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DISTRIBUTED LEARNING METHODOLOGIES FOR 

AGRICULTURAL APPLICATIONS: CHALLENGES AND 

STRATEGIES FOR ENSURING PRIVACY AND RESILIENCE 

Rudolf ERDEI 1,*, Daniela DELINSCHI 2, Emil PAȘCA 3, Laura ANDREICA 4, 

Oliviu MATEI 5 

Distributed Learning methods are becoming popular in agriculture as they 

minimise device expenses. However, they raise concerns about privacy, security and 

resource limits in various settings. In this paper, we study distributed learning 

systems' communication overhead, heterogeneity, and fault tolerance concerns and 

solutions, to find solutions for implementation in privacy-centric setups. Federated 

Learning helps with privacy, security, and heterogeneity. In agricultural applications, 

it can prove to be a good candidate to maximise their efficacy and efficiency. 

Keywords: Distributed Systems, Distributed Learning, Machine Learning, Data 

Privacy, Low-Communications, Data Resilience 

1. Introduction 

Data is a fundamental element in today's digital world, with a rapidly 

growing volume and variety of it being generated every day. However, with the rise 

of Big Data comes the challenge of processing and analyzing it efficiently and 

effectively. This has led to the emergence of new data processing paradigms, such 

as Distributed Learning (DL), which enables the use of distributed computing 

resources to process large amounts of data in a scalable and efficient manner. DL 

has become increasingly important in recent years, especially with the rise of 

Internet of Things (IoT) applications, where massive amounts of sensor data need 

to be processed in real-time for timely decision-making. In this research article, we 

explore the importance of Data and the role of DL in extracting valuable insights 

from it, in a secure and privacy-preserving manner. 

DL is a natural progression and mix between DL and Distributed 

Systems/Distributed Computing. Parallelization has been widely used for many 

years to overcome the hardware limitations imposed by costs or other factors. The 
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inclusion of Graphical Processing Units (GPUs), which have thousands of cores 

on a single chip, has also drastically improved training and exploitation execution 

times. 

Concentrating all data on one computer or network raises unacceptable risks 

for both the supplier and the end-client. Thus, techniques that do not trust the 

communication medium are being developed, like Federated Learning (FL) which 

has gained popularity, improving privacy and security on platforms. 

DL has opened a new direction of research and optimisations for many use-

cases, some of which are less than obvious, like agriculture. Data may not need to 

be so private in this case, but other benefits of DL, like less verbose communication, 

can be exploited. 

Past DL reviews include Briggs et al. [1], which focused on privacy, Quian 

et al. [2] which discuss the orchestration of model building in ML pipelines, and Li 

et al. [3] which discuss the challenges and methods of FL in special. 

 
Fig. 1. Distributed Learning Paradigms 

 

In Fig. 1, we can observe three paradigms of Distributed Learning:  

a) Federated Learning: partial models are created within the edge nodes, while 

the overall model is created on the Cloud component; 

b) Classic Distributed Learning, which uses training parallelisation: data is 

centralized on the Cloud and learning is done with workers, to distribute load 

and improve training time [4,5,6]; 

c) Fog Learning: nodes collaborate and exchange model information, 

contributing to an overall decentralized model. The coordination role is 

assumed by one of the nodes (a Leader node). 

Each of these paradigms introduces improvements over the classical ML 

pipeline, optimizing training time, and communication within the system and 

solving privacy issues.  

2. Research Motivation 

The design of a new smart ML platform for large-scale agricultural 

deployment motivated this study, which enables yield and quality optimisation 

using ML models. Unlike personal data cases, this data was not secret, but the 

derived insights were sensitive. In addition, some agricultural systems use 
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execution hardware to control temperature, humidity, and watering. Thus, the 

system must act quickly to protect crops and is vulnerable to several attacks. 

By integrating Artificial Intelligence (AI) into such a system, numerous 

opportunities arise, some noteworthy possibilities include: 

• Yield prediction: By analysing historical data, farmers can get insights into 

the factors that affect crop yields and make more informed decisions; 

• Production Planning: Yield prediction helps better production planning and 

distribution strategies, optimising resource use, and increasing profitability; 

• Predictive maintenance: AI can help predict equipment maintenance, 

allowing for preventive measures to be taken before a breakdown occurs; 

• Precision farming: Farmers optimise resource use, such as water, fertiliser, 

and pesticides. This can improve crop quality while reducing costs and their 

environmental impact. 

3. Research Questions Formulation 

DL offers a pathway to creating AI-based systems by leveraging lower-level 

hardware, enabling scalability, and enhancing flexibility. Consequently, several 

research questions must be addressed to design such a system, including: 

• RQ1: What DL method allows for maximum flexibility, while also 

enabling low communication and improving Data Safety? 

• RQ2: How can DL be used to facilitate the integration of IoT devices and 

other sensor data into agricultural systems, and what are the key challenges 

in doing so? 

• RQ3: What are the most effective strategies for training and deploying DL 

models in resource-constrained environments, such as rural or remote 

agricultural settings? 

• RQ4: What are the most important challenges that a DL system has to 

overcome, and what would be some strategies to do so? 

 

Each of the above questions will offer context into the work needed for 

implementing a Distributed Learning Platform, that will operate flexibly.  

The remainder of this article has 7 remaining sections, with the following 

structure: Section 4 presents an overview of existing applications, Section 5 

discusses some frameworks for DL, Section 6 analyses some algorithms for 

assuring data security and system resilience, Section 7 presents some frameworks 

focused on system resilience, Section 8 discuss frameworks and approaches focused 

on data privacy, Section 9 discusses performance, Section 10 provides answers to 

the research questions, and finally Section 11 presents the conclusions. 
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4. Applications of Distributed Learning 

Predd et al. [7] discuss a widely used approach in agricultural applications, 

which is Wireless Sensor Networks (WSN). Key features of the WSNs are low 

power usage requirements, low bandwidth as well as non-reliable/intermittent 

communication, so they pose a special challenge for classical DM methods, that 

require centralising all data. The article presents many approaches for generating 

and optimizing the algorithm for DL, all within the constraints of WSNs. 

Deist et al. [8] propose a DL system that was implemented in five radiation 

oncology clinics in three European countries, for use in personalized radiation 

oncology treatment. The system is part of their Decision Support System and is 

implemented with a Support Vector Machines (SVM) algorithm. 

5. Frameworks of Distributed Learning 

SwitchML [9] is a framework for optimizing DL in a scalable way. 

However, the requirements for the bandwidth tend to be a little too high for specific 

applications like WSN. It features support for multiple workers and the 

optimization of the resulting model. One downside of this framework, however, is 

the need to centralize the data before it can be used in the ML pipeline. The article 

compares the framework with other options, with very good results. 

Chamikara et al. [10] propose the DISTPAB system, which uses Data 

Perturbation-based FL, with very good results. The similarity of the resulting 

model with centralized learning is high, making this approach a worthwhile 

alternative. This approach, however, is used in conjunction with centralizing the 

data, albeit in a Perturbed way, so information leaks are still possible. 

Xu et al. [11] are proposing the GRACE platform for DL. This platform uses 

multiple machines on the local network, to distribute the load on multiple 

computers. This platform has easy scalability, as more computers can be easily 

added. Still, disadvantages include the need to centralise data in the cloud, and 

lower platform security (as it usually runs inside its separate network). 

Li [12] discusses two approaches for DL, namely Parameter Server, 

designed for efficient data communication, and MXNet, a library aimed at NN. Both 

are applications for Distributed Computing primarily, so privacy concerns are not 

taken into consideration strictly. The architecture includes a centralized training 

data pool, that feeds into a manager. This manager then provides chunks of data to 

worker nodes and creates the final model based on worker results. 

A very different paradigm, namely Fog Learning, is proposed by 

Hosseinalipour et al. [13]. This paradigm distributes the effort of creating the final 

model to the edge nodes, intelligently, also accounting for network topology. 

Multiple layers of data transfer are considered, each providing dimensionality 

reduction, to limit upstream transfers. This approach has many benefits for large 
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numbers of edge nodes. For smaller systems, this approach introduces unnecessary 

complexity to the system, which can degrade quality but can prove useful when 

scaling applications. 

Mai et al. [14] propose the KungFu system, which promises an adaptive 

approach to the DL paradigm. Their method centralises the user data and uses 

multiple systems, called workers, to compute new learning parameters.  

Erdei et al. [15] propose a Security-Centric multi-paradigm platform that 

can handle both FL as well as Centralized Classical ML, depending on the user's 

option. This system, validated within an agricultural use-case, provides support for 

heterogeneity, enabling the system to act flexibly upon the edge nodes. 

6. Algorithms for Processing and Optimisations in DL 

Federated Optimization is a topic proposed by Konecny et al. [16], with 

the assumption that no device from an FL network has a correct overview of the 

behaviour in the system. Data points are distributed over a vast number of edge 

nodes, and they also can have a different distribution, making Collaborative Data 

Mining (CDM) harder. The proposed algorithm successfully integrates the available 

data sources, resulting in a quality model. 

Model Averaging is a widely used and easy-to-implement method for FL. 

McMahan et al. [17,18] propose an efficient system for this on an application for 

Long-Short Term Memory (LSTM) networks, with some good results, yielding 

production-ready models. Communication is also addressed, and the system can 

reduce it effectively. Further work from McMahan et al. [19] has resulted in 

strategies for improving security inside the system, that can be applied singularly 

or combined. Also, in [17] they propose two weighted average algorithms (FedSGD 

and FedAvg) for computing weights or values of the model parameters and calculate 

weights by the number of data points that the node has. 

Communication Optimization inside decentralized networks of nodes is 

discussed in detail by Elgabli et al. [20]. They discuss optimization possibilities like 

gradient quantization [21], model parameter quantization [22] and model output 

exchange [23] as alternatives, and present the GADMM algorithm. However, this 

communication optimization algorithm does not use partial models, so training is 

done with very verbose communication.  

The problem of Heterogeneity in edge nodes is addressed by Hu et al. [24], 

which describes an algorithm (ADSP) which treats model updates as commits. 

These commits are forced to be sent only in specific intervals so that independent 

of the node training speed, model convergence would be achieved. 

Damaskinos et al. [25] discuss the problem model staleness and 

performance prediction, proposing the FLeet online system for FL. 
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Heterogeneous devices are used, so that performance evaluation also includes 

hardware information. The proposed system performs better than classic FL. 

7. Resilience in Distributed Learning 

Resilience in distributed systems is a complex topic, that covers safety, 

security and the capacity to properly respond to byzantine errors within the system. 

As some DL systems are intrinsically more secure to data loss, research on this 

topic is currently limited, as more general protection strategies will work fine also 

in this case. 

Chamikara et al. [10] proposed the DISTPAB system that can be very 

resilient to Known I/O (IO) attacks, Naive Inference (NI), and Independent 

Component Analysis (ICA). 

Byzantine Attacks are addressed by Sohn et al. [26], which present an 

election-based system, mathematically proven to be resilient against byzantine 

attacks or failures. 

Byzantine Resilience is another important topic and an important issue that 

most distributed systems must face. This topic is discussed in detail by Zhou et al. 

[27] and is also applied in their PIRATE system. Their approach is based on 

Blockchain, to safely store model updates. After an attack, new models can be 

generated by using historical updates from the Blockchain. 

8. Data Privacy and Security in Distributed Learning 

Data Privacy and Data Security are notions that gain importance and 

traction. Users are more aware of the data they are sharing while companies are 

more careful of their company secrets. This momentum can also be understood by 

analysing the GDPR law that the EU has enforced. The importance of this move 

will force research within the area of Data Analysis and ML. 

A theoretical study of the implications and applications of data privacy is 

done by Balcan et al. [28], where they discuss privacy in the context of low-

communicating systems. In the case of DL, especially FL, Data Privacy and 

Security can be a side-effect of the low-communication aim. 

Data Perturbation is presented by Jayaraman et al. [35] as a solution to 

improving Data Privacy in ML. Multiple actors can collaboratively train a global 

model without exposing their own data and removing the risk of inferring it.  

Froelicher et al. [29] propose a scalable system that does DL in a privacy-

centric way, with good results, and propose the SPINDLE framework. Each node 

will compute a gradient update that will be sent to the central node and integrated 

into the final model. The same approach is taken by Huang et al. [30] and Jayaraman 

et al. [31]. 
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Deist et al. [8] propose the euroCAT DL platform which is safe to use within 

the health industry. An Alternating Direction Method of Multipliers (ADMM) [32] 

method is used to train an SVM [33] model. 

As evidenced in the presented study, Data Privacy and Data Security in DL 

are primarily determined by the platform's operational approach, rather than being 

a deliberate design decision, however, techniques such as Data Perturbation may 

improve the privacy of the ML system. 

9. Performance of Distributed Learning Systems 

Performance in DL can either be regarded as processing speed or resulting 

model accuracy. Both are equally important when comparing DL to Centralised 

Learning. When analysing processing speed, it is evident that the distribution 

process impact is marginal, compared to the training/inferring process. However, 

training parallelisation introduces vast benefits, with results that react 80% decrease 

in training time, as reported by [33]. 

Resulting model accuracy depends on the type of DL used. For FL, usually, 

the federated models are of lower accuracy [17], mainly due to the inferior 

capabilities of the federation process, compared to a model optimiser which has 

access to the entire dataset at once. Algorithms like FedAVG [17] aim to mitigate 

these aspects by weighting the parameters according to the row count they are based 

on, hence allowing significant potential for improvement. 

10. Answers to the Research Questions 

RQ1 - What DL method allows for maximum flexibility, while also enabling 

low communication and improving Data Safety? 

Among all the DL methods, the one that stands out for Data Privacy is FL. 

FL operates by creating local partial models or model updates which do not carry 

any information about the entity that generated them. This feature makes FL an 

ideal choice for privacy-critical applications. 

FL has several advantages. First, it reduces communication overhead and 

computational burden associated with large data transfers. Second, it allows the use 

of sensitive or private data without compromising data privacy or security. Finally, 

it promotes collaboration and knowledge sharing among multiple parties. 

Despite many benefits, FL comes with some limitations. The quality of the 

local models varies based on the data quality available on each device or node. 

Additionally, device heterogeneity can pose a challenge when trying to aggregate 

the model.  

RQ2 -How can distributed learning be used to facilitate the integration of 

IoT devices and other sensor data into agricultural systems, and what are the key 

challenges in doing so? 
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DL allows farmers to assess enormous volumes of data in real-time and 

make informed decisions about crop management, water consumption, and other 

aspects that impact yield and profitability, even in large-scale installations. 

One of the key challenges is the need for robust and reliable communication 

infrastructure. To effectively process distributed data, it is essential to have a high-

speed and low-latency network that can handle large volumes without interruptions. 

This can be especially challenging in rural areas, where connectivity may be limited 

or unreliable. 

Privacy and security are particularly critical when integrating IoT devices 

and sensor data into agricultural systems. These devices may capture sensitive data 

on crops, land usage, workers' identities, and many other aspects, therefore it's 

crucial to secure it. Researchers are creating FL, homomorphic encryption, and 

differential privacy for safe and privacy-preserving distributed learning to meet this 

difficulty. 

Finally, while creating distributed learning systems for agricultural IoT, 

user experience is crucial. Farmers and other stakeholders may need simple data 

access interfaces due to low expertise or resources. 

 

RQ3 - What are the most effective strategies for training and deploying 

distributed learning models in resource-constrained environments, such as rural or 

remote agricultural settings? 

Training and deploying DL models in resource-constrained environments, 

such as rural or remote agricultural settings, requires careful consideration of 

several factors, including limited computing resources, unreliable network 

connectivity, and limited access to specialized expertise.  

In resource-constrained environments, it is important to optimize the model 

architecture and training algorithms to reduce the computational and memory 

requirements. Techniques such as pruning, quantization, and distillation can be 

used to reduce the size and complexity of the models while somewhat maintaining 

their accuracy. 

Federated learning enables the training of models on local devices without 

uploading the raw data to a central server. It can also benefit from Transfer 

Learning, which involves leveraging pre-trained models and adapting them to a 

specific task or environment, before creating the initial model. 

Collaborative Research Networks can facilitate the sharing of knowledge, 

expertise, and computational resources among researchers and practitioners in 

resource-constrained environments. This approach can be useful for developing and 

deploying distributed learning models in settings where specialized expertise or 

computational resources are limited. 
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RQ4 - What are the most important challenges that a Distributed Learning 

system must overcome, and what would be some strategies to do so? 

DL systems face several challenges that need to be overcome to ensure their 

effectiveness and efficiency. Some of the most important challenges are: 

• Communication Overhead: involves the exchange of large amounts of 

data between different devices; 

• Privacy and Security: sharing data between different devices can pose 

significant privacy and security risks; 

• Heterogeneity: Different devices in a distributed learning system may have 

different hardware capabilities and network connectivity; 

• Fault Tolerance: Distributed learning systems may experience device 

failures or network outages, which can disrupt the learning process and 

result in data loss. 

 

To overcome these challenges, several strategies can be employed, 

including: 

• Model Compression: To reduce communication overhead, models can be 

compressed before they are transmitted between devices; 

• Encryption and Access Controls: To ensure privacy and security, data can 

be encrypted, and access controls can be put in place to ensure that only 

authorized devices can access the data; 

• Resource Allocation: To address heterogeneity, resources can be allocated 

dynamically based on the capabilities of each device; 

• Replication and Backup: To ensure fault tolerance, models are replicated 

across multiple devices or backed up regularly to prevent data loss in the 

event of device failures or network outages. 

• Federated Learning: this approach can help address communication 

overhead, privacy and security concerns, and heterogeneity challenges. 

11. Conclusions 

DL has come a long way, attempting to solve problems like parallelization 

and data privacy. Some frameworks implement useful DL algorithms into practical 

applications, bridging the gap to production environments.  

Depending on application requirements and other constraints (like data 

privacy), several DL methodologies and frameworks exist, making it easier for 

platform developers to choose the more suitable option. Regarding Fig. 1, where 

we can observe the three DL paradigms, their utility can be summarized: 

a) Federated Learning: used where the edge nodes do not trust the 

communication medium and/or Cloud Integrator with the data, or where 

bandwidth/data transfer is an issue; 



94               Rudolf Erdei, Daniela Delinschi, Emil Pașca, Laura Andreica, Oliviu Matei 

b) Classic Distributed Learning: should be used only for non-critical/non-

secret data, or within the company infrastructure. All the components trust 

each other and data transfer is verbose; 

c) Fog Learning: could be used with systems that cannot have a central node. 

Lack of centralization will introduce a fair amount of complexity and 

communication overhead. 

 

The data private options include Federated Learning and Fog Learning, as 

they tend not to exchange data points. Results can vary between partial models and 

gradient updates. For FL, several algorithms are provided that make updates easier 

to do. 

 

Future research trends 

Improving FL can be done in several directions, by designing more complex 

methodologies, incorporating and improving privacy-enhancing technologies, 

personalising the model to local environments, mitigating bias and improving 

resource efficiency. 

Another research direction would be comprised of model importance and 

model drift metrics, where each model update is graded to be used accordingly, 

based on the data used for building the partial model and its current performance. 

This might involve quantity, quality and several other metrics like distribution, 

variety and so on. 
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