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SPEECH ENHANCEMENT FOR FORENSIC PURPOSES

Gheorghe POP?, Dragos BURILEANU?

The research community interest in forensic audio processing has increased
exponentially in the latest years, mostly as an effect of media coverage of cases
where the debates in the courts of law have benefitted from forensic speech
recording analyses. The enhancement of speech signals quality for forensic
purposes targets the recordings that are difficult to understand and use in legal
contexts, whereas speech telecommunications or artistic performance have different
performance criteria.

In this work, the forensic speech enhancement domain is discussed, together
with an enhancement method we propose for forensic applications.
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1. Introduction

Since the beginnings of audio recordings, there was a need for a practice
code in making the recorded contents sound best. This need is served since
February 17, 1948, when the Audio Engineering Society was created in New
York. The technical achievements of that moment, which are now more than 70
years old, were a new electronic phonograph pick-up, with less than 15 grams of
pressure, and the dual-cone loudspeakers, both presented there by Harry F. Olson,
from RCA Laboratories [1]. All those devices are today remarkable museum
items, after several technical revolutions in speech processing.

Pioneering efforts in speech enhancement were made all along, after the
World War 11 [2]. Since digital computers first became available in the 1970s [3],
digital signal processing (DSP) techniques were introduced, with many important
breakthroughs, such as the adaptive noise cancelling [4], the spectral subtraction
method [5], decision-based noise filtering [6], and minimum mean-square noise
estimators [7]. We are now in the middle of a deep learning era, built on ideas
introduced in the 1980s, which has recently started a revolution in science and
technology, which is expected to power up achievements of human kind at a
similar scale as the widespread of electricity networks has since the 1880s [8].
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The aim of the paper is to contribute to the forensic speech enhancement
research, by shortly introducing the domain and by proposing a new method.

The contents of the paper are organized as follows. A short description of
the speech recording chain is presented in section 2. The problems of speech
quality are reviewed in section 3. Several major speech enhancement techniques
are discussed in section 4, both classic and emergent, while in section 5 we
propose a new speech enhancement method, based on a deep neural network
(DNN) that uses input data about speech quality, and compare its performance to
others. Conclusions are accommodated in section 6.

2. From speech to audio recording

Speech may be seen as a succession of acoustic events and treated as all
other signals. Acoustic events to be recorded have to go through three stages from
their acoustic source to the storage file. In the first stage, the speech is produced
as an analog, acoustic signal, which reflects the ability of the person to produce
understandable speech in a given language. In a similar manner to all other
sources, the signal travels to each microphone through a unique acoustic channel.
The channel properties depend on the positions of both the respective source and
microphone, as well as on properties of the medium, such as the density,
temperature etc. By virtue of the superposition principle, the total acoustic
pressure at each microphone is realized as a mixture of all arriving acoustic
pressure waves, weighted by the microphone’s directivity.

The second analog stage is of electric nature. A microphone transforms the
analog acoustic wave into an electrical signal, by converting the acoustic pressure
wave into an analog voltage, which is then adapted to the needs of the signal
processing chain.

The third stage is not only electric, but also digital at the same time,
dedicated to digital signal processing. The conversion to digital format reduces the
risk of signal contamination by noise of electric origin.

3. Problems of speech quality

Quality of recorded speech may be considered under two main angles: the
overall quality, and the intelligibility of speech, as perceived by human listeners.
The relationship between perceived quality and speech intelligibility is not
entirely understood, although some degree of correlation is obvious. Overall
subjective quality may be expressed by various scores, derived from opinions of
listeners. Given the connection between human listener opinions and the goal of
speech enhancement, opinion scores offer some subjective quality reference.

Meanwhile, speech intelligibility is defined as the percentage of correctly
understood language units, usually words, from the inputted amount.
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Randomly chosen panels of listeners can produce very different results, so
that panels of well-trained listeners are necessary, for reliable and repeatable
results in subjective tests. The alternative speech quality assessment approach is to
estimate objective quality measures. Some measures assess the degree of
improvement produced by a given speech enhancement method, while others
measure the intrinsic quality of a given signal, using speech perception models.

The enhancement of recorded speech consists in assessing the speech
quality, and applying special processes on the signal, which would preferably
tackle the problems without distorting the target speech. Most of the time, this is
not a trivial task, because of the influence of reverberation and noise in the context
of the medium and source-microphone geometry, as illustrated by the following
possibilities:

« With only one microphone and one speaker, in fixed positions, the
acoustic channel may be taken as invariant. In such a case, if the impulse response
of the channel can be estimated, the reverberation can be partly reversed. If there
IS no reverberation, or it was reversed beforehand, the speech would be separated
from noise based on their different behavior and spectral structure.

+ Slowly moving speaker or microphone asks for adaptive estimation of
the acoustic channel impulse response at every short time analysis point.

» When two or more microphones are involved, given that the acoustic
mixtures are made from the same sources, there is a chance to, more or less,
separate speakers from the mixtures.

« With an increasing number of microphones, the acoustic sources in the
mixtures should be easier to separate in the absence of reverberation. With
reverberation present, each acoustic channel has different reverberation properties
so that each recording channel asks for independent dereverberation before the
source signals are unmixed. Hopefully, speech signals would be separated from
all noise signals.

« The behavior of the acoustic channel, often dependent on frequency,
allows for the disentangling of component source signals to be performed on
narrow frequency bands.

Two major classes of techniques are discussed in this paper, the “classic”
ones, which work without using machine learning, and “emergent” techniques,
which use neural networks and all other techniques based on deep learning.

4. Classic and emergent speech enhancement techniques

Considering, for start, that only one speaker was recorded, the oldest
enhancement technique that came into play was the use of an analog signal
equalizer device, which allowed the transfer function of the acoustic chain to be
adjusted in order to promote the useful signal components, while reducing the
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others. Using this very intuitive technique, the signal-to-noise ratio (SNR) was
improved, which has suggested the spectral shaping technique, and has later
inspired a large class of techniques, namely the spectral subtraction technigues.

In a recent paper [9], one of the fastest enhancement techniques, an
autocorrelation-based speech enhancement, is described. The spectrum of the
stationary noise is shaped to follow the spectrum of the speech, thus the regions in
the signal spectrum with low level speech components have to face a lower noise
level, and so the SNR is increased.

Spectral subtraction-based methods rely on subtracting the estimated
power spectrum of the noise from the power spectrum of the noisy speech signal,
with no prior knowledge of the power spectral density of the clean speech and
noise signals. Spectral subtraction can be used to suppress background noise
under various assumptions, such as the one that the noise is stationary or changes
slowly during the non-speech and speech activity time intervals [10].

The procedure of spectral subtraction includes a step of estimating the
power spectrum of the noise on non-speech/silence intervals, followed by the step
of subtracting it from the short time power spectrum of the signal. In doing so, the
signal is analyzed on a short time basis, and the speech inactivity intervals are
determined based on decisions made for each analysis window.

Then, Fourier transform is applied on the windowed frames of the noisy
speech signal, while speech enhanced by spectral subtraction is [11]:
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‘ , otherwise,
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where X (k), S(k), and D(k) are the magnitude power spectrum of window k of

corrupted speech, estimated speech, and estimated noise respectively, ¢ is the
over subtraction factor, which depends on the a posteriori segmental SNR, and g

is the spectral factor with values between 0 and 1. A compromise value of g must

be found, given that a high spectral floor makes the remaining noise audible,
while a small value of f reduces noise a great deal, but the remnant noise becomes
annoying. The enhanced speech signal §(t) is obtained by applying the inverse

Fourier transform to the estimated spectrum of the speech with the phase data
taken from the direct Fourier transform.

This class of methods is known to produce the so-called “musical noise”,
which consists in some tones which randomly and rapidly change, noticeable in
the background of the useful signal. Parametric spectral subtraction methods and
gain function filtering were first tried, as means to reduce the musical noise, then
more efficient methods were found.
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Another class of speech enhancement techniques is the inverse filtering
class. This means that if we know the impulse response of a filter the signal has
previously been passed through, we can remove its effects. In favorable
conditions, the unknown filter could be blindly estimated. For example, in [12]
reverberation and noise parameters are blindly estimated. While the reverberation
is removed using an inverse filtering, a Bayesian filtering is applied, controlled by
voice activity in the signal, to spectrally subtract the noise from the noisy speech.

For slowly variable noise spectra, the Wiener adaptive filtering technique
[2], also called “optimal filtering,” is available, which works as a compromise
between inverse filtering and spectral subtraction.

Using the time-domain structure of the speech, which presents repetitive
peaks, speech enhancement techniques based on wavelet decomposition were
implemented. The removal of noise components by thresholding the wavelet
coefficients relies on the assumption that the energy of speech in a noisy speech
signal is mainly concentrated in a small number of wavelet dimensions [13].

The wavelet thresholding is adequate for enhancement of forensic audio
recordings corrupted with different types of colored noise, with different
distributions in different frequency subbands, even at high levels of noise. The
level-dependent threshold, A, can be represented by [13]:

A=0; /2Iog N; , where (2)
MAD(D; ) 5
%17 06745 ®)

IS just a coefficient depending on the level j, MAD is the median absolute
deviation of the detail coefficients D;, and N; is the length of the noisy speech

signal, for the same level. In selecting the wavelet coefficients to keep, both hard
(Thara) and soft (Tsoft) thresholds can be used, defined by
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All speech enhancement techniques discussed so far work without caring
about the number of channels of the input signal, so that they qualify as single-
channel techniques. Multi-channel techniques must consider the spatial diversity
of the sources, which allows the suppression of a given source and improve the
quality of the speech under noisy conditions. Independent component analysis
(ICA) may be used in multi-channel speech enhancement to separate the speech
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from noise, if noisy speech is transformed into components which are statistically
independent [14]. The independent components are estimated based on
maximizing the non-Gaussian distribution of one independent component. The
difference between a Gaussian distribution and the distribution of the independent
component is measured using a higher order statistic, which is fixed for Gaussian
distributions. Preferably, the contrast parameter is either the kurtosis or the excess
of kurtosis [15].

How does the ICA work, in its instantaneous form? Let the source speech
and noise signals, emitted from N sources, be

s(t) ={s,(t), 5, (1).....sn (1} (6)
For forensic applications, the noisy speech signals can be recorded
instantaneously, by using M microphones in a street, and be expressed as

X(®) ={x), % 1)..... xu ©)F- (7)
Instantaneous ICA is defined in [15] as a linear transformation of noisy
speech signals into components which are statistically independent, by

X=As, (8)
where A is an unknown mixing matrix.
The goal of ICA is to estimate the original sources from the mixed signals.
The estimates of source signals, §, can be represented by

§=WHx, 9)
where W is the unmixing matrix, which equals the inverse of the mixing matrix
A, when the matrix is square.

When the disturbing signal is also speech, or speech-like, a different
problem arises, namely the co-talker interference, which can be tackled by both
single- and multiple-channel enhancement techniques. In [16], two single-channel
speech enhancement techniques were used to suppress co-talker interference from
forensic audio recordings — the dynamic time warping (DTW) and the wavelet
packet thresholding (WPT). Spectral subtraction was used to remove colored
noise from mixed speech signals and convolutive ICA was used to separate one
speaker from another in [17] to improve the performance of speaker identification.

Several techniques use speech models to produce hard or soft decisions on
each analysis window, whether the signal is mostly speech or mostly noise. The
decisions were even taken to each time-frequency cell, that is to each identifiable
time-frequency unit on the signal spectrogram.

In order to separate a signal of interest from a cocktail party-like mixture,
its spectrogram can be multiplied with an ideal binary mask (IBM), which can be
estimated by using either Gaussian mixture models (GMM), support vector
machines (SVM), or trained deep neural networks (DNN). It is clear that the IBM
Is not a practical applicable speech enhancement method, since it requires the
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knowledge of both the clean and noise signal, in isolation. For practical speech
enhancement, the goal is to obtain a decent estimate of the IBM.

The idea of the IBM arises from the model of the human auditory
perception, proposed by Albert Stanley Bregmans, called auditory scene analysis
(ASA) [18]. Bregman identifies two stages of auditory analysis. First stage, often
called the segmentation stage, decomposes the input signal into time-frequency
(T-F) units. The second stage groups the different T-F units that are likely to come
from the same source. The T-F units within the same group are then collected into
a perceptual stream. It is believed that this is how humans perform sound source
segregation. This model has inspired research within the field of computational
auditory scene analysis (CASA), where the goal is to extract such streams using
computer programs [18]. In a CASA system, the input signal is first transformed
into a cochleagram, that is, a gammatone filter bank T-F representation, then
divided into frames. Since the goal is to segregate a speech signal from a noise
signal, the IBM has been proposed to decide whether a T-F unit in the
cochleagram is dominated by noise or by speech. The IBM is given by

IBM(n, )= L “Vna,u (10)

0, otherwise,

where Hx(na))u2 is the energy of speech T-F unit, Hv(noo)”2 is the energy of noise

in T-F unit (na)) and @ is a threshold value. Considerable improvements in

speech intelligibility have been reported by use of an IBM with the decision rule
in equation (10) [18].

While the GMMs and SVMs need a model of speech signal, DNN
algorithms learn their own representation of the data, and remain capable of
finding the best features and decisions without being told what to look for. Most
of the DNN concepts are inspired from nature, including our beliefs on how
humans perform complex tasks such as understanding speech, and recognizing
persons or objects [19]. This is entirely different from the usual machine learning
paradigm where features were primarily hand-crafted, and the actual machine
learning was limited to how to perform purely discriminative classification tasks.

With a proper training, fully connected deep neural networks (FCDNNSs)
are able to recognize or synthesize speech, or to solve various tasks, including
speech enhancement. One of the deep network structures that is both simple and
stackable is the denoising autoencoder (DAE) [20]. Starting from a given set of
data points, such as the set of samples in an analysis window, an autoencoder
learns a different set of features, together with the reversed transformation, in
order to reconstruct the initial data with a minimal error. A DAE is trained a little
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bit differently, by reconstructing the clean signal from a version of the signal
corrupted with noise. In [20] it has been shown that minimizing the expected
reconstruction error is the same as maximizing a lower bound on the mutual
information, 1(X,Y). Denoising autoencoders can thus be justified by the objective
that output Y captures as much information as possible about input X, although Y
Is a function of corrupted input.

With convolutional neural networks (CNNs), the temporal structure of
speech can also be exploited. For example, the WaveNet DNN is built from
stacked, dilated, convolution layers [21]. It works directly on the input waveform
and predicts the current output signal sample based on the knowledge of a few
preceding and following input samples (output too, for autoregressive models).

A Bayesian application of the WaveNet was also implemented, which
directly predicts the clean speech audio samples by estimating the prior
distribution and the likelihood function of clean speech using WaveNet-like
architectures [22]. The Bayesian models broaden the generalizability of deep
learning, while the accuracy of modeling is improved by deep learning.

Using the known equivalence of CNNs to regression networks, if the
former is trained with the same receptive field size and a lot more speech and
noise examples of the same distributions, a 4-layer DNN regression-based speech
enhancement was proposed in [23], which we detail in the next section. By using
temporal context data, the spectral bin independence assumption is relaxed.

5. Proposed method and performance comparisons

The method we propose for use in forensics extends the capabilities of the
method described in [23], by also capturing measures of the quality of input
speech. This is done by using the three supplemental input features described in
[24], namely the inverse linear cepstral peak (ILCP), the log-windowed
autocorrelation lag energy (logWALE), and the modified spectral autocorrelation
peak-to-valley ratio (MSAPVR). The proposed network, shown in Fig. 1, uses
data packs of 350 features to encode each 32 ms analysis window of input signal,
with 50% overlap. A data pack is made of 257 log-spectral features and 93
cepstral features — 31 Mel-frequency cepstral coefficients (MFCCs), including the
energy, as well as their variation speeds and accelerations. A set of 8 consecutive
data packs, and the three new features, computed only for the current window, are
fed into the DNN at once.

The network includes three 2803-node hidden layers, with sigmoid
activation, and a final layer with linear activation. The output of the DNN is made
of two log-spectra (one per channel) and the same 93 cepstral features. The output
log-spectra are then inverse Fourier transformed into a time domain series of
enhanced speech windows, which are assembled by 50% overlap and add (OLA).
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The training data for the neural network was extracted from 4620 TIMIT
corpus speech files [25], after corruption with noises from Hu corpus [26].

hidden layer 1 hidden layer 2 hidden layer 3

input layver

initial input

e .ﬁ:!;
R e ol

2

supplemental

Fig. 1. The schematic of the proposed neural network structure

80% of the speech files were corrupted with one of the 100 points noise
types, at one randomly selected SNR from 15 dB, 10 dB, 5 dB, 0 dB, and -5 dB,
while on the other 20%, random isotropic noises and reverberations were applied.

For initialization, each hidden layer received unsupervised pre-training for
20 epochs as restricted Boltzmann machines (RBMs), with a learning rate of
0.0005, except for the output layer, initialized randomly.

Over the 50 epochs of training, the learning rate was set to decrease from
0.1 with 10% per epoch, with a momentum of 0.8. For regularization, the dropout
technique was used, by 10% at the input layer and 20% at each hidden layer. The
training ended on an early stopping basis, after 100 h of training data, using the
minimum mean squared error (MMSE) cost function.

The performance of proposed method was compared to the methods
described in [12], [22] and [23]. Three comparisons were performed in terms of
commonly used objective measures, namely the perceptual evaluation of speech
quality (PESQ) [27], the short-time objective intelligibility (STOI) [28], and the
Itakura-Saito (IS) measure [29], on the NSDTSEA test corpus [30].

The preservation of speech throughout the enhancement process is
paramount in forensics, so that we also estimated the word error rate (WER) on
the SSC-eval corpus, made of 3035 spontaneous and noisy speech files covering
about 3.5 hours, and on the NSDTSEA testset, covering about 1.2 hours in 824
speech files. The WER on SSC-eval was measured with the automatic speech
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recognition (ASR) for Romanian described in [31], while on NSDTSEA with the
baseline Kaldi ASR, trained on the train-clean-100 LibriSpeech corpus [32].

The results of performance comparisons are shown in Table 1, from where
it comes out that proposed method outperforms the methods it was compared to.

Table 1
Comparison of proposed method to other methods
WER [%)] WER [%)]

Method on SSC-eval | on NSDTSEA PESQ | STOI IS
Blind reverberation and
noise estimation, with 21.73 9.42 247 0.88 53.1
Bayesian filtering [12]
Dilated CNN
(WavNet) [22] 47.32 10.23 1.15 0.06 57.0
Regression DNN-GV [23] 20.68 8.47 2.26 0.87 194
Unprocessed 20.02 8.80 - - -
Proposed 20.34 8.21 2.49 0.90 16.6

Given that the dilated CNN [22] works on bare waveform, and had no
training whatsoever for enhancement of reverberated speech, its results indicate a
low generalization capability to reverberated speech.

The method in [23] and the proposed network, both achieve better WER
scores than for unprocessed speech in the NSDTSEA dataset, mainly because of
the normalization effect of the more hand-crafted features used. However, the
ASR system used on the SSC-eval is already very robust against noises presented.

The inclusion of quality measures as inputs helps the neural network to
generalize better to unseen speakers, noise types, and reverberated rooms.

6. Conclusions and future work

In this paper, a palette of forensic speech enhancement techniques was
described, as an introduction to the field, and a DNN-based speech enhancement
method was proposed. The field of forensics deals with audio that is often
obtained in difficult conditions and is likely to be relied upon in a court of law.
Thus it must preserve the authentic features of speech and speakers.

It was shown that the spectral subtraction usually produces musical noise
but may be very handy for easy to remove noises, while the knowledge of the
impulse response of the filter allows the removal of its convolution effects by
inverse filtering. With the use of more crafted input features, which often
concentrate relevant information, the speech recognition performance is
improved, and the enhanced speech is easier to listen to. The training with speech
quality measures and random corruption with noise was shown to achieve state-
of-the-art generalization capability to different speakers and unseen noise
environments.
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The results compared in Table 1 show that the proposed method achieves
the least loss in WER, the highest PESQ, STOI (higher are better), and the lowest
IS (lower means better), although on SSC-eval is has produced a small
disturbance for unprocessed speech. The training of the network with various
noise and reverberation conditions and speech quality information led to increased
speech recognition performance, close to that for the unprocessed corpora.
However, for forensic applications, lower IS values, together with lower WER on
noisy speech corpora, show better speech preservation.

In our future work, we intend to test other features, such as Gammatone
filterbank power spectra and multi-resolution cochleagram feature, as improved
information carrier features for DNNSs input [18].

The objective quality results are expected to improve by working more on
the granularity of the time-frequency representations and on a better selection of
conditioning information, whose study was also left for a future work.
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