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A CLASSIFICATION OF CUBIC EDGE-TRANSITIVE 
GRAPHS OF ORDER 18p 

Mehdi ALAEIYAN1, M.K. HOSSEINIPOOR2 

A graph is called edge-transitive if its automorphism group acts transitively 
on the set of its edge. In this paper, we classify all connected cubic edge-transitive 
graphs of order 18p for each prime p.  

Keywords: Edge-transitive graphs, Semisymmetric graphs, Symmetric graphs,          
s-Regular graphs, Regular coverings. 

1. Introduction 

Throughout this paper graphs are assumed to be finite, simple, undirected 
and connected. For group theoretic concepts and notation not defined here, we 
refer the reader to [13, 24]. Given a positive integer n, we shall use the symbol Ժ݊ 
to denote the ring of residues modulo ݊ as well as the cyclic group of order ݊. 

For a graph X, we use V(X), E(X) and Aut(X) to we denote its vertex set, 
edge set and automorphism group, respectively. For ݑ, א ݒ  ܸ ሺܺሻ,  is the edge ݒݑ
incident to ݑ and ݒ in X and ܰܺሺݑሻ is the set of vertices adjacent to ݑ in X. For a 
subgroup N of Aut(X), denote by XN the quotient graph of X corresponding to the 
orbits of N, that is, the graph having the orbits of N as vertices with two orbits 
adjacent in XN whenever there is an edge between those orbits in X. 

A graph ෩ܺ is called a covering of a graph ܺ with projection ߮:෩ܺ→ ܺ if 
there is a surjection ߮ : ෩ܺ → ܺ such that Ե|ܰ௑෨ ሺݒ෤ሻ ׷  ܰ௑෨ ሺݒ෤ሻ  ՜  ௑ܰሺݒሻ is a 
bijection for any vertex א ݒ  ܸ ሺܺሻ  and ݒ෥ א   ߮െ1ሺݒሻ. A covering ෩ܺ of ܺ with a 
projection ߮ is said to be regular (or k-covering) if there is a semiregular 
subgroup K of the automorphism group Aut(෩ܺ) such that graph ܺ is isomorphic to 
the quotient graph ෩ܺK, say by h, and the quotient map ෩ܺ → ෩ܺK is the composition 
߮h of ߮ and h. If ෩ܺ is connected K becomes the covering transformation group. 
The fibre of an edge or vertex is its preimage under  ߮. An automorphism of ෩ܺ is 
said to be fibre-preserving if it maps a fibre to a fibre, while every covering 
transformation maps a fibre onto itself. All of fibre-preserving automorphism 
from a group called the fibre-preserving group. 

Let G be a finite group and S a subset of G such that 1בS and S = S-1 = 
{s−1|s א S}. The Cayley graph Cay (G, S) on G with respect to S is defined to have 
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vertex set G and edge set {gh| g,h א G,gh−1 א S}. A Cayley graph Cay (G, S) is 
connected if and only if S generates G. It is well known that Aut (Cay (G, S)) 
contains the right regular representation R(G) of G, the acting group of G by 
right multiplication, which is regular on vertices. A Cayley graph Cay (G, S) is 
said to be normal if R(G) is normal in Aut(Cay(G,S)). A graph ܺ is isomorphic to 
a Cayley graph on G if and only if Aut(ܺ) has a subgroup isomorphic to G, acting 
regularly on vertices (see [4, Lemma 16.3]). 

Let s be a positive integer. An s-arc in a graph X is an ordered (s+1)-tuple 
ሺݒ଴, ,ଵݒ … , ,௦ିଵݒ  for 1 ≤ i ≤ s ݅ݒ െ1 is adjacent to݅ݒ ௦ሻ of vertices of X such thatݒ
and ݅ݒെ1 ്  ൅1 for 1 ≤ i ≤ s − 1. For a graph X and a subgroup G of Aut(X), X is݅ݒ
said to be G-vertex-transitive, G-edge-transitive and G-s-arc-transitive if G acts 
transitively on the sets of vertices, edges and s-arcs of X respectively. It is easily 
seen that a graph X which is G-edge but not G-vertex-transitive is necessarily 
bipartite, with the two parts of bipartition coinciding with the orbits of G. In 
particular, if X is a regular graph, then these two parts have equal cardinalities, 
and such a graph is then referred to as being G-semisymmetric. In the case where 
G =Aut(X) the symbol G may be omitted from the definitions above, so that a 
graph X is called vertex-transitive, edge-transitive, s-arc-transitive and 
semisymmetric if it is Aut(X)-vertex-transitive, Aut(X)-edge-transitive, Aut(X)-s-
arc-transitive and Aut(X)-semisymmetric, respectively. In particular 1-arc-
transitive means arc-transitive or symmetric. A symmetric graph X is said to be s-
regular if Aut(X) acts regularly on the set of s-arcs in X. Tutte [21, 23] showed 
that every cubic symmetric graph is s-regular for some 1≤ s ≤5. 

Tutte [22], proved that a vertex- and edge-transitive graph with odd 
valency must be symmetric. Thus a cubic edge-transitive graph is either 
symmetric or semisymmetric. The classification of cubic symmetric or 
semisymmetric graphs of different order is given in many papers. For example, 
the cubic symmetric graphs of order 4p, 4݌ଶ, ,݌6 ,ଶ݌6 ,݌10 ,ଶ݌10  and 16p2 ݌16

were classified in [12,11,19,3] and the cubic semisymmetric graphs of order 
2p3,6p2,6p3,8p and 8p2 were classified in [18,16,9,2,1]. In this paper, we obtain a 
classification of cubic edge-transitive graphs of order 18p. 

In order to state the main Theorem 1.1 we first introduce a family of cubic 
graphs. Let p be a prime such that p ≡ 1 (mod 3), and let k be an element of order 3 
in Ժଷ௣

כ  . Set V (K3,3) = {a,b,c,x,y,z} to be the vertex set of the complete bipartite 
graph K3,3 with partite sets {a,b,c} and {x,y,z}. The graph CF18p is defined to have 
vertex set V (CF18p) = V (K3,3) × Ժ3p and edge set 

E(CF18p) = {(a, i)(x, i), (a, i)(y, i), (a, i)(z, i), (b, i)(y, i), (b, i)(x, i + k + 1), 
(b, i)(z, i+1), (c, i)(x, i−1), (c, i)(y, i−k−1), (c, i)(z, i)|i א Ժ3p}. 



A classification of cubic edge-transitive graphs of order 18p                               221 

It will be shown in the Lemma 2.7 that the graph CF18p is independent of 
the choice of k and hence unique for given order. The following is the main result 
of this paper. 

Theorem 1.1 Let X be a connected cubic edge-transitive graph of order 
18p, where p is a prime. Then X is either semisymmetric or s-regular for some s = 
1, 2 or 5. 
Furthermore, 
(1) X is semisymmetric if and only if X is isomorphic to one of the graphs S54 

and S126; 
(2) X is 1-regular if and only if X is isomorphic to the graph CF18p, where p ≡ 1 
(mod 3); 
(3) X is 2-regular if and only if X is isomorphic to the graph F54; 
(4) X is 5-regular if and only if X is isomorphic to one of the graphs F90 and F234B. 

2. Preliminaries 
Proposition 2.1 [18, Proposition 2.6]  Let X be a G-semisymmetric graph 

for some subgroup G of Aut(X). Then either X ≡ K3,3 or G acts faithfully on each 
of bipartition sets of X. 

Proposition 2.2 [18, Proposition 2.3]  Let X be a connected bipartite 
graph admitting an abelian subgroup G ≤ Aut(X) acting regularly on each of the 
bipartition sets. Then X is vertex-transitive. 

The next Proposition is a special case of [16, Lemma 3.2]. 
Proposition 2.3  Let X be a connected G-semisymmetric cubic graph with 

bipartition sets L(X) and R(X) and let N be a normal subgroup of G. If N is 
intransitive on bipartition sets, then N acts semiregularly on both L(X) and R(X), 
and X is an N-covering of a G/N-semisymmetric graph. 

Proposition 2.4  [15. Theorem 9] Let X be a connected symmetric graph 
of prime valency and G an s-arc-transitive subgroup of Aut(X) for some s ≥ 1. If a 
normal subgroup N of G has more than two orbits, then it is semiregular and G/N 
is an s-arc-transitive subgroup of Aut(XN), where XN is the quotient graph of X 
corresponding to the orbits of N. Furthermore, X is a regular covering of XN with 
the covering transformation group N. 

Let X = Cay (G, S) be a Cayley graph on a group G with respect to S.  Set 
A :=Aut(X) and Aut(G,S) := {α אAut(G) | Sα = S}. Then we have: 

Proposition 2.5 [25, Proposition 1.5] The Cayley graph X = Cay (G,S) is 
normal if and only if A1 =Aut(G,S), where A1 is the stabilizer of the vertex 1 א V 
(X) = G in A. 

Let p be a prime. It is easy to see that the equation 
 x2 + x + 1 = 0 (1) 
has no solution in the ring Ժ3݌ for p = 3. The following result determines the 
solutions of Eq. (1) in Ժ3݌ for p ≠ 3. 
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Lemma 2.6 Let p ≠ 3 be a prime. Then there exists k א Ժ3݌ solving Eq. (1) 
if and only if k is an element of order 3 in Ժଷ௣

כ . 
Proof. Suppose first that k א Ժ3p such that k2 + k + 1 = 0. Then k ≠ 1 and 

since k3 − 1 = (k − 1)(k2 + k + 1) = 0, it follows that k is an element of order 3 in 
Ժଷ௣

כ . 
Conversely, suppose that k is an element of order 3 in Ժଷ௣

כ  . Then k ≠ 1 and 
k3 = 1. It follows that (k − 1)(k2 + k + 1) = 0. If k − 1 is divisible by 3, then k2 + k + 
1 is also divisible by 3. Thus, in order to prove k2 + k + 1 = 0, it suffices to show k 
− 1 is coprime with p. Assume that (k − 1, p) ≠ 1. Then k ≡ 1 (mod p). Let k = tp + 
1. Then k3 = t3p3 + 1. Since k3 = 1 and p = 36, we have t ≡ 0 (mod 3). Hence k = 1, 
a contradiction. This completed the proof of lemma. 

Let p be a prime such that ݌ ؠ 1 ሺ݉3 ݀݋ሻ. ܵ݅݊ܿ݁ Ժଷ௣
כ ؆ Ժଶ ൈ Ժ௣ିଵ, by 

Lemma 2.6, there are exactly two elements of order 3, say k and k2 in Ժଷ௣మ
כ  

solving Eq. (1). Denote by V (K3,3) = {a,b,c,x,y,z} the vertex set of K3,3 as before. 
The graphs 

CF18p and ܨܥതതതത18݌ are defined to have the same vertex set V (CF18p) = V 
 V (K3,3) × Ժ3p and edge sets = (݌തതതത18ܨܥ)

E(CF18p) = {(a,i)(x,i), (a,i)(y,i), (a,i)(z,i), (b,i)(y,i), (b,i)(x,i + k + 1), (b,i)(z,i+1), 
(c,i)((x,i−1), (c,i)(y,i−k−1), (c,i)(z,i)|i א Ժ3p}, 

E(CF18p) = {(a,i)(x,i), (a,i)(y,i), (a,i)(z,i), (b,i)(y,i), (b,i)(x,i + k2 + 1), 
 (b,i)(z,i+1), (c,i)((x,i−1), (c,i)(y,i−k2−1), (c,i)(z,i)|i א Ժ3p}, 

 
respectively. The graph ܨܥതതതത18݌ is obtained by replacing k with k2 in each edge of 
CF18p. It is easy to see that CF18p and ܨܥതതതത18݌ are cubic and bipartite. 

Lemma 2.7 The graphs CF18p and ܨܥതതതത18݌ are isomorphic. 
Proof. Let p be a prime such that p � 1(mod 3) and k an element of order 

3 in Ժଷ௣
כ . To show CF18p ؆  by (݌തതതത18ܨܥ) തതതതଵ଼௣ we define a map α from V (CF18p) to Vܨܥ

(a,i)   (a,ki),  (b,i)    (c,ki),  (c,i)    (b,ki), 
(x,i)   (x,ki),  (y,i)    (z,ki),  (z,i)   (y,ki), 

where i � Ժ3݌. Clearly, 
                                             ஼ܰி18݌൫ሺ܊, ݅ሻ൯ ൌ ሼሺy, ݅ሻ, ሺx, ݅ ൅ ݇ ൅ 1ሻ, ሺz, ݅ ൅ 1ሻሽ, 

ܰ஼ிതതതത18݌ሺሺ܊, ݅ሻ஑ሻ ൌ ܰ஼ிതതതത18݌൫ሺܿ, ݇݅ሻ൯ 
                                                                 =ሼሺݔ, ݇݅ െ 1ሻ, ሺݕ, ݇݅ െ ݇ଶ െ 1ሻ, ሺݖ, ݇݅ሻሽ 

 
By Lemma 2.6, k2 + k + 1 = 0. With use of this property, one can show that 

[NCF18p((b,i))]α = ܰ஼ிതതതതభఴ೛ ((b,i)α), 
 Similarly, 
[NCF18p((u,i))]α = ܰ஼ிതതതതభఴ೛ ((u,i)α), 
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for u = a, c. It follows that α is an isomorphism from CF18 to ܨܥതതതത18݌, because the 
graphs are bipartite. 

In view of [17, Corollary 2.2], [10, Theorem 1.1], Lemma 2.6 and 
Lemma 2.7 imply the following. 

Lemma 2.8 Let X be a connected cubic Ժ3݌-covering of K3,3 whose fibre-
preserving group acts edge-transitively on X. Then p ≡ 1(mod 3) and X is 
isomorphic to the 1-regular graph CF18p. 

3. Proof of Theorem 1.1 
Lemma 3.1 Let p be a prime. Then, with the exception of the graphs S54 

(the Gray graph) and S126, every connected cubic edge-transitive graph of order 
18p is symmetric. 

Proof.  By [7], there are two cubic semisymmetric graphs of order 18p for 
p ≤ 41 which are the graphs S54 and S126. To prove the lemma, we only need to 
show that no connected cubic semisymmetric graph of order 18p exists for p ≥ 43. 

Suppose that there exists a connected cubic semisymmetric graph X of 
order 18p with p ≥ 43. Then X is bipartite. Denote by L(X) and R(X) the bipartition 
sets of X. Clearly, |L(X)| = |R(X)| = 9p. Set A:=Aut(X). By Proposition 2.1, A is 
faithful on each bipartition sets of X and by [18, Proposition 2.4], the vertex 
stabilizer Av of v א V (X) has order 2r.3, where r ≥ 0. Thus |A| = 2r.33.p. By [14, pp. 
12- 14], there is no simple {2,3, p}-group for p ≥ 43. Hence A is solvable. 

For any prime divisor q of |A|, denote by Oq(A) the largest normal q-
subgroup of A. Then by Proposition 2.3, Oq(A) is semiregular on L(X) and R(X) 
and the quotient graph XOq(A) is A/Oq(A)-semisymmetric. Thus O2(A) = 1 and 
|O3(A)| is a divisor of 9. By the solvability of A, either O3(A) ≠ 1 or Op(A) ≠ 1. If 
O3(A) ≠ 1 then |O3(A)| = 3 or 9. Let T/O3(A) be a minimal normal subgroup of 
A/O3(A). Since A is solvable, A/O3(A) is also solvable, implying T/O3(A) is 
elementary abelian. The quotient graph XO3(A) is A/O3(A)-semisymmetric. Thus by 
Proposition 2.3, O2(A/O3(A)) = 1 and since O3(A/O3(A)) = 1, we conclude that 
T/O3(A) is a p-group. Now |T| = 3p or 9p and since p ≥ 43, by Sylow Theorem, T 
has a normal Sylow p-subgroup, which is characteristic in T and hence normal in 
A because T  A. Therefore Op(A) ≠ 1. 
Set P = Op(A). Since Op(A) ≠ 1, we have P ؆ Ժp. Note that the quotient graph XP  
is A/P-semisymmetric. Thus XP is bipartite. Denote by L(XP) and R(XP) the 
bipartition sets of XP . Then |L(XP)| = |R(XP)| = 9. Set C = CA(P). Then P ≤ C. 
Suppose C = P. Then by [20, Theorem 1.6.13], A/P is isomorphic to a subgroup of 
Aut(P) ؆ Ժp−1, which implies that A/P is abelian. Since XP is A/P semisymmetric, 
it follows by Proposition 2.1, and [24, Proposition 4.4] that A/P is regular on 
L(XP) (and also R(XP )). This implies that |A| = 9p, a contradiction. Thus P < C, 
that is, P is a proper subgroup of C. Let M/P be a minimal normal subgroup of 
A/P contained in C/P. Then M/P is an elementary abelian 3-group because by 
Proposition 2.3, O2(A/O3(A)) = 1. Let Q be a Sylow 3-subgroup of M. Then M = 
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PQ, implying M = P × Q because Q < C. Hence Q is characteristic in M and since 
M ٱ A, we have Q ٱ A. Thus Q ≤ O3(A), it follows that |Q| = 3 or 9 and Q is 
semiregular on L(XP ) and R(XP ). Let |Q| = 9. Then M is an abelian group of order 
9p. Since the vertex stabilizer of each vertex of X has order 2r.3, it follows by the 
semiregularity of Q on L(X) and R(X) that M is regular on each of the bipartition 
sets of X. By Proposition 2.2, X is vertex-transitive, a contradiction. 

Thus Q ؆ Ժ3, and hence  M ؆ Ժ3p. By Proposition 2.3, X is a Ժ3p-covering 
of the bipartite graph K3,3 and since M A, the fibre-preserving group is the 
automorphism group A of X, so it is edge-transitive. But by Lemma 2.8, X is 
symmetric, which is a contradiction. 

Lemma 3.2 Let X be a connected cubic symmetric graph of order 18p, 
where p is a prime. Then X is 1-,2-, or 5-regular. Furthermore, 
(1) X is 1-regular if and only if X is isomorphic to the 1-regular graph CF18p, 

where p ≡ 1 (mod 3); 
(2) X is 2-regular if and only if X isomorphic to the graph F54; 
(3) X is 5-regular if and only if X is isomorphic to one of the graphs F90 and 

F234B. 
Proof. Let X be a cubic graph satisfying the assumptions and let A 

=Aut(X). Since X is symmetric by Tutte [23], X is s-regular for some s ≤ 5. Thus 
|A| = 2s.33.p. For each prime p = 7,19,31 or 37, by [6] and Lemma 2.8, there is 
only one connected cubic symmetric graph of order 18p, which is the 1-regular 
graph CF18p and for each prime p = 2,11,17,23,29 or 41, there is no connected 
cubic symmetric graph of order 18p. Similarly, for p = 3 or 5, there is only one 
connected cubic symmetric graph of order 18p, that is, the 2-regular graph F54 and 
the 5-regular graph F90, and for p = 13 there are two connected cubic symmetric 
graph of order 18 × 13 which are the 1-regular graph CF234 and the 5-regular 
graph F234B. Thus we may assume that p ≥ 43. By [14, pp. 12-14], A is solvable. 

Let q be a prime divisor of |A|. Then by Proposition 2.4, Oq(A) is 
semiregular on V (X) and the quotient graph XOq(A) is a cubic symmetric graph. 
The semiregularity of Oq(A) implies that |Oq(A)|  | 18p2. If O2(A) = 16, then O2(A) 
؆ Ժ2 and hence XO2(A) has odd order and valency 3, a contradiction. Thus O2(A) = 
1 and by the solvability of A, either O3(A) ≠ 1 or Op(A) ≠ 1. If O3(A) ≠ 1, then 
|O3(A)| = 3 or 9. Let T/O3(A) be a minimal normal subgroup of A/O3(A). Then 
T/O3(A) is elementary abelian because A is solvable. Since O3(A/O3(A)) = 1, 
T/O3(A) is a 2- or p-group. For the former by Proposition 2.4, the quotient graph 
XT would have be a cubic graph of odd order, a contradiction. Thus T/O3(A) is a   
p-group. 
Now |T| = 3p or 9p and since p ≥ 43, by Sylow Theorem, M has a normal Sylow 
p-subgroup, which is characteristic in T and hence normal in A. Therefore 
Op(A)≠1. 
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Set P = Op(A). Since Op(A) ≠ 1, we have P ؆ Ժp. By Proposition 2.4, the 
quotient graph XP is a cubic symmetric graph and A/P is an arc-transitive 
subgroup of Aut(XP ). Set C = CA(P). Clearly P ≤ C. Suppose that P = C. Then by 
[20, Theorem 1.6.13], A/P is isomorphic to a subgroup of Aut(P) ؆ Ժp−1, which 
implies that A/P is abelian. Since A/P is transitive on V (XP ), it follows by [24, 
Proposition 4.4] that A/P is regular on V (XP). This implies that |A| = 18p, a 
contradiction. Thus P < C. Let M/P be a minimal normal subgroup of A/P 
contained in C/P. Then M/P is an elementary abelian 2- or 3-group. If M/P is a 2-
group then by Proposition 2.4, the quotient graph XM is a cubic symmetric graph 
of odd order, a contradiction. Thus M/P is a 3-group. Let Q be a Sylow 3-
subgroup of M. Then M = PQ, implying M = P × Q because Q < C. Hence Q is 
characteristic in M and since M ٱ  A, we have Q ٱ  A. Thus Q ≤ O3(A) and hence 
|Q| = 3 or 9. Note that Q is isomorphic to the elementary abelian group M/P. Then 
ܳ ؆ Ժ ଷ or Ժଷ

ଶ. 
Let ܳ ؆ Ժ ଷ. Then the quotient graph XQ is a cubic symmetric graph of 

order 2p and A/Q is an arc-transitive subgroup of Aut(XQ). Since p ≥ 43, by [5] 
and [8, Lemma 3.4], XQ is a normal cubic 1-regular Cayley graph on dihedral 
group D2p. Thus A/Q =Aut(XQ) and A has a normal subgroup G such that G/Q acts 
regularly on V (XQ). Consequently, G is regular on V (X) and hence X is a normal 
cubic 1-regular Cayley graph on G. Let X = Cay (G, S). Since X has valency 3, S 
contains at least one involution. By Proposition 2.5, Aut(G,S) is transitive on S, 
which implies that S consists of three involutions and by the connectivity of X, G 
can be generated by three involutions. Note that M/Q is a normal Sylow p-
subgroup of A/Q. Then  M/Q  G/Q, implying M ٱG. Since ܯ ؆ Ժଷ

ଶ ൈ Ժ௣ . and 
G/Q ؆ D2p, one can conclude that ܩ ؆ Ժଷ

ଶ ൈ Ժଷ ݎ݋ ଶ௣ܦ ൈ  ଺௣, which isܦ
impossible because in each case G cannot be generated by involutions. 

Thus Q ؆ Ժ3, and so M ؆ Ժ3p. By Proposition 2.4, X is a Ժ3p-covering of 
the bipartite graph K3,3 and since M ٱ A, the symmetry of X means that the fibre-
preserving group is arc-transitive and hence is edge-transitive. By Lemma 2.8, X 
is isomorphic to CF18p, where p ≡ 1 (mod 3). 

Proof of Theorem 1.1 It follows by Lemmas 3.1 and 3.2. 

R E F E R E N C E S 

 [1]. M. Alaeiyan, M. Ghasemi, “Cubic edge-transitive graphs of order 8p2”, in Bull. Austral. 
Math., vol. 77, 2008, pp. 315-323 

[2]. M. Alaeiyan, M.K. Hosseinipoor, “Classifying cubic symmetric graphs of order 8p”, in Proc.  
Indian Acad. Sci. (Math. Sci.), vol. 119, no. 5, 2011, pp. 647-653 

[3]. M. Alaeiyan, B.N. Onagh, M.K. Hosseinipoor, “A classification of cubic symmetric graphs of 
order 16p2”, in Proc. Indian Acad. Sci. (Math. Sci.), vol. 121, no. 3, 2011, pp. 249-257 

[4]. N. Biggs, “Algebraic Graph Theory, second ed.”, in Cambridge University Press, Cambridge, 
1993. 



226                                          Mehdi Alaeiyan, M. K. Hosseinipoor 

[5]. Y. Cheng, J. Oxley, “On weakly symmetric graphs of order twice a prime”, in J. Combin. 
Theory Ser. vol. 42, 1987, pp. 196-211. 

[6]. M.D. E. Conder, P. Dobcs´anyi, “Trivalent symmetric graphs on up to 768 vertices”, in J. 
Combin. Math. Combin. Comput. vol. 40, 2002, pp. 41-63 

[7]. M.D. E. Conder, A. Malniˇc, D. Maruˇsiˇc, P. Potocnik, “A census of semisymmetric cubic 
graphs on up to 768 vertices”, in J. Algebraic Combin. vol. 23, 2006, pp. 255-294. 

[8]. S.F. Du, Y.-Q. Feng, J.H. Kwak,, M.Y. Xu, “Cubic Cayley graphs on dihedral groups”, in 
Mathematical Analysis and Applications, Narosa Publishing House, New Delhi, 2004, pp. 
224-235. 

[9]. Y. Q. Feng, M. Ghasemi and C.Q. Wang, “Cubic semisymmetric graphs of order 6p3”, in 
Discrete Math., vol. 310, 2010, pp. 2342-2355. 

[10]. Y. Q. Feng, J.H. Kwak, “s-Regular cyclic coverings of the complete bipartite graph K3,3”, in 
J. Graph Theory, vol. 45, 2004, pp. 101-112. 

[11]. Y. Q. Feng, J.H. Kwak, “Classifying cubic symmetric graphs of order 10p or 10p2”, in Sci. 
China Ser. vol . A 49 , 2006, pp. 300-319. 

[12]. Y. Q. Feng, J.H. Kwak, “Cubic symmetric graphs of order a small number times a prime or a 
prime square”, in J. Combin. Theory Ser. vol B 97, 2007, pp. 627-646. 

[13]. D. Gorenstein, “Finite Groups”, in Harper and Row, New York, 1968. 
[14]. D. Gorenstein, “Finite Simple Groups”, in Plenum Press, New York, 1982. 
[15]. P. Lorimer, “Vertex-transitive graphs: Symmetric graphs of prime valency”,in J. Graph  
        Theory, vol. 8, 1984, pp. 55-68. 
[16]. Z. Lu, M.Y. Xu, C.Q. Wang, “On semisymmetric cubic graphs of order 6p2”, in Sci. China 

Ser., vol. A 47, 2004, pp. 1-17. 
[17]. A. Malniˇc, D. Maruˇsiˇc, P. Potocnik, C.Q. Wang, “An infinite family of cubic edge-but not 

vertex-transitive graphs”, in Discrete Math., vol. 280, 2004, pp. 133-148. 
[18]. A. Malniˇc, D. Maruˇsiˇc, C.Q. Wang, “Cubic edge-transitive graphs of order 2p3”, in 

Discrete Math. vol. 274, 2004, pp. 187-198. 
[19]. J.M. Oh, “A classification of cubic s-regular graphs of order 16p”, in Discrete Math., vol. 

309, 2009, pp. 3150-3155. 
[20]. D.J. Robinson, “A Course in the Theory of Groups”, in Springer-Verlag, New York, 1982. 
[21]. W.T. Tutte, “A family of cubical graphs”, in Proc. Camb. Phil. Soc., vol. 43, 1947, pp.459- 
474. 
[22]. W.T. Tutte, “Connectivity in Graphs”, in University of Toronto Press, Toronto, 1966. 
[23]. W.T. Tutte, “On the symmetry of cubic graphs”, in Canada. J. Math., vol. 11, 1959, 

pp. 621-624. 
[24]. H. Wielandt, “Finite Permutation Groups”, in Academic Press, New York, 1964. 
[25]. M.Y. Xu, “Automorphism groups and isomorphisms of Cayley digraphs”, in Discrete Math. 

182 (1998) 309-319. 


