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SHRINKING PROJECTION METHOD FOR A SEQUENCE OF

RELATIVELY QUASI-NONEXPANSIVE MULTIVALUED

MAPPINGS AND EQUILIBRIUM PROBLEM IN BANACH

SPACES

Mohammad Eslamian 1

Strong convergence of a new iterative process based on the Shrinking projection method to a common

element of the set of common fixed points of an infinite family of relatively quasi-nonexpansive

multivalued mappings and the solution set of an equilibrium problem in a Banach space is established.

Our results improved and extend the corresponding results announced by many others.
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1. Introduction

A nonempty subset C of a Banach space E is called proximinal if for each x ∈ E, there exists

an element y ∈ C such that

∥ x− y ∥= dist(x,C) = inf{∥ x− z ∥: z ∈ C}.

We denote by N(C), CB(C) and P (C) the collection of all nonempty subsets, nonempty closed

bounded subsets and nonempty proximinal bounded subsets of C, respectively. The Pompeiu-

Hausdorff metric H on CB(C) is defined by

H(A,B) := max{sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)},

for all A,B ∈ CB(C).

Let T : E −→ N(E) be a multivalued mapping. An element x ∈ E is said to be a fixed point of T ,

if x ∈ Tx. The set of fixed points of T will be denoted by F (T ).

Definition 1.1. A multivalued mapping T : E −→ CB(E) is called

(i) nonexpansive if

H(Tx, Ty) ≤ ∥x− y∥, x, y ∈ E.

(ii) quasi-nonexpansive if

F (T ) ̸= ∅ and H(Tx, Tp) ≤ ∥x− p∥, x ∈ E, p ∈ F (T ).

The theory of multivalued mappings has applications in control theory, convex optimization,

differential equations and economics. Theory of nonexpansive multivalued mappings is harder than

the corresponding theory of nonexpansive single valued mappings. Different iterative processes have

been used to approximate fixed points of multivalued nonexpansive mappings (see [1-7]).
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Let E be a real Banach space and let E∗ be the dual space of E. Let C be a closed convex

subset of E. Let F be a bifunction from C × C into R, where R is the set of real numbers. The

equilibrium problem for F : C × C −→ R is to find x̂ ∈ C such that

F (x̂, y) ≥ 0, ∀y ∈ C.

The set of solutions is denoted by EP (F ). Equilibrium problems, have had a great impact and

influence in the development of several branches of pure and applied sciences. Numerous problems

in physics, optimization and economics reduce to finding a solution of the equilibrium problem .

Some methods have been proposed to solve the equilibrium problem in a Hilbert space. See [8-10].

Let E be a real Banach space with norm ∥.∥ and let J be the normalized duality mapping

from E into 2E
∗
given by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥∥x∗∥, ∥x∥ = ∥x∗∥}

for all x ∈ E, where E∗ denotes the dual space of E and ⟨., .⟩ the generalized duality pairing between

E and E∗. As we all know that if C is a nonempty closed convex subset of a Hilbert space H and

PC : H −→ C is the metric projection of H onto C, then PC is nonexpansive. This fact actually

characterizes Hilbert spaces and consequently, it is not available in more general Banach spaces. In

this connection, Alber [11] recently introduced a generalized projection operator E∗ in a smooth

Banach space E which is an analogue of the metric projection in Hilbert spaces. Consider the

functional defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, x, y ∈ E.

Observe that, in a Hilbert space H, ϕ(x, y) reduces to ∥x − y∥2. The generalized projection ΠC :

E −→ C is a map that assigns to an arbitrary point x ∈ E the minimum point of the functional

ϕ(x, y) that is, ΠCx = x, where x is the solution to the minimization problem

ϕ(x, x) = inf
y∈C

ϕ(y, x)

The existence and uniqueness of the operator ΠC follows from the properties of the functional

ϕ(x, y) and strict monotonicity of the mapping J (see, for example, [11, 12, 13]). In Hilbert spaces,

ΠC = PC . It is obvious from the definition of function ϕ that

(∥y∥ − ∥x∥)2 ≤ ϕ(x, y) ≤ (∥y∥+ ∥x∥)2 ∀x, y ∈ E. (1.1)

Remark 1: If E is a reflexive, strictly convex and smooth Banach space, then for x, y ∈ E,

ϕ(x, y) = 0 if and only if x = y (see [13, 14]).

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach

space E, and let T be a mapping from C into itself. A mapping T is said to be relatively quasi-

nonexpansive ([15, 17]) if F (T ) ̸= ∅ and ϕ(p, Tx) ≤ ϕ(p, x) for all x ∈ C and p ∈ F (T ). A mapping

T is called closed if xn −→ w and limn−→∞ ∥xn − Txn∥ = 0 then w = T (w).

In the recent years, approximation of fixed points of relatively quasi-nonexpansive mappings

by iteration has been studied by many authors, see [15-22].

Very recently, Eslamian and Abkar [7] introduce the relatively quasi-nonexpansive multival-

ued mapping as follows:

Definition 1.2. Let C be a closed convex subset of a smooth Banach space E, and T : C −→ N(C)

be a multivalued mapping. We set

Φ(Tx, Tp) = max{ sup
q∈Tp

inf
y∈Tx

ϕ(y, q), sup
y∈Tx

inf
q∈Tp

ϕ(y, q)}.

We call T is relatively quasi-nonexpansive multivalued mapping if F (T ) ̸= ∅ and

Φ(Tx, Tp) ≤ ϕ(x, p), ∀p ∈ F (T ), ∀x ∈ C.

We present an example of a multivalued mapping such that PT is relatively quasi-nonexpansive,

but T is not relatively quasi-nonexpansive.
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Example 1.1. Let I = [0, 1], E = Lp(I), 1 < p < ∞ and C = {f ∈ E : f(x) ≥ 0,∀x ∈ I}. Let

T : C −→ CB(C) be defined by

T (f) = {g ∈ C : f(x) ≤ g(x) ≤ 2 f(x)}.

Then we have PT (f) = {f} and hence

Φ(PT (f1), PT (f2)) ≤ ϕ(f1, f2), ∀f1, f2 ∈ C,

that is PT is relatively quasi-nonexpansive. Now putting f1(x) = 0 and f2(x) = 2 we have T (f1) = 0

and T (f2) = {g ∈ C : 2 ≤ g(x) ≤ 4}, hence Φ(T0, T2) = supg∈T2 ϕ(0, g) = ϕ(0, 4). On the other

hand ϕ(0, 2) = ∥2∥2p = 4 and ϕ(0, 4) = ∥4∥2p = 16, which shows that

Φ(T0, T2) > ϕ(0, 2).

Hence T is not relatively quasi-nonexpansive.

Definition 1.3. Amultivalued mapping T is called closed if xn −→ w and limn−→∞ dist(xn, Txn) =

0, then w ∈ T (w).

In [7], Eslamian and Abkar proved the following theorem.

Theorem 1.4. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a

nonempty closed convex subset of E. Let F be a bifunction from C×C into R satisfying (A1)−(A4).

Let Ti : C −→ P (C), i = 1, 2, ...,m, be a finite family of multivalued mappings such that PTi is

closed and relatively quasi-nonexpansive. Assume that F =
∩m

i=1 F (Ti)
∩

EP (f) ̸= ∅. For x0 ∈ C

and C0 = C, let {xn} be a sequences generated by the following algorithm:

yn,1 = J−1((1− an,1)Jxn + an,1Jzn,1),

yn,2 = J−1((1− an,2)Jxn + an,2Jzn,2),

...

yn,m = J−1((1− an,m)Jxn + an,mJzn,m),

un ∈ C such that f(un, y) +
1
rn

⟨y − un, Jun − Jyn,m⟩ ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : ϕ(z, un) ≤ ϕ(z, xn)},
xn+1 =

∏
Cn+1

x0, ∀n ≥ 0

where zn,1 ∈ PT1xn and zn,i ∈ PTiyn,i−1 for i = 2, ...,m and J is the duality mapping on E. Assume

that
∑m

i=1 an,i = 1, {an,i} ∈ [a, b] ⊂ (0, 1) and {rn} ⊂ [c,∞) for some c > 0. Suppose that PTi is

uniformly continuous with respect to the Hausdorff metric for i = 2, 3, ...,m. Then {xn} converges

strongly to ΠFx0.

In this paper, we introduce a new shirking projection algorithm for finding a common element

of the set of common fixed points of an infinite family of relatively quasi-nonexpansive multivalued

mappings and the set of solutions of an equilibrium problem in uniformly smooth and uniformly

convex Banach spaces. Strong convergence to common elements of two set is established. Our

results improved and extend the corresponding results announced by many others.

2. Preliminaries

A Banach space E is said to be strictly convex if ∥x+y
2

∥ < 1 for all x, y ∈ E with ∥x∥ = ∥y∥ =

1 and x ̸= y . It said to be uniformly convex if limn−→∞ ∥xn − yn∥ = 0 for any two sequences {xn}
and {yn} in E such that ∥xn∥ = ∥yn∥ = 1 and limn−→∞ ∥xn+yn

2
∥ = 1. Let U = {x ∈ E : ∥x∥ = 1}

be the unit sphere of E. Then the Banach space E is said to be smooth provided

lim
t−→0

∥x+ ty∥ − ∥x∥
t
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exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly

for x, y ∈ E. It is well known that if E∗ is uniformly convex, then J is uniformly continuous on

bounded subsets of E.

Lemma 2.1. ([12]) Let E be a uniformly convex and smooth Banach space and let {xn} and {yn}
be two sequences in E. If ϕ(xn, yn) −→ 0 and either {xn} or {yn} is bounded, then xn − yn −→ 0.

Lemma 2.2. ([11]) Let C be a nonempty closed convex subset of a smooth Banach space E and

x ∈ E. Then x0 = ΠCx if and only if

⟨x0 − y, Jx− Jx0⟩ ≥ 0, ∀y ∈ C.

Lemma 2.3. ([11]) Let E be a reflexive, strictly convex and smooth Banach space. Let C be a

nonempty closed convex subset of E and let x ∈ E. Then

ϕ(y,ΠCx) + ϕ(ΠCx, x) ≤ ϕ(y, x), ∀y ∈ C.

Lemma 2.4. ( [23]) Let E be a uniformly convex Banach space and let Br(0) = {x ∈ E :∥ x ∥≤ r},
for r > 0. Then, for any given sequence {xn}∞n=1 ⊂ Br(0) and for any given sequence {an}∞n=1

of positive numbers with
∑∞

n=1 an = 1 there exists a continuous, strictly increasing and convex

function g : [0,∞) −→ [0,∞) with g(0) = 0 such that that for any positive integers i, j with i < j,

∥
∞∑

n=1

anxn∥2 ≤
∞∑

n=1

an∥xn∥2 − aiajg(∥xi − xj∥.

For solving the equilibrium problem, we assume that the bifunction F satisfies the following

conditions:

(A1) F (x, x) = 0 for all x ∈ C,

(A2) F is monotone, i.e. F (x, y) + F (y, x) ≤ 0 for any x, y ∈ C,

(A3) F is upper-hemicontinuous, i.e. for each x, y, z ∈ C,

lim sup
t−→0+

F (tz + (1− t)x, y) ≤ F (x, y)

(A4) F (x, .) is convex and lower semicontinuous for each x ∈ C.

The following lemma was proved in [8].

Lemma 2.5. Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive

Banach space E , let F be a bifunction of C×C into R satisfying (A1)−(A4). Let r > 0 and x ∈ E.

Then, there exists z ∈ C such that

F (z, y) +
1

r
⟨y − z, Jz − Jx⟩ ≥ 0 ∀y ∈ C.

The following lemma was given in [21].

Lemma 2.6. Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive

Banach space E , let F be a bifunction of C×C into R satisfying (A1)−(A4). Let r > 0 and x ∈ E.

define a mapping Tr : E −→ C as follows:

Srx = {z ∈ C : F (z, y) +
1

r
⟨y − z, Jz − Jx⟩ ≥ 0,∀y ∈ C}.

Then, the following hold:

(i) Sr is single valued;

(ii) Sr is firmly nonexpansive-type mapping, i.e., for any x, y ∈ E,

⟨Srx− Sry, JSrx− JSry⟩ ≤ ⟨Srx− Sry, Jx− Jy⟩;

(iii) F (Sr) = EP (F );

(iv) EP (F ) is closed and convex.
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Lemma 2.7. ([21]) Let C be a nonempty closed convex subset of a smooth, strictly convex, and

reflexive Banach space E, let F be a bifunction of C × C into R satisfying (A1) − (A4), and let

r > 0. Then for all x ∈ E and q ∈ F (Sr),

ϕ(q, Srx) + ϕ(Srx, x) ≤ ϕ(q, x).

Lemma 2.8. [7] Let C be a nonempty closed convex subset of a uniformly convex and smooth

Banach space E. Suppose T : C −→ P (C) is a multivalued mapping such that PT is a relatively

quasi-nonexpansive multivalued mapping where

PT (x) = {y ∈ Tx : ∥x− y∥ = dist(x, Tx)}.

If F (T ) ̸= ∅, then F (T ) is closed and convex.

3. Main Result

In this section, we prove strong convergence theorems for finding a common element of the set

of solutions for an equilibrium problem and the set of fixed points of an infinite family of relatively

quasi- nonexpansive multivalued mappings in a Banach space.

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a

nonempty closed convex subset of E. Let F be a bifunction from C×C into R satisfying (A1)−(A4).

Let Ti : C −→ N(C), be a sequence of multivalued mappings such that for each i ∈ N, PTi is closed

relatively quasi- nonexpansive multivalued mappings and F =
∩∞

i=1 F (Ti)
∩

EP (F ) ̸= ∅. For x0 ∈ C

and C0 = C, let {xn} be a sequence generated by the following algorithm:
yn = J−1(an,0Jxn +

∑∞
i=1 an,iJzn,i),

un ∈ C : F (un, y) +
1
rn

⟨y − un, Jun − Jyn⟩ ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : ϕ(z, un) ≤ ϕ(z, xn)},
xn+1 =

∏
Cn+1

x0, ∀n ≥ 0,

where
∑∞

i=0 an,i = 1 and zn,i ∈ PTixn. Assume further that lim infn an,0 an,i > 0, {rn} ⊂ (0,∞)

and lim infn rn > 0. Then {xn} converges strongly to ΠFx0, where ΠF is the projection of E onto

F .

Proof. First, we show by induction that F = (
∩∞

i=1 F (Ti))
∩

EP (F ) ⊂ Cn for all n ≥ 0. From

C0 = C, we have F ⊂ C0. We suppose that F ⊂ Cn for some n ≥ 0. Let u ∈ F , then we have

PTiu = {u}, (i ∈ N). Since Srn and Ti are relatively quasi- nonexpansive, we have

ϕ(u, un) = ϕ(u, Srnyn) ≤ ϕ(u, yn) = ϕ(u, J−1(an,0Jxn +
∞∑
i=1

an,iJzn,i))

= ∥u∥2 − 2⟨u, an,0Jxn +
∞∑
i=1

an,iJzn,i⟩+ ∥an,0Jxn +
∞∑
i=1

an,iJzn,i∥2

≤ ∥u∥2 − 2an,0⟨u, Jxn⟩ − 2
∞∑
i=1

an,i⟨u, Jzn,i⟩+ an,0∥xn∥2 +
∞∑
i=1

an,i∥zn,i∥2

= an,0ϕ(u, xn) +
∞∑
i=1

an,iϕ(u, zn,i)

= an,0ϕ(u, xn) +

∞∑
i=1

an,i inf
u∈PTi

u
ϕ(u, zn,i)

≤ an,0ϕ(u, xn) +

∞∑
i=1

an,iΦ(PTiu, PTixn)

≤ an,0ϕ(u, xn) +

∞∑
i=1

an,iϕ(u, xn) = ϕ(u, xn),
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which implies that u ∈ Cn+1. Hence

F =
∞∩
i=1

F (Ti)
∩

EP (F ) ⊂ Cn, ∀n ≥ 0.

We observe that Cn is closed and convex (see [20, 21]). From xn = ΠCnx0, we have

⟨xn − z, Jx0 − Jxn⟩ ≥ 0, ∀z ∈ Cn. (3.1)

Since F ⊂ Cn for all n ≥ 0, we obtain that

⟨xn − u, Jx0 − Jxn⟩ ≥ 0 ∀u ∈ F .

From Lemma 2.3 we have

ϕ(xn, x0) = ϕ(ΠCnx0, x0) ≤ ϕ(u, x0)− ϕ(u,ΠCnx0) ≤ ϕ(u, x0)

for all u ∈ F ⊂ Cn. Then the sequence ϕ(xn, x0) is bounded. Thus {xn} is bounded. From

xn = ΠCnx0 and xn+1 ∈ Cn+1 ⊂ Cn we have

ϕ(xn, x0) ≤ ϕ(xn+1, x0), ∀n ≥ 0.

Therefore {ϕ(xn, x0)} is nondecreasing. So the limit of {ϕ(xn, x0)} exists. By the construction of

Cn for any positive integer m ≥ n we have

xm = ΠCmx0 ∈ Cm ⊂ Cn.

It follows that

ϕ(xm, xn) = ϕ(xm,ΠCnx0)

≤ ϕ(xm, x0)− ϕ(ΠCnx0, x0)

= ϕ(xm, x0)− ϕ(xn, x0).

Letting m,n −→ ∞ we have

lim
n−→∞

ϕ(xm, xn) = 0. (3.2)

It follows from Lemma 2.1 that xm − xn −→ 0 as m,n −→ ∞. Hence {xn} is a Cauchy sequence.

Since C is closed and convex subset of Banach space E, we can assume that xn −→ z as n −→ ∞.

Next we show z ∈
∩∞

i=1 F (Ti). By taking m = n+ 1 in (3.2) we get

lim
n−→∞

ϕ(xn+1, xn) = 0. (3.3)

It follows from Lemma 2.1 that

lim
n−→∞

∥xn+1 − xn∥ = 0. (3.4)

From xn+1 = ΠCn+1x ∈ Cn+1, we have

ϕ(xn+1, un) ≤ ϕ(xn+1, xn), n ≥ 0,

it follows from (3.3) that

lim
n−→∞

ϕ(xn+1, un) = 0.

By Lemma 2.1 we have

lim
n−→∞

∥xn+1 − un∥ = 0. (3.5)

Combining (3.4) with (3.5) one see

lim
n−→∞

∥xn − un∥ ≤ lim
n−→∞

(∥xn+1 − xn∥+ ∥xn+1 − un∥) = 0. (3.6)

It follows from xn −→ z as n −→ ∞ that un −→ z as n −→ ∞. Since J is uniformly norm-to-norm

continuous on bounded sets and limn−→∞ ∥xn − un∥ = 0, we have

lim
n−→∞

∥Jxn − Jun∥ = 0. (3.7)

We show that {zn,i} is bounded for i ∈ N. Indeed, for u ∈ F we have

(∥zn,i∥ − ∥u∥)2 ≤ ϕ(zn,i, u) ≤ ϕ(xn, u) ≤ (∥xn∥+ ∥u∥)2.
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Since {xn} is bounded, we obtain {zn,i} is bounded for i ∈ N. Let

r = supn≥0{∥xn∥, ∥zn,i∥ : i ∈ N}.

Since E is a uniformly smooth Banach space, we know that E∗ is a uniformly convex Banach space.

Therefore from Lemma 2.4 there exists a continuous strictly increasing, and convex function g with

g(0) = 0 such that

ϕ(u, un) = ϕ(u, Trnyn) ≤ ϕ(u, yn)

= ϕ(u, J−1(an,0Jxn +

∞∑
i=1

an,iJzn,i))

= ∥u∥2 − 2⟨u, an,0Jxn +

∞∑
i=1

an,iJzn,i⟩+ ∥an,0Jxn +

∞∑
i=1

an,iJzn,i∥2

≤ ∥u∥2−2an,0⟨u, Jxn⟩−2

∞∑
i=1

an,i⟨u, Jzn,i⟩+an,0∥xn∥2+
∞∑
i=1

an,i∥zn,i∥2−an,0an,ig(∥Jxn−Jzn,i∥)

= an,0ϕ(u, xn) +

∞∑
i=1

an,iϕ(u, zn,i)− an,0an,ig(∥Jxn − Jzn,i∥)

≤ an,0ϕ(u, xn) +

∞∑
i=1

an,iΦ(PTiu, PTixn)− an,0an,ig(∥Jxn − Jzn,i∥)

≤ an,0ϕ(u, xn) +

∞∑
i=1

an,iϕ(u, xn)− an,0an,ig(∥Jxn − Jzn,i∥)

≤ ϕ(u, xn)− an,0an,ig(∥Jxn − Jzn,i∥). (3.8)

It follows that

an,0an,ig(∥Jxn − Jzn,i∥) ≤ ϕ(u, xn)− ϕ(u, un) n ≥ 0. (3.9)

On the other hand

ϕ(u, xn)− ϕ(u, un) = ∥xn∥2 − ∥un∥2 − 2⟨u, Jxn − Jun⟩

≤ | ∥xn∥2 − ∥un∥2 |+ 2|⟨u, Jxn − Jun⟩ |
≤ | ∥xn∥ − ∥un∥ |(∥xn∥+ ∥un∥) + 2∥u∥∥Jxn − Jun∥

≤ ∥xn − un∥(∥xn∥+ ∥un∥) + 2∥u∥∥Jxn − Jun∥.

It follows from (3.6) and (3.7) that

lim
n−→∞

(ϕ(u, xn)− ϕ(u, un)) = 0. (3.10)

Using (3.9) and by assumption that lim inf an,0an,i > 0 we have that

lim
n−→∞

g(∥Jxn − Jzn,i∥) = 0, (i ∈ N).

Therefore from the property of g , we have

lim
n−→∞

∥Jxn − Jzn,i∥ = 0, (i ∈ N).

Since J−1 is uniformly norm-to-norm continuous on bounded set, we have

lim
n−→∞

∥xn − zn,i∥ = 0,

this implies that

lim
n−→∞

dist(xn, PTixn) ≤ lim
n−→∞

∥xn − zn,i∥ = 0, (i ∈ N).
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Now by closedness of PTi we obtain that z ∈
∩∞

i=1 F (Ti). By a similar argument as in [20] (see

also[21]) we obtain that z ∈ EP (F ). Therefore z ∈ F . Finally we prove z = ΠFx0. By taking limit

in (3.1) we have

⟨z − u, Jx0 − Jz⟩ ≥ 0, ∀u ∈ F .

Hence by Lemma 2.2 we have z = ΠFx0, which completes the proof. �

By a similar argument as in the proof of Theorem 3.1, we can prove the following theorem.

Theorem 3.2. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a

nonempty closed convex subset of E. Let F be a bifunction from C×C into R satisfying (A1)−(A4).

Let Ti : C −→ N(C), be a sequence of closed relatively quasi-nonexpansive multivalued mappings

such that F =
∩∞

i=1 F (Ti)
∩

EP (F ) ̸= ∅ and for all p ∈ F , Ti(p) = {p}. For x0 ∈ C and C0 = C,

let {xn} be a sequence generated by the following algorithm:
yn = J−1(an,0Jxn +

∑∞
i=1 an,iJzn,i),

un ∈ C : F (un, y) +
1
rn

⟨y − un, Jun − Jyn⟩ ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : ϕ(z, un) ≤ ϕ(z, xn)},
xn+1 =

∏
Cn+1

x, ∀n ≥ 0,

where
∑∞

i=0 an,i = 1 and zn,i ∈ Tixn. Assume further that lim infn an,0an,i > 0, {rn} ⊂ (0,∞) and

lim infn rn > 0. Then {xn} converges strongly to ΠFx0, where ΠF is the projection of E onto F .

As a result for single valued mappings we obtain the following theorem.

Theorem 3.3. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a

nonempty closed convex subset of E. Let F be a bifunction from C×C into R satisfying (A1)−(A4).

Let Let Ti : C −→ C, be a sequence of closed relatively quasi-nonexpansive mappings such that

F =
∩∞

i=1 F (Ti)
∩

EP (F ) ̸= ∅ . For x0 ∈ C and C0 = C, let {xn} be a sequence generated by the

following algorithm:
yn = J−1(an,0Jxn +

∑∞
i=1 an,iJTixn),

un ∈ C : F (un, y) +
1
rn

⟨y − un, Jun − Jyn⟩ ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : ϕ(z, un) ≤ ϕ(z, xn)},
xn+1 =

∏
Cn+1

x, ∀n ≥ 0,

where
∑∞

i=0 an,i = 1. Assume further that lim infn an,0an,i > 0, {rn} ⊂ (0,∞) and lim infn rn > 0.

Then {xn} converges strongly to ΠFx0, where ΠF is the projection of E onto F .

Remark : Our main result generalize the result of Eslamian and Abkar [7] of a finite family of

multivalued mappings to an infinite family of multivalued mappings. We also remove the uniformly

continuity of the mappings.

4. Application to Hilbert Spaces

In the Hilbert space setting, we have

ϕ(x, y) = ∥x− y∥2, Φ(Tx, Ty) = H(Tx, Ty)2 ∀x, y ∈ H.

Therefore

Φ(Tx, Tp) ≤ ϕ(x, p) ⇔ H(Tx, Tp) ≤ ∥x− p∥
for every x ∈ C and p ∈ F (T ). We note that in a Hilbert space H, J is the identity operator.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F

be a bifunction from C × C into R satisfying (A1) − (A4). Let Ti : C −→ P (C), i ∈ N be

a sequence of multivalued mappings such that PTi is closed quasi- nonexpansive. Assume that
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F =
∩∞

i=1 F (Ti)
∩

EP (F ) ̸= ∅. For x0 ∈ C and C0 = C, let {xn} be a sequences generated by the

following algorithm:
yn = an,0xn +

∑∞
i=1 an,izn,i,

un ∈ C such that F (un, y) +
1
rn

⟨y − un, un − yn⟩ ≥ 0; ∀y ∈ C,

Cn+1 = {z ∈ Cn : ∥z − un∥ ≤ ∥z − xn∥},
xn+1 = PCn+1x, ∀n ≥ 0

,

where
∑∞

i=0 an,i = 1 and zn,i ∈ PTixn. Assume further that lim infn an,0an,i > 0 and {rn} ⊂ [a,∞)

for some a > 0. Then {xn} converges strongly to PFx0.

Remark : Theorem 4.1 holds if we assume that Ti is closed quasi-nonexpansive multivalued map-

ping and Ti(p) = {p} for all p ∈ F .
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