms with k < [%} . The solution of y, from Egs.

=C

(11) and (17) ,appears as y (&) =Ce¥IH, (&). (21)

3.2. Exponential Drift Potential
In this section, we consider a drift term of exponential type

v (£)=Ce “7H, (¢). (22)
Therefore, we have to deal with
z//”(x)Jr(ﬂw(abzebx —ah%e™ ))y/(x)zo (23)
Introducing ¢ = % and applying the change of variable
& =2ae™ (24)
we find
d> 1d 1 1 ¢°
— e — | === =0 25
[d§2+§d§+[ 4" 2 «fzj]"’(g) (#)
using the gauge transformation,
w(§)=¢"0(S) (26)
we have
v+ (2 +1)U’—(§—%]UZO (27)

At this stage, we use the boundary conditions and basic formulae
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L[v(&)]=V (s)
L[o]=sv (s).
L{go]=v"(s),

L[ev]=—(L[v"]) ==[sV (5)] =—sV '(s)-2sV (s), (28)

which gives the first-order Laplace space equation

(—32+%)V ’(s)+[(20—1)s+%}/ (5)=0  (29)

EQ. (29) possesses the solution
l c 1 c-1
Y =C|s—= = 30
) (S 2) (“2) (%0)

Applying the Laplace inverse transform
1 C 1 c-1
=C||s-=||s+= e*“ds 31
v=C] ( 2)( 2) (3

and using the change of variable s +% =t ,0one can see that

<
v=Ce 2,F (d,N;¢) (32)
where
_ N—-d-1
F,(d,N;&)=C[ 97 (1-t)" " Te“adt (33)
is the integral form of the confluent hypergeometric function and
d=c ,N=2+1] (34)
Recalling
> (N —-d -1
1) =x (). (39)
o\ K
where

[aj_a(a—l)...(a—k +1) (36)
Eqg. (33) can be writen as

(d,N;E)= Z[N ~ ljj (—t) " etdt.  (37)

Onlywhen d =—n and n=0,12,3,..., the residue is nonzero and one has
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F 1(—I’l,N ;f):C n (N —d —1](_1)n—k+1 gk

k

k =l

L (N —d -1, e &
zc§[n_k j(—l) %

The solution of  is then by Eq. (26) and (32)

s
l//(f):Cg‘Ce 2. F l(—n,N ;5)
3.3. Logarithmic Drift Potential
In this section, we consider

U (x)=alog(bx*)
which corresponds to the equation
. 2a 4a’
74 (X )+(1—F—X—ZJV/(X):0
A gauge transformation of the form
w(x)=xf(x)  (42)
brings Eq. (28) into the form
2 2
d *f (zx)+£df (x)+(l 2a 4a jf (x)=0
dx X dx
Using the chance of variable

p=~2x
we have
p° d” +2pd—+(p2—2a(2a+1)) f (p)=0
dp*  "dp
which, via
1
f(p)=2(p)p*
appears as
d’z (p dz (p 1Y
2 dp(z) P d(p)+£p2—(2a+§j z(p)=0

Finally, using
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2(p)=p"v(p) (49)
We are left with
1 2
2
) p —(2a+j
dp p dp P
Considering
: 1Y . 1
ﬁ — 2a+§ =0 ,ﬂ:iﬂ:i 2a+§ (51)
Eqg. (46) takes the form
pU"+(2B+1)v" + pv=0 (52)
or, in Laplace space
—(s®+1)V '(s)+(28-1)sV (s)=0 (53)
Eq. (50) possesses the solution
(251
V =C(s*+1) 2 (54)
Applying the Laplace inverse transform
(251
_ 2 T o A8
v=C | (s*+1) 2 e*ds (55)
where
£=123,.. ;ﬂ=—(2a+%j=—,u (56)
1 _(2,u+l) (2#"‘1]
2 0 -
v=C | s (1+ —zj e’ds =C [ > 2 )[s B eds  (57)
S k=0 K
we obtain
w0 2p+1 2k +2u w k 2K +2u
e _[ 2 j p— —C' ) £ 58
v g « |(2k+2u) ék ! ) 2% (58)
withC ' = C . In summary, the final solution is written in terms of Bessel
(Zy —l)!!
function as
D ) [p]
=p“v=C'y ——— I = =CJ 59
2(P) =P =0 i 2 . (P) (59)
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4. Conclusions

In this article, we considered the Fokker-Planck equation in (1+1)-
dimensions. Bearing mind, the merits of analytical solution and the physical insight
they provide, we used the Laplace transform in the calculations to solve the equation
with quadratic and exponential drift terms. The calculations revealed that the arising
equations respectively appeared as the nonrelativistic one-dimensional harmonic,
Morse and free particle problems. The Laplace approach has the potential to be
extended to more realistic three-dimensional case with time-dependence terms. In
addition, the generalized exponential-type interactions have been successfully used
in the modeling of tumor growth and we hope the present work motivates further
studies in the field.
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