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A CLASSIFICATION OF CUBIC EDGE-TRANSITIVE
GRAPHS OF ORDER 18p

Mehdi ALAETYAN', M.K. HOSSEINIPOOR?

A graph is called edge-transitive if its automorphism group acts transitively
on the set of its edge. In this paper, we classify all connected cubic edge-transitive
graphs of order 18p for each prime p.

Keywords: Edge-transitive graphs, Semisymmetric graphs, Symmetric graphs,
s-Regular graphs, Regular coverings.

1. Introduction

Throughout this paper graphs are assumed to be finite, simple, undirected
and connected. For group theoretic concepts and notation not defined here, we
refer the reader to [13, 24]. Given a positive integer n, we shall use the symbol Z,
to denote the ring of residues modulo n as well as the cyclic group of order n.

For a graph X, we use V(X), E(X) and Aut(X) to we denote its vertex set,
edge set and automorphism group, respectively. For u,v € V (X), uv is the edge
incident to u and v in X and Ny(u) is the set of vertices adjacent to u in X. For a
subgroup N of Aut(X), denote by Xx the quotient graph of X corresponding to the
orbits of N, that is, the graph having the orbits of N as vertices with two orbits
adjacent in Xy whenever there is an edge between those orbits in X.

A graph X is called a covering of a graph X with projection @:X— X if
there is a surjection ¢ : X — X such that @|Ng(¥) : Ng(¥) — Nyg(v) is a
bijection for any vertex v € V (X) and ¥ € ¢~ 1(v). A covering X of X with a
projection ¢ is said to be regular (or k-covering) if there is a semiregular
subgroup K of the automorphism group Aut(X) such that graph X is isomorphic to
the quotient graph X, say by 4, and the quotient map X — X is the composition
@h of @ and h. If X is connected K becomes the covering transformation group.
The fibre of an edge or vertex is its preimage under ¢. An automorphism of X is
said to be fibre-preserving if it maps a fibre to a fibre, while every covering
transformation maps a fibre onto itself. All of fibre-preserving automorphism
from a group called the fibre-preserving group.

Let G be a finite group and S a subset of G such that 1¢S and § = §/ =
{s"'|s € S}. The Cayley graph Cay (G, S) on G with respect to S is defined to have

'Prof,, Department of Mathematics, Faculty of Science, South Tehran branch, Islamic Azad
University, Tehran, Iran, e-mail: m_alaeiyan@azad.ac.ir.
? Department of Mathematics, Iran University of Science and Technology, Iran



220 Mehdi Alaeiyan, M. K. Hosseinipoor

vertex set G and edge set {gh| g,h € G,gh”' € S}. A Cayley graph Cay (G, S) is
connected if and only if S generates G. It is well known that Aut (Cay (G, S))
contains the right regular representation R(G) of G, the acting group of G by
right multiplication, which is regular on vertices. A Cayley graph Cay (G, S) is
said to be normal if R(G) is normal in Aut(Cay(G,S)). A graph X is isomorphic to
a Cayley graph on G if and only if Aut(X) has a subgroup isomorphic to G, acting
regularly on vertices (see [4, Lemma 16.3]).

Let s be a positive integer. An s-arc in a graph X is an ordered (s+1)-tuple
(vg, vy, ---, Vs_q1, Vg) of vertices of X such that v;_; is adjacent to v; for 1 <i <s
and v;_; # v;4q for 1 <i<s — 1. For a graph X and a subgroup G of Aut(X), X is
said to be G-vertex-transitive, G-edge-transitive and G-s-arc-transitive if G acts
transitively on the sets of vertices, edges and s-arcs of X respectively. It is easily
seen that a graph X which is G-edge but not G-vertex-transitive is necessarily
bipartite, with the two parts of bipartition coinciding with the orbits of G. In
particular, if X is a regular graph, then these two parts have equal cardinalities,
and such a graph is then referred to as being G-semisymmetric. In the case where
G =Aut(X) the symbol G may be omitted from the definitions above, so that a
graph X is called vertex-transitive, edge-transitive, s-arc-transitive and
semisymmetric if it is Aut(X)-vertex-transitive, Aut(X)-edge-transitive, Aut(X)-s-
arc-transitive and Aut(X)-semisymmetric, respectively. In particular 1-arc-
transitive means arc-transitive or symmetric. A symmetric graph X is said to be s-
regular if Aut(X) acts regularly on the set of s-arcs in X. Tutte [21, 23] showed
that every cubic symmetric graph is s-regular for some 1< s <5.

Tutte [22], proved that a vertex- and edge-transitive graph with odd
valency must be symmetric. Thus a cubic edge-transitive graph is either
symmetric or semisymmetric. The classification of cubic symmetric or
semisymmetric graphs of different order is given in many papers. For example,
the cubic symmetric graphs of order 4p, 4p?,6p, 6p2,10p, 10p%, 16p and 16p°
were classified in [12,11,19,3] and the cubic semisymmetric graphs of order
2p°,6p°,6p° 8p and 8p” were classified in [18,16,9,2,1]. In this paper, we obtain a
classification of cubic edge-transitive graphs of order 18p.

In order to state the main Theorem 1.1 we first introduce a family of cubic
graphs. Let p be a prime such that p = 1 (mod 3), and let k£ be an element of order 3
in ng . Set V (K33) = {a,b,c,x,y,z} to be the vertex set of the complete bipartite
graph K3 3 with partite sets {a,b,c} and {x,y,z}. The graph CFis,is defined to have
vertex set V' (CFisp) = V (K33) % Z3,and edge set

E(CF1sp) = {(a D% 1), (3, D(y, ), (3 )(z 1), (b, D(y, ), (b, D(x i +k+1),
(b, i)z, i+1), (c, i)(x, i=1), (c, i)y, i~k=1), (c, i)(z i)|i € Z3p}.
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It will be shown in the Lemma 2.7 that the graph CFsg, is independent of
the choice of £ and hence unique for given order. The following is the main result
of this paper.

Theorem 1.1 Let X be a connected cubic edge-transitive graph of order
18p, where p is a prime. Then X is either semisymmetric or s-regular for some s =
1, 2 or 5.

Furthermore,

(1) X is semisymmetric if and only if X is isomorphic to one of the graphs S54
and S126;

(2) Xis 1-regular if and only if X is isomorphic to the graph CF's,, where p = 1

(mod 3);

(3) Xis 2-regular if and only if X is isomorphic to the graph Fis4;

(4) X is 5-regular if and only if X is isomorphic to one of the graphs Fgoand F)345.

2. Preliminaries

Proposition 2.1 [18, Proposition 2.6] Let X be a G-semisymmetric graph
for some subgroup G of Aut(X). Then either X = K3 or G acts faithfully on each
of bipartition sets of X.

Proposition 2.2 [18, Proposition 2.3] Let X be a connected bipartite
graph admitting an abelian subgroup G < Aut(X) acting regularly on each of the
bipartition sets. Then X is vertex-transitive.

The next Proposition is a special case of [16, Lemma 3.2].

Proposition 2.3 Let X be a connected G-semisymmetric cubic graph with
bipartition sets L(X) and R(X) and let N be a normal subgroup of G. If N is
intransitive on bipartition sets, then N acts semiregularly on both L(X) and R(X),
and X is an N-covering of a G/N-semisymmetric graph.

Proposition 2.4 [15. Theorem 9] Let X be a connected symmetric graph
of prime valency and G an s-arc-transitive subgroup of Aut(X) for some s > 1. If a
normal subgroup N of G has more than two orbits, then it is semiregular and G/N
is an s-arc-transitive subgroup of Aut(Xy), where Xy is the quotient graph of X
corresponding to the orbits of N. Furthermore, X is a regular covering of Xy with
the covering transformation group N.

Let X = Cay (G, S) be a Cayley graph on a group G with respect to S. Set
A =Aut(X) and Aut(G,S) := {a EAut(G) | S"=S}. Then we have:

Proposition 2.5 [25, Proposition 1.5] The Cayley graph X = Cay (G,S) is
normal if and only if A) =Aut(G,S), where A, is the stabilizer of the vertex 1 € V
X)=GinA.

Let p be a prime. It is easy to see that the equation

X¥+x+1=0 (1)
has no solution in the ring Z,, for p = 3. The following result determines the
solutions of Eq. (1) in Z;, for p # 3.
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Lemma 2.6 Let p # 3 be a prime. Then there exists k € Zs, solving Eq. (1)
if and only if k is an element of order 3 in Z,.

Proof. Suppose first that k£ € Z3, such that K+k+1=0.Then k# 1 and
since £ — 1 = (k— 1)(K* + k + 1) = 0, it follows that k is an element of order 3 in
Ly,

Conversely, suppose that & is an element of order 3 in Z3,, . Then £ # 1 and
/= 1. It follows that (k — 1)(K*+ k+ 1) = 0. If k — 1 is divisible by 3, then K>+ k +
1 is also divisible by 3. Thus, in order to prove &*+ k + 1 = 0, it suffices to show k
— 1 is coprime with p. Assume that (k— 1, p) # 1. Then k=1 (mod p). Let k=1p +
1. Then &’ = £p’* + 1. Since &’ = 1 and p = 36, we have = 0 (mod 3). Hence k=1,
a contradiction. This completed the proof of lemma.

Let p be a prime such that p = 1 (mod 3).Since Z3,, = Z, X Z,_4, by
Lemma 2.6, there are exactly two elements of order 3, say k and &’ in Z;pz
solving Eq. (1). Denote by V' (K33) = {a,b,c,X,y,z} the vertex set of K3 3 as before.
The graphs

CF'sp and ﬁlgp are defined to have the same vertex set V' (CFig,) = V
(CFigy) = V (K3,3) X Z3,and edge sets

E(CFigp) = {(@,0)(x.0), (@,0)(Y.0), (@i)(z1), (b.i)(y.0), (b,))(X.i+k+1), (bi)zi+]),
(€.O)((X.i=1), (C.0)(y,i=k=1), (C.O(Z.D)|i € Z3,},

E(CFisy) = {@)(x.0), @i)(Y.), @)z, (0,i)(Y.0), (b,)(xi+ kK +1),
(b,))(zi+1), (C.i)(xi-1), (c,i)y,i—k—1), (¢.i)(zi)|i € Z3,},

respectively. The graph CF g, is obtained by replacing k with K in each edge of
CFgp. It is easy to see that CFg, and CF,g, are cubic and bipartite.
Lemma 2.7 The graphs CF g, and CF g, are isomorphic.
Proof. Let p be a prime such that p B 1(mod 3) and k an element of order
3 in Z3,. To show CFigp = CFyg, we define a map a from V (CFisp) to V (CFyg,) by
(i) = (a ki), (b,i) = (cki), (ci) = (b,ki),
(x,1) = (x ki), (y,i) = (z ki), (z1) = (y ki),
where I B Z;,. Clearly,
NCFlSp((b: D) ={@ D &i+k+1),@zi+1}
Neris, (b, 1)) = Ngpag, ((c, ki)
={(x, ki — 1), (y, ki —k? — 1), (z, ki)}

By Lemma 2.6, K+ k + 1 = 0. With use of this property, one can show that
[Ners((0,0)]"= Negyg,, (0,07,
Similarly,
[Ners,((U,0)]*= Negyg,, ((U0)),
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for u = a, c. It follows that a is an isomorphism from CFigto CF,g,, because the
graphs are bipartite.

In view of [17, Corollary 2.2], [10, Theorem 1.1], Lemma 2.6 and
Lemma 2.7 imply the following.

Lemma 2.8 Let X be a connected cubic Z,-covering of K33 whose fibre-
preserving group acts edge-transitively on X. Then p = 1(mod 3) and X is
isomorphic to the 1-regular graph CFg,.

3. Proof of Theorem 1.1

Lemma 3.1 Let p be a prime. Then, with the exception of the graphs S54
(the Gray graph) and S126, every connected cubic edge-transitive graph of order
18p is symmetric.

Proof. By [7], there are two cubic semisymmetric graphs of order 18p for
p <41 which are the graphs S54 and S126. To prove the lemma, we only need to
show that no connected cubic semisymmetric graph of order 18p exists for p > 43.

Suppose that there exists a connected cubic semisymmetric graph X of
order 18p with p > 43. Then X is bipartite. Denote by L(X) and R(X) the bipartition
sets of X. Clearly, |L(X)| = |R(X)| = 9p. Set A:=Aut(X). By Proposition 2.1, 4 is
faithful on each bipartition sets of X and by [18, Proposition 2.4], the vertex
stabilizer A, of v € V' (X) has order 2".3, where r > 0. Thus |4| = 2".3° p. By [14, pp.
12- 14], there is no simple {2,3, p}-group for p >43. Hence 4 is solvable.

For any prime divisor g of |4|, denote by O,(4) the largest normal g¢-
subgroup of A. Then by Proposition 2.3, O,(4) is semiregular on L(X) and R(X)
and the quotient graph Xop,u) is A/O,(A)-semisymmetric. Thus O»(4) = 1 and
|O3(4)] is a divisor of 9. By the solvability of A4, either O3(4) # 1 or O,(4) # 1. If
0O3(4) # 1 then |O3(4)| = 3 or 9. Let 7/03(4) be a minimal normal subgroup of
A/O5(A4). Since A is solvable, A/O5(A) is also solvable, implying 7/05(A) is
elementary abelian. The quotient graph Xo,4) is A/O3(A4)-semisymmetric. Thus by
Proposition 2.3, 0,(4/05(A)) = 1 and since O3(4/05(4)) = 1, we conclude that
T/05(A) is a p-group. Now |7] = 3p or 9p and since p > 43, by Sylow Theorem, T’
has a normal Sylow p-subgroup, which is characteristic in 7 and hence normal in
A because T <2 4. Therefore Op(4) # 1.

Set P = O,(A4). Since O,(4) # 1, we have P = Zp. Note that the quotient graph Xp
is A/P-semisymmetric. Thus Xp is bipartite. Denote by L(Xp) and R(Xp) the
bipartition sets of Xp . Then |L(Xp)| = |R(Xp)| = 9. Set C = C4(P). Then P < C.
Suppose C = P. Then by [20, Theorem 1.6.13], A/P is isomorphic to a subgroup of
Aut(P) = Zp-1, which implies that 4/P is abelian. Since Xp is A/P semisymmetric,
it follows by Proposition 2.1, and [24, Proposition 4.4] that 4/P is regular on
L(Xp) (and also R(Xp )). This implies that |4] = 9p, a contradiction. Thus P < C,
that is, P is a proper subgroup of C. Let M/P be a minimal normal subgroup of
A/P contained in C/P. Then M/P is an elementary abelian 3-group because by
Proposition 2.3, 0,(4/05(A)) = 1. Let QO be a Sylow 3-subgroup of M. Then M =
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PQ, implying M = P x Q because Q < C. Hence Q is characteristic in M and since
M < A4, we have Q < A. Thus Q < 0;3(A4), it follows that |Q] = 3 or 9 and Q is
semiregular on L(Xp) and R(Xp). Let |Q] = 9. Then M is an abelian group of order
9p. Since the vertex stabilizer of each vertex of X has order 2".3, it follows by the
semiregularity of O on L(X) and R(X) that M is regular on each of the bipartition
sets of X. By Proposition 2.2, X is vertex-transitive, a contradiction.

Thus Q = Z3, and hence M = Z3p. By Proposition 2.3, X is a Z3p-covering
of the bipartite graph K33 and since M=14, the fibre-preserving group is the
automorphism group 4 of X, so it is edge-transitive. But by Lemma 2.8, X is
symmetric, which is a contradiction.

Lemma 3.2 Let X be a connected cubic symmetric graph of order 18p,
where p is a prime. Then X is 1-,2-, or 5-regular. Furthermore,

(1) X is 1-regular if and only if X is isomorphic to the 1-regular graph CFg,,
where p =1 (mod 3);

(2) Xis 2-regular if and only if X isomorphic to the graph Fsa;

(3) X is 5-regular if and only if X is isomorphic to one of the graphs Foo and
F343.

Proof. Let X be a cubic graph satisfying the assumptions and let 4
=Aut(X). Since X is symmetric by Tutte [23], X is s-regular for some s < 5. Thus
|A| = 2*.3° p. For each prime p = 7,19,31 or 37, by [6] and Lemma 2.8, there is
only one connected cubic symmetric graph of order 18p, which is the 1-regular
graph CFg, and for each prime p = 2,11,17,23,29 or 41, there is no connected
cubic symmetric graph of order 18p. Similarly, for p = 3 or 5, there is only one
connected cubic symmetric graph of order 18p, that is, the 2-regular graph F’s4 and
the 5-regular graph Fy, and for p = 13 there are two connected cubic symmetric
graph of order 18 x 13 which are the 1-regular graph CF»34 and the 5-regular
graph F34. Thus we may assume that p > 43. By [14, pp. 12-14], 4 is solvable.

Let ¢ be a prime divisor of |4|. Then by Proposition 2.4, O,(4) is
semiregular on ¥ (X) and the quotient graph Xo,4) is a cubic symmetric graph.
The semiregularity of O,(4) implies that |O,(4)| | 18p>. If Ox(4) = 16, then O5(4)
= Z2 and hence Xo,1) has odd order and valency 3, a contradiction. Thus Ox(4) =
1 and by the solvability of 4, either O3(4) # 1 or O,(4) # 1. If O3(4) # 1, then
|O5(A)| = 3 or 9. Let T/05(A) be a minimal normal subgroup of A/05(A4). Then
T/05(A) is elementary abelian because A4 is solvable. Since O03(4/05(4)) = 1,
T/05(A) is a 2- or p-group. For the former by Proposition 2.4, the quotient graph
Xrwould have be a cubic graph of odd order, a contradiction. Thus 7/03(A4) is a
p-group.

Now |7] = 3p or 9p and since p > 43, by Sylow Theorem, M has a normal Sylow
p-subgroup, which is characteristic in 7 and hence normal in A. Therefore

Op(A)#1.
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Set P = O,(A). Since O,(4) # 1, we have P = Zp. By Proposition 2.4, the
quotient graph Xp is a cubic symmetric graph and A/P is an arc-transitive
subgroup of Aut(Xp). Set C = C4(P). Clearly P < C. Suppose that P = C. Then by
[20, Theorem 1.6.13], A/P is isomorphic to a subgroup of Aut(P) = Zp-;, which
implies that A/P is abelian. Since A/P is transitive on V (Xp ), it follows by [24,
Proposition 4.4] that A/P is regular on V (Xp). This implies that |4| = 18p, a
contradiction. Thus P < C. Let M/P be a minimal normal subgroup of A/P
contained in C/P. Then M/P is an elementary abelian 2- or 3-group. If M/P is a 2-
group then by Proposition 2.4, the quotient graph X),is a cubic symmetric graph
of odd order, a contradiction. Thus M/P is a 3-group. Let O be a Sylow 3-
subgroup of M. Then M = PQ, implying M = P x Q because Q < C. Hence Q is
characteristic in M and since M < A4, we have 0 < A. Thus O < O3(A) and hence
|O| = 3 or 9. Note that Q is isomorphic to the elementary abelian group M/P. Then
Q =7Z;or73.

Let Q = Z 3. Then the quotient graph Xy is a cubic symmetric graph of
order 2p and 4/Q is an arc-transitive subgroup of Aut(Xp). Since p > 43, by [5]
and [8, Lemma 3.4], Xy is a normal cubic 1-regular Cayley graph on dihedral
group D,,. Thus A/Q =Aut(Xp) and 4 has a normal subgroup G such that G/Q acts
regularly on V' (Xp). Consequently, G is regular on V' (X) and hence X is a normal
cubic 1-regular Cayley graph on G. Let X = Cay (G, S). Since X has valency 3, §
contains at least one involution. By Proposition 2.5, Aut(G,S) is transitive on S,
which implies that S consists of three involutions and by the connectivity of X, G
can be generated by three involutions. Note that M/Q is a normal Sylow p-
subgroup of 4/Q. Then M/Q = G/Q, implying M <G. Since M = 73 x Zy, . and
G/Q = Dy, one can conclude that G = Z% X Dy, or Zz X D¢y, which is
impossible because in each case G cannot be generated by involutions.

Thus Q = Z3, and so M = Z3p. By Proposition 2.4, X is a Z3p-covering of
the bipartite graph K33 and since M < A4, the symmetry of X means that the fibre-
preserving group is arc-transitive and hence is edge-transitive. By Lemma 2.8, X
is isomorphic to CF'g,, where p = 1 (mod 3).

Proof of Theorem 1.1 It follows by Lemmas 3.1 and 3.2.
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