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SHRINKING PROJECTION METHOD FOR A SEQUENCE OF
RELATIVELY QUASI-NONEXPANSIVE MULTIVALUED
MAPPINGS AND EQUILIBRIUM PROBLEM IN BANACH
SPACES

Mohammad Eslamian !

Strong convergence of a new iterative process based on the Shrinking projection method to a common
element of the set of common fixed points of an infinite family of relatively quasi-nonexpansive
multivalued mappings and the solution set of an equilibrium problem in a Banach space is established.
Our results improved and extend the corresponding results announced by many others.
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1. Introduction

A nonempty subset C of a Banach space FE is called proximinal if for each x € F, there exists
an element y € C such that

|z —y||=dist(z,C) =inf{]|z— 2z ||: z € C}.

We denote by N(C),CB(C) and P(C) the collection of all nonempty subsets, nonempty closed
bounded subsets and nonempty proximinal bounded subsets of C| respectively. The Pompeiu-
Hausdorff metric H on CB(C) is defined by

H(A, B) := max{sup dist(z, B), sup dist(y, A)},
T€EA yeEB

for all A, B € CB(C).
Let T : E — N(E) be a multivalued mapping. An element x € F is said to be a fixed point of T,
if z € Tz. The set of fixed points of T' will be denoted by F(T).
Definition 1.1. A multivalued mapping T : E — CB(E) is called

(i) nonexpansive if

H(Tl’,Ty)S ||$—y||, mvy6E~
(ii) quasi-nonexpansive if
F(T)#0  and  H(T2,Tp)< |o—pl, z€B, peF(D).

The theory of multivalued mappings has applications in control theory, convex optimization,

differential equations and economics. Theory of nonexpansive multivalued mappings is harder than

the corresponding theory of nonexpansive single valued mappings. Different iterative processes have
been used to approximate fixed points of multivalued nonexpansive mappings (see [1-7]).
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Let E be a real Banach space and let E* be the dual space of E. Let C be a closed convex
subset of E. Let F' be a bifunction from C x C' into R, where R is the set of real numbers. The
equilibrium problem for F': C' x C — R is to find Z € C such that

F(z,y) >0, VYyeC.

The set of solutions is denoted by EP(F). Equilibrium problems, have had a great impact and
influence in the development of several branches of pure and applied sciences. Numerous problems
in physics, optimization and economics reduce to finding a solution of the equilibrium problem .
Some methods have been proposed to solve the equilibrium problem in a Hilbert space. See [8-10].

Let E be a real Banach space with norm ||.|| and let J be the normalized duality mapping
from E into 27 given by

Jr={a" € E": (z,") = |lx|lll«"[], =]l = ll="[I}

for all z € E, where E* denotes the dual space of E and (., .) the generalized duality pairing between
E and E*. As we all know that if C' is a nonempty closed convex subset of a Hilbert space H and
Pc : H — (' is the metric projection of H onto C, then Pc is nonexpansive. This fact actually
characterizes Hilbert spaces and consequently, it is not available in more general Banach spaces. In
this connection, Alber [11] recently introduced a generalized projection operator E* in a smooth
Banach space E which is an analogue of the metric projection in Hilbert spaces. Consider the
functional defined by
¢(z,y) = |lz|* = 2(z, Jy) + |lyl*, @,y €E.

Observe that, in a Hilbert space H, ¢(x,y) reduces to ||z — y||*>. The generalized projection Il¢ :
E — C'is a map that assigns to an arbitrary point & € E the minimum point of the functional
¢(x,y) that is, llcx = T, where T is the solution to the minimization problem

6(@,) = inf 6(y,)

The existence and uniqueness of the operator Il¢ follows from the properties of the functional
¢(z,y) and strict monotonicity of the mapping J (see, for example, [11, 12, 13]). In Hilbert spaces,
IIc = Pc. 1t is obvious from the definition of function ¢ that

(lyll = ll=)* < é(e,9) < (lyll +ll=)*  Vz,y € E. (1.1)

Remark 1: If F is a reflexive, strictly convex and smooth Banach space, then for z,y € E,
¢(z,y) = 0 if and only if z = y (see [13, 14]).

Let C' be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach
space F, and let T" be a mapping from C into itself. A mapping T is said to be relatively quasi-
nonexpansive ([15, 17]) if F(T) # 0 and ¢(p, Tx) < ¢(p, x) for all x € C and p € F(T). A mapping
T is called closed if x,, — w and lim,—— o0 |[|[2n — Txn|| = 0 then w = T'(w).

In the recent years, approximation of fixed points of relatively quasi-nonexpansive mappings
by iteration has been studied by many authors, see [15-22].

Very recently, Eslamian and Abkar [7] introduce the relatively quasi-nonexpansive multival-
ued mapping as follows:

Definition 1.2. Let C be a closed convex subset of a smooth Banach space E, and T': C — N(C)
be a multivalued mapping. We set

®(Tx,Tp) = maz{sup inf ¢(y,q), sup inf &(y,q)}.
qeTpy€ETT yeTx I€ETP

We call T is relatively quasi-nonexpansive multivalued mapping if F(T') # () and
®(Tz,Tp) < ¢(z,p),  Vpe F(T), Vxel.

We present an example of a multivalued mapping such that Pr is relatively quasi-nonexpansive,
but T is not relatively quasi-nonexpansive.
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Example 1.1. Let I = [0,1], E=L*(I),1<p<ooand C ={f € E: f(x) > 0,V € I}. Let
T:C — CB(C) be defined by

T(f)={9€C: f(z) <g(z) <2f(x)}.
Then we have Pr(f) = {f} and hence

O(Pr(f1), Pr(f2)) < ¢(f1, f2), Vfi, f2 € C,

that is Pr is relatively quasi-nonexpansive. Now putting fi(x) = 0 and fo(z) = 2 we have T(f1) =0
and T(f2) = {g € C : 2 < g(x) < 4}, hence ®(T0,T2) = sup,crs ¢(0,9) = #(0,4). On the other
hand ¢(0,2) = ||2||7 = 4 and ¢(0,4) = ||4||; = 16, which shows that

O(70,72) > ¢(0,2).
Hence T is not relatively quasi-nonerpansive.

Definition 1.3. A multivalued mapping T is called closed if x,, — w and lim,, oo dist(zn, Txn) =
0, then w € T'(w).

In [7], Eslamian and Abkar proved the following theorem.

Theorem 1.4. Let E be a uniformly smooth and uniformly conver Banach space, and let C' be a
nonempty closed convex subset of E. Let F be a bifunction from C x C into R satisfying (A1) — (A4).
Let T; : C — P(C), i = 1,2,...,m, be a finite family of multivalued mappings such that Pr, is
closed and relatively quasi-nonexpansive. Assume that F = (.o, F(T3) \EP(f) # 0. For o € C
and Co = C, let {xn} be a sequences generated by the following algorithm:

Yn,1 = Jﬁl((]- - an,l)t]mn + an,lJZn,l),
Yn,2 = J_l((l - an,Q)J-'En + an,2JZn,2)7

Ynym = J (1 = @nym) JTn + Gnymd Zn,m),

un € C suchthat f(un,y) + %(y — Un, Jun — JYn,m) > 0, Yy € C,
Cus1 = {2 € Cu s 92, tun) < 0220},

Tpt1 = HCn+1 To, Vn >0

where zn,1 € Prixn and zn,i € Pryyn,i—1 fori =2, ...,m and J is the duality mapping on E. Assume
that 37" ans = 1, {ani} € [a,b] C (0,1) and {rn} C [c,00) for some ¢ > 0. Suppose that Pr; is
uniformly continuous with respect to the Hausdorff metric for i = 2,3,...,m. Then {x,} converges
strongly to Il rxg.

In this paper, we introduce a new shirking projection algorithm for finding a common element
of the set of common fixed points of an infinite family of relatively quasi-nonexpansive multivalued
mappings and the set of solutions of an equilibrium problem in uniformly smooth and uniformly
convex Banach spaces. Strong convergence to common elements of two set is established. Our
results improved and extend the corresponding results announced by many others.

2. Preliminaries

A Banach space E is said to be strictly convex if || 2$¥|| < 1 for all z,y € E with ||z| = ||y|| =
1 and = # y . It said to be uniformly convex if lim,_. ||Zrn — yn|| = 0 for any two sequences {zn }
and {yn} in E such that ||z, = |lya|| = 1 and limp o0 [|22322 || = 1. Let U = {z € E: ||z|| = 1}
be the unit sphere of . Then the Banach space E is said to be smooth provided
L ety — ]

t—0 t
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exists for each x,y € U. It is also said to be uniformly smooth if the limit is attained uniformly
for z,y € E. It is well known that if E* is uniformly convex, then J is uniformly continuous on
bounded subsets of E.

Lemma 2.1. ([12]) Let E be a uniformly convex and smooth Banach space and let {zn} and {yn}
be two sequences in E. If ¢(xn,yn) —> 0 and either {x,} or {yn} is bounded, then x, — yn — 0.

Lemma 2.2. ([11]) Let C be a nonempty closed convez subset of a smooth Banach space E and
xz € E. Then xo = oz if and only if

(xo —y,Jz — Jxo) > 0, vy € C.

Lemma 2.3. ([11]) Let E be a reflexive, strictly convex and smooth Banach space. Let C be a
nonempty closed convex subset of E and let x € E. Then

(y, Hew) + ¢(llcw, z) < ¢(y, ), vy € C.

Lemma 2.4. ([23]) Let E be a uniformly convex Banach space and let Br(0) = {z € E:|| z ||< r},
for r > 0. Then, for any given sequence {xn}ae1 C Br(0) and for any given sequence {an}ne1
of positive numbers with Y o> an = 1 there exists a conlinuous, strictly increasing and convex
function g : [0,00) — [0, 00) with g(0) = 0 such that that for any positive integers i,j with i < j,

[eS) oo
1D anzall® < anllzal® = aiajg(llzi — 2]
n=1 n=1

For solving the equilibrium problem, we assume that the bifunction F' satisfies the following
conditions:

(Al) F(z,z)=0forall z € C,
(A2) F is monotone, i.e. F(z,y) + F(y,z) <0 for any z,y € C,
(A3) F is upper-hemicontinuous, i.e. for each z,y, z € C,

limsup F(tz + (1 — t)z,y) < F(x,y)
t—0t

(A4) F(z,.) is convex and lower semicontinuous for each z € C.
The following lemma was proved in [8].
Lemma 2.5. Let C' be a nonempty closed convex subset of a smooth, strictly convex, and reflerive

Banach space E | let F be a bifunction of C x C into R satisfying (A1) — (A4). Letr >0 andz € E.
Then, there exists z € C such that

1
F(z,y)—i—;(y—z,Jz—Jx)ZO Yy € C.
The following lemma was given in [21].

Lemma 2.6. Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive
Banach space E , let F be a bifunction of C x C into R satisfying (A1) — (A4). Letr > 0 andx € E.
define a mapping T, : E — C as follows:

Srzc:{zeC:F(z,y)Jr%(yfz,szJx) >0,Vy € C}.

Then, the following hold:
(i) Sr is single valued;
(ii) Sy is firmly nonerpansive-type mapping, i.e., for any x,y € E,
(Srxz — Sry, JSrx — JSry) < (Srx — Sry, Jx — Jy);
(il)) F(Sr) = EP(F);
E

iii
(iv) EP(F) is closed and convez.
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Lemma 2.7. ([21]) Let C be a nonempty closed convex subset of a smooth, strictly convez, and
reflexive Banach space E, let F be a bifunction of C x C into R satisfying (Al) — (A4), and let
r > 0. Then for all z € E and q € F(S,),

¢(Q7 ST‘T) + ¢(ST‘I7 I) S ¢(Q7 .’17)

Lemma 2.8. [7] Let C' be a nonempty closed convex subset of a uniformly conver and smooth
Banach space E. Suppose T : C — P(C) is a multivalued mapping such that Pr is a relatively
quasi-nonexpansive multivalued mapping where

Pr(z) ={y € Tz : ||z — y|| = dist(z,Tx)}.
If F(T) # 0, then F(T) is closed and convez.

3. Main Result

In this section, we prove strong convergence theorems for finding a common element of the set
of solutions for an equilibrium problem and the set of fixed points of an infinite family of relatively
quasi- nonexpansive multivalued mappings in a Banach space.

Theorem 3.1. Let E be a uniformly smooth and uniformly convexr Banach space, and let C' be a
nonempty closed convex subset of E. Let F be a bifunction from C x C into R satisfying (A1) —(A4).
Let T; : C — N(C), be a sequence of multivalued mappings such that for each i € N, Pr, is closed
relatively quasi- nonexpansive multivalued mappings and F = (\;o, F(T:) EP(F) # 0. Forao € C
and Co = C, let {xn} be a sequence generated by the following algorithm:

yn = J HanoJzn + Yo anid zni),
un6C’:F(un,y)—l-%n(y—un,Jun—Jyn)20, Yy € C,
Cnt1 ={2z € Cn : ¢(z,un) < P(z,zn)},
Tpt1 = chﬂ Zo, Vn >0,
where > o0 g ani = 1 and zns € Pr,x,. Assume further that liminf, anoan,: > 0, {rn} C (0,00)
and liminf, r, > 0. Then {zn} converges strongly to Ilrxo, where ILF is the projection of E onto

F.

Proof. First, we show by induction that F = ((;2, F(T3))(EP(F) C Cy, for all n > 0. From
Co = C, we have F C Cy. We suppose that F C C, for some n > 0. Let u € F, then we have
Pr,u = {u}, (¢ € N). Since S,, and T; are relatively quasi- nonexpansive, we have

¢(u7 un) = (j)(u, Srn yn) < ¢(u7 yn) = ¢(U, J_l(an,Oan + Z an,iJZn,i))

i=1

= |lull® = 2(u, anoJzn + Zan,iJzn,i) + [|an,0dzn + Zan,iJzn,iHQ

=1 =1

o0 oo
< lull® = 2an.0(u, Jzn) — 2 Zan,i<u, J2ni) + anollzal” + Zan,illzn,i\IQ

i=1 =1

= an,00(u, ) + Z i H(U, 2n,i)

i=1

oo
= an00(t,20) + > ani inf  G(u, zn,)
Pt UEPT,i u

< an,Od)(uv x’ﬂ) + Z a‘”yiq)(PTi U, PTix")

=1

S an,0¢(u> ‘T'n) + Z a7L,i¢(u7 xn) - ¢(U, xn)v

i=1
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which implies that v € C\+1. Hence
F=(F(@)(EP(F)CCn,  ¥n>0.
=1

We observe that C), is closed and convex (see [20, 21]). From z,, = Il¢, zo, we have

(xn — 2,Jx0 — Jpn) > 0, Vz e C,. (3.1)
Since F C C), for all n > 0, we obtain that

(xn —u, Jxo — Jxn) >0 Yu € F.
From Lemma 2.3 we have

¢(xn, z0) = ¢(Ilc, w0, o) < G(u, o) — ¢(u, e, x0) < ¢(u, x0)

for all w € F C C,. Then the sequence ¢(xn,zo) is bounded. Thus {z.} is bounded. From
z, = llc, xo and 41 € Crhy1 C Cr, we have

&(Zn, z0) < H(Tng1,T0), VYn > 0.
Therefore {¢(zn,z0)} is nondecreasing. So the limit of {¢(xn,x0)} exists. By the construction of
C,, for any positive integer m > n we have

Tm = I, x0 € Cpy, C Ch.

It follows that

¢(mm7 xn) == ¢(mm7 HCH:EO)
< ¢(zm, 20) — ¢(Ile,, 2o, T0)
= ¢(Tm,T0) — ¢(Tn, o).

Letting m,n — oo we have
lim ¢(zm,zn) =0. (3.2)

n—--

It follows from Lemma 2.1 that x, — z, — 0 as m,n — co. Hence {z,} is a Cauchy sequence.
Since C' is closed and convex subset of Banach space E, we can assume that z,, — z as n — oo.
Next we show z € (2, F(T:). By taking m =n+ 1 in (3.2) we get

lim ¢(xnt1,2n) =0. (3.3)
n— oo
It follows from Lemma 2.1 that
lim_ {21 — o] = 0. (3.4)

From zp41 = ¢, T € Ch+1, we have

¢(mn+17u’"«) S ¢($n+1,l‘n), n 2 03
it follows from (3.3) that
lim ¢(xn+1,un) =0.
n—oo
By Lemma 2.1 we have

lim ||znt1 — unl =0. (3.5)
n—oo
Combining (3.4) with (3.5) one see
tim o — | € tim (2 = @l + s — wal)) =0. (3.6)

It follows from =, — z as n — oo that u, — z as n — oco. Since J is uniformly norm-to-norm

continuous on bounded sets and lim,—, ||Zn — un|| = 0, we have
lim [|Jzn — Jun|| = 0. (3.7)
n—> oo

We show that {z,,;} is bounded for i € N. Indeed, for u € F we have
(znill = lul)* < ¢(zni,w) < Plan,u) < (]l + ull)*.



convergence theorem for multivalued mappings and equilibrium problem 19

Since {z,} is bounded, we obtain {z, ;} is bounded for i € N. Let

= supn>o{l|zall, |zl : i € N}.

Since E is a uniformly smooth Banach space, we know that E* is a uniformly convex Banach space.
Therefore from Lemma 2.4 there exists a continuous strictly increasing, and convex function g with
g(0) = 0 such that

(u, un) = ¢(u, Tr, yn) < d(u, Yn)

= ¢(u7 Jﬁl(an,OJ:Cn + Z an,iJZn,i))

i=1

S 0o
= H’U/”Q - 2<u7 an,Oan + Zan,iJzn,i> + Han,Oan + Zan,it]zn,i”Q

i=1 i=1

)

|2l = an.0an,ig(|| Jan — J2n,i

< Jlul® = 2am,0(u, Jen) =23 analu, Tzn ) +anollal*+ 3 ans

1=1 =1

= an 00U, Tn) + D Anid(U, 2ni) — An0an,ig(|JTn — T2 i)

=1

< an00 (U, T0) + Y an i ®(Prytt, Pr,wn) — an,oan,ig(||Jzn — Jzn.il|)
=1

o0
< @n,00(u, Tn) + Z An i ®(Uy Tn) — @n,06n,ig(|| JTn — J2ni)

=1

. (38

S ¢(u7 :rn) - an,Oan,ig(”Jl’n - -]Zn,i
It follows that
091920 — J2nil) < B, 20) — B, un) 1> 0, (3.9)
On the other hand

$(u, n) = d(u,un) = llwall® = [lunll® — 2(u, Jan — Jun)
< lznll® = llunll® |+ 2[(w, Jan = Jun) |
< Hnll = llunlHHNznll + lunll) + 2llullllJzn — Jua||
< Nzn = wnll(lall + lnl) + 2l T20 — Junll
It follows from (3.6) and (3.7) that

lim (¢(u, zn) — P(u,un)) = 0. (3.10)

n—»00

Using (3.9) and by assumption that liminf an 0a,,; > 0 we have that
lim g(||Jzn — J2zn,il) =0, (i€ N).
n—>o0
Therefore from the property of g , we have

lim ||Jzn — J2zn,]| =0, (i€ N).
—> 00

n

Since J ! is uniformly norm-to-norm continuous on bounded set, we have

:07

lim ||zn — 20,
— o0

this implies that

lim dist(zn, Pr,zsn) < lim ||@n — 2zn4|| =0, (i €N).
n—»oo

n—00
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Now by closedness of Pr, we obtain that z € (;2, F(T3). By a similar argument as in [20] (see
also[21]) we obtain that z € EP(F'). Therefore z € F. Finally we prove z = IIrzo. By taking limit
in (3.1) we have

(z —u,Jxg — Jz) >0, Yu € F.

Hence by Lemma 2.2 we have z = Il rxo, which completes the proof. O
By a similar argument as in the proof of Theorem 3.1, we can prove the following theorem.

Theorem 3.2. Let E be a uniformly smooth and uniformly convex Banach space, and let C' be a
nonempty closed convex subset of E. Let F be a bifunction from C x C into R satisfying (A1) —(A4).
Let T; : C — N(CO), be a sequence of closed relatively quasi-nonexpansive multivalued mappings

such that F = ;o F(T) EP(F) # 0 and for all p € F, Ti(p) = {p}. For xzo € C and Co = C,
let {xn} be a sequence generated by the following algorithm:
Yn = J an,0JTn + 300 njidzn,i),
un6C’:F(un,y)—l—%n(y—un,Jun—Jyn)20, Vy € C,
Crt1 ={2 € Ch: d(z,un) < ¢(z,2n)},
Tpt1 = 1_[0”+1 z, Vn >0,

where Y2 an,i =1 and zn,i € Titn. Assume further that liminf, an 0an,: > 0, {rn} C (0,00) and
liminf, r, > 0. Then {z,} converges strongly to llrxo, where Il is the projection of E onto F.

As a result for single valued mappings we obtain the following theorem.

Theorem 3.3. Let E be a uniformly smooth and uniformly conver Banach space, and let C' be a
nonempty closed convex subset of E. Let F' be a bifunction from C x C into R satisfying (A1) — (A4).
Let Let T; : C — C, be a sequence of closed relatively quasi-nonerpansive mappings such that
F=N2, FTH)NEP(F)#0 . For xo € C and Co = C, let {xn} be a sequence generated by the
following algorithm:

Yn = J an,o0JTn + 300, aniJTizn),

u'ﬂeC:F(unvy)+%<y_un3€]un_‘]yn>207 Vyec?

Cn+1 - {Z S CTL : ¢(27un) S ¢(Z,$n)}7

Tn+1 = l_‘[cnJrl €, Vn >0,
where > 700 an,i = 1. Assume further that liminf, an,0an,: > 0, {rn} C (0,00) and liminf, r, > 0.
Then {zn} converges strongly to llrxg, where ILr is the projection of E onto F.

Remark : Our main result generalize the result of Eslamian and Abkar [7] of a finite family of
multivalued mappings to an infinite family of multivalued mappings. We also remove the uniformly
continuity of the mappings.

4. Application to Hilbert Spaces

In the Hilbert space setting, we have
$(z,y) = le—yl?,  @(Tz,Ty) = H(Tz,Ty)* Va,y € H.
Therefore
®(Tz, Tp) < ¢(z,p) < H(Tx, Tp) < ||z — p||
for every x € C and p € F(T'). We note that in a Hilbert space H, J is the identity operator.
Theorem 4.1. Let C be a nonempty closed conver subset of a real Hilbert space H. Let F

be a bifunction from C x C into R satisfying (Al) — (A4). Let T; : C — P(C), i € N be
a sequence of multivalued mappings such that Pr, is closed quasi- nonexpansive. Assume that
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F=N2, F(TH)EP(F) # 0. For zo € C and Cy = C, let {zn} be a sequences generated by the
following algorithm:

Yn = An,0Tn + Zzoil An,iZn,iy
un6CsuchthatF(un,y)—i—%(y—un,un—yw > 0; Yy € C,
Cry1 ={2€Cn:lz—un| < |llz —zull},

ZTnt1 = Po, 7, Vn >0

where Z;’io an,: =1 and zn,; € Pr,x,. Assume further that liminf, an 0an,: > 0 and {r,} C [a, c0)
for some a > 0. Then {x,} converges strongly to Prxo.

Remark : Theorem 4.1 holds if we assume that T; is closed quasi-nonexpansive multivalued map-
ping and T;(p) = {p} for all p € F.
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