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CERTAIN TYPES OF SOFT GRAPHS

Muhammad Akram1, Saira Nawaz2

In this article, the concepts of soft graphs and vertex-induced soft graphs are

presented. Certain types of soft graphs including regular soft graphs, irregular soft

graphs, neighbourly irregular soft graphs and highly irregular soft graphs are introduced

and investigated.
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1. Introduction and Preliminaries

Molodtsov [8] initiated the novel concept of soft set theory as a new mathematical

tool for dealing with uncertainties. This theory provides a parameterized point of view for

uncertainty modelling and soft computing. Let U be the universe of discourse and E be the

universe of all possible parameters related to the objects in U . Each parameter is a word

or a sentence. In most cases, parameters are considered to be attributes, characteristics or

properties of objects in U . The pair (U,E) is also known as a soft universe. The power set

of U is denoted by P(U).

Definition 1.1. [8] A pair (F,A) is called soft set over U , where A ⊆ E, F is a set-valued

function F : A → P(U). In other words, a soft set over U is a parameterized family of

subsets of U . For any ϵ ∈ A, F (ϵ) may be considered as set of ϵ-approximate elements of

soft set (F,A).

By means of parametrization, a soft set produces a series of approximate descriptions

of a complicated object being perceived from various points of view. It is apparent that a

soft set FA = (F,A) over a universe U can be viewed as a parameterized family of subsets

of U . For any parameter ϵ ∈ A, the subset F (ϵ) ⊆ U may be interpreted as the set of

ϵ-approximate elements.

In 1975, Rosenfeld [9] first discussed the concept of fuzzy graphs whose basic idea

was introduced by Kauffmann [6] in 1973. Rosenfeld also proposed the fuzzy relations

between fuzzy sets and developed the structure of fuzzy graphs, obtaining analogs of several

graph theoretical concepts. Bhattacharya [3] gave some remarks on fuzzy graphs, and some

operations on fuzzy graphs were introduced by Mordeson and Peng [7]. Recently, Akram
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and Nawaz [2] have introduced the novel concepts called fuzzy soft graphs and fuzzy vertex-

induced soft graphs. In this paper, we introduce the notion of soft graphs and describe

certain types of soft graphs.

2. Certain types of soft graphs

Definition 2.1. A 4-tuple G = (G∗, F,K,A) is called a soft graph if it satisfies the following

conditions:

(1) G∗ = (V,E) is a simple graph,

(2) A is a nonempty set of parameters,

(3) (F,A) is a soft set over V,

(4) (K, A) is a soft set over E,

(5) (F (a),K(a)) is a subgraph of G∗ for all a ∈ A.

The subgraph (F (a),K(a)) is denoted by H(a) for convenience. A soft graph can also

be represented by

G = ⟨F,K,A⟩ = {H(x) : x ∈ A}.

Example 2.1. Consider a crisp graph G∗ = (V,E) as shown in Fig. 2.1.

a

bc

d

Figure 2.1. Simple graph G∗

Let A = {a, d} ⊆ V and (F,A) be a soft set with its approximate function F : A →
P(V ) defined by

F (x) = {y ∈ V : xRy ⇔ d(x , y) ≤ 1}

for all x ∈ A. That is,

F (a) = {a, b, c} and F (d) = {b, c, d}.
Let (K,A) be a soft set over E with its approximate function K : A → P(E) defined by

K(x) = {uv ∈ E : {u, v} ⊆ F (x)}

for all x ∈ A. In other words, we have

K(a) = {ab, bc, ca} and K(d) = {db, bc, cd}.
Thus, H(a) = (F (a),K(a)) and H(d) = (F (d),K(d)) are subgraphs of G∗ as shown in Fig.

2.2.
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H(a) corresponding
     to vertex ´a´

H(d) corresponding
     to vertex ´d´

Figure 2.2. Subgraphs H(a), H(d)

Hence, G = {H(a),H(d)} is a soft graph of G∗. It is also called vertex-induced soft

graph.

Example 2.2. Consider a crisp graph G∗ = (V,E) such that V = {a, b, c, d} and E =

{ab, bc, cd, ad}. Let A = {e1, e2, e3} be a nonempty set of parameters. Then the subgraphs

of G∗ corresponding to parameters e1, e2 and e3 are given below and shown in Fig. 2.3.

H(e1) = (F (e1),K(e1)) = ({a, b}, {ab}),
H(e2) = (F (e2),K(e2)) = ({a, b, c}, {ab, bc}),
H(e3) = (F (e3),K(e3)) = ({a, b, c, d}, {ad, , cd, cb}).

a b

cd
H(e ) corresponding
   to parameter e

a b

a b

c

H(e ) corresponding
   to parameter e

1

1

H(e ) corresponding
   to parameter e

2
2

3

3

Figure 2.3. H(e1), H(e2), H(e3)

Hence G = {H(e1),H(e2),H(e3)} is a soft graph of G∗. Tabular representation of

soft graph G is given in Table. 1

Table 1. Tabular representation of a soft graph.

A\V a b c d

e1 1 1 0 0

e2 1 1 1 0

e3 1 1 1 1

A\E ab bc cd da

e1 1 0 0 0

e2 1 1 0 0

e3 0 1 1 1

Definition 2.2. Let G∗ be a simple graph and G be a soft graph of G∗. Then G is said

to be regular soft graph if H(x) is a regular graph for all x ∈ A. A soft graph G is called a

regular soft graph of degree r if H(x) is a regular graph of degree r for all x ∈ A.
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Example 2.3. Consider an undirected graph G∗ as shown in Fig. 2.4.

a b
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d
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g

h

Figure 2.4. Undirected graph G∗

Let A = {a, c, f}. We define an approximate function F : A → P(V ) by

F (x) = {y ∈ V : xRy ⇔ d(x , y) < rad(G∗)}

for all x ∈ A. That is,

F (a) = {a, b, h, g}, F (c) = {b, c, d}, F (f) = {d, e, f, g, h}.
We define an approximate function K : A → P(E) by

K(x) = {uv ∈ E : {u, v} ⊆ F (x)}

for all x ∈ A. That is,

K(a) = {ab, ah, ag, bh, hg, bg}, K(c) = {bc, cd, bd} and K(f) = {de, ef, fg, gh, hd, he, hf, dg, df, ge}.
Thus, subgraphs H(a) = (F (a),K(a)), H(c) = (F (c),K(c)) and H(f) = (F (f),K(f)) are

regular subgraphs of G∗ shown in Fig. 2.5.
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H(a) corresponding
    to vertex ´a´

H(c) corresponding
    to vertex ´c´

H(f) corresponding
    to vertex ´f´

Figure 2.5. Subgraphs H(a), H(c) and H(f)

Hence G is a regular soft graph of G∗. That is, G = {H(a),H(c),H(f)} is a regular

soft graph of G∗.

Definition 2.3. Let G∗ be a simple graph and G be a soft graph of G∗. An edge e in G is

said to be a soft bridge if its deletion disconnect the subgraph H(x), x ∈ A.
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Example 2.4. Consider a simple graph G∗ as shown in Fig. 2.6.

a

b

cd

e

Figure 2.6. Simple graph G∗

Let A = {b, c} ⊆ V and (F,A) be a soft set over V with approximate function F :

A → P(V ) by

F (x) = {y ∈ V : xRy ⇔ d(x , y) ≤ rad(G∗)}
for all x ∈ A. That is, F (b) = {a, b, c} and F (c) = {a, b, c, d}.
Let (K,A) be a soft set over E with approximate function K : A → P(E) by

K(x) = {uv ∈ E : {u, v} ⊆ F (x)}

for all x ∈ A. That is,

K(b) = {ab, bc, ca} and K(c) = {ab, bc, ca, cd}.
The subgraphs H(b) and H(c) are shown in Fig.2.7.

a

b

cd

a
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c

Figure 2.7. Subgraphs H(b) and H(c)

Then G is a soft graph of G∗. Here, deletion of edge (c, d) in subgraph H(c) disconnect

the subgraph H(c). Therefore, (c, d) is a soft bridge.

Definition 2.4. Let G∗ be a simple graph and G be a soft graph of G∗. A vertex v in G is

said to be a soft cutvertex if its deletion disconnect the subgraph H(x), x ∈ A.

Example 2.5. Consider an undirected graph G∗ as shown in Fig. 2.8.

a

b c

d

ef

Figure 2.8. Undirected graph G∗
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Let A = {b, f} and (F,A) be a soft set over V with approximate function F : A →
P(V ) by

F (x) = {y ∈ V : xR y ⇔ d(x , y) < dia(G∗)}
for all x ∈ A. Then F (b) = {a, b, c, d} and F (f) = {a, c, e, f}.
Let (K,A) be a soft set over E with approximate function K : A → P(E) by

K(x) = {uv ∈ E : {u, v} ⊆ F (x)}

for all x ∈ A. That is,

K(b) = {ab, bc, cd, bd}, K(f) = {af, fe, ce, fc}.
The subgraphs H(b) and H(f) are shown in Fig.2.9.

(a)
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b c

d
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c

ef

Figure 2.9. Subgraphs H(b) and H(f)

Clearly, subgraphs H(b) and H(f) are subgraphs of G∗. Thus G is a soft graph of

G∗. Here, the deletion of vertex b in subgraph H(b) and f in subgraph H(f) disconnect the

subgraphs. Therefore, b, f are soft cutvertices.

Theorem 2.1. A regular soft graph with cardinality of F (x), |F (x)| ≥ 3 for all x ∈ A does

not have a soft bridge. Hence it does not have a soft cutvertex.

Proof. Suppose that G is a regular soft graph. Then H(x) is a regular graph for all x ∈ A.

Since |F (x)| ≥ 3 for all x ∈ A, the removal of any edge of H(x) does not disconnect the

subgraph. Therefore, G has no soft bridge. Hence it does not have a soft cutvertex. �

Proposition 2.1. A regular soft graph of degree k where k > 0 with |F (x)| ≥ 3 for all

x ∈ A does not have an end vertex (a vertex of degree 1).

Definition 2.5. Let G∗ be a simple graph and G be a soft graph of G∗. Then G is said to

be soft tree if H(x) is a tree for all x ∈ A. Let G∗ be a simple graph and G be a soft graph

of G∗. Then G is a soft cycle if H(x) is cycle for all x ∈ A.

Example 2.6. Consider a simple graph G∗ as shown in Fig. 2.10.

u

vw

x

Figure 2.10. Simple graph G∗
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Let A = {v, x} ⊆ V and (F,A) be a soft set over V with approximate function

F : A → P(V ) by

F (x) = {y ∈ V : xRy ⇔ d(x , y) ≤ 1}

for all x ∈ A.

That is, F (v) = {u, v, w} and F (x) = {u,w, x}.
Let (K,A) be a soft set over E with approximate function K : A → P(E) by

K(x) = {uv ∈ E : {u, v} ⊆ F (x)}

for all x ∈ A. That is,

K(v) = {uv, vw,wu}, K(x) = {ux, xw,wu}.
Subgraphs H(v) and H(x) are shown in Fig. 2.11.

u

vw

u

x

w

x

Figure 2.11. Subgraphs H(v) and H(x)

Then G is a soft graph of G∗. Here, H(x) is cycle for all x ∈ A. Hence G is a soft

cycle.

Theorem 2.2. If G is a soft cycle then G is not soft tree.

Proof. Let G be a soft cycle. Then H(x) is cycle for all x ∈ A. Since a tree contains no cycle

so H(x) is not a tree for all x ∈ A. Therefore, G is not a soft tree. �

Remark 2.1. The converse of above theorem is not true in general i.e., if G is not a soft

tree then G need not be a soft cycle.

The following example illustrate it.

Example 2.7. Consider a graph G∗ as shown below in Fig. 2.6.

Let A = {b, d} ⊆ V and (F,A) be a soft set over V with approximate function F : A → P(V )

by

F (x) = {y ∈ V : xRy ⇔ d(x , y) ≤ 1}

for all x ∈ A. That is, F (b) = {a, b, c} and F (d) = {c, d, e}.
Let (K,A) be a soft set over E with approximate function K : A → P(E) by

K(x) = {uv ∈ E : {u, v} ⊆ F (x)}

for all x ∈ A. That is,

K(b) = {ab, bc, ca} and K(d) = {ed, dc}.
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Figure 2.12. Subgraphs H(b) and H(d)

Then G is a soft graph of G∗. Here, H(b) is not a tree. Therefore, G is not a soft

tree. But G is not a soft cycle.

Proposition 2.2. If G is a soft cycle then G is a regular soft graph of degree 2.

OR every soft cycle is a regular soft graph.

Proof. Suppose that G is a soft cycle. Then H(x) is a cycle graph for all x ∈ A. Since a

cycle graph is a closed path and each vertex has degree 2 therefore, it is a regular graph of

degree 2. So H(x) is a regular graph of degree 2 for all x ∈ A. Hence G is a regular soft

graph of degree 2. �

Proposition 2.3. Let G be a regular soft graph and H(x) is a cycle for all x ∈ A. Then G

is a soft cycle.

Proposition 2.4. Let graph G∗ be a complete graph. Then every soft graph of G∗ is a

regular soft graph of G∗.

Proof. Let G be a soft graph of G∗. Then H(x) is a complete subgraph of G∗ for all x ∈ A

as every induced subgraph of a complete graph is complete and every complete graph is

regular. Therefore, G is a regular soft graph of G∗. �

Remark 2.2. The converse of the above proposition is not true in general. That is, if G is

regular soft graph of G∗ then G∗ need not be a complete graph.

Example 2.8. Consider a simple graph G∗ as shown in Fig.2.13.

a

b c

d

ef

Figure 2.13. Simple Graph

Let A = {c, d} ⊆ V and (F,A) be a soft set over V with approximate function F :

A → P(V ) by

F (x) = {y ∈ V : xRy ⇔ d(x , y) = 1}
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for all x ∈ A. That is, F (c) = {b, d, e} and F (d) = {b, c, e}.
Let (K,A) be a soft set over E with approximate function K : A → P(E) by

K(x) = {uv ∈ E : {u, v} ⊆ F (x)}

for all x ∈ A. That is,

K(c) = {bd, de, eb} and K(d) = {bc, ce, eb}. Subgraphs H(c) and H(d) are shown in Fig.2.14.

b c

eH(d)

b

d

e
H(c)

Figure 2.14. Subgraphs H(c) and H(d)

Then G is a soft graph of G∗. Here, H(x) is a regular graph for all x ∈ A. Therefore,

G is a regular soft graph of G∗. But G∗ is a not complete graph.

Theorem 2.3. A soft graph G of G∗ is a regular soft graph if and only if H(x) is regular

graph for all x ∈ A.

Proof. Suppose G is a regular soft graph of G∗. Then clearly H(x) is a regular graph for all

x ∈ A.

Conversely, suppose that H(x) is a regular graph of G∗ for all x ∈ A. Then G is a regular

soft graph of G∗. �

Definition 2.6. Let G∗ be a simple graph and G be a soft graph of G∗. Then G is said to

be soft complete graph if H(x) is a complete graph for all x ∈ A.

Proposition 2.5. Every complete soft graph G of G∗ is regular soft graph.

Proof. Let G be a soft complete graph of G∗. Then H(x) is a complete graph for all x ∈ A.

Since every complete graph is regular. So H(x) is a regular graph for all x ∈ A. Therefore,

G is a regular soft graph. �

Proposition 2.6. Let the graph G∗ be a regular. Then every soft graph of G∗ may not be

a regular soft graph.

Example 2.9. Consider the regular graph G∗ = (V,E) such that V = {a, b, c, d} and

E = {ab, bc, cd, ad}. Let A = {a, c} ⊆ V and (F,A) be a soft set over V with approximate

function F : A → P(V ) by

F (x) = {y ∈ V : xRy ⇔ d(x , y) < dia(G∗)}

for all x ∈ A. Then F (a) = {a, b, d} and F (c) = {b, c, d}.
Let (K,A) be a soft set over E with approximate function K : A → P(E) by

K(x) = {uv ∈ E : {u, v} ⊆ F (x)}

for all x ∈ A. That is,

K(a) = {ab, ad} and K(c) = {bc, cd}. Subgraphs H(a) and H(c) are shown in Fig.2.15.
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Figure 2.15. Subgraphs H(a) and H(c)

Then G = {H(a),H(c)} is a soft graph of G∗. Here, H(x) is not a regular graph for

all x ∈ A. Therefore, G is not a regular soft graph of G∗. But G is a regular graph.

Proposition 2.7. If G is a regular soft graph of G∗ then Gc is a regular soft graph of G∗.

Proof. Suppose that G is a regular soft graph of G∗. Then H(x) is a regular graph for all

x ∈ A. Since the complement of a regular graph is regular. So the complement of subgraph

H(x), Hc(x) is a regular graph for all x ∈ A. Therefore, Gc is a regular soft graph of G∗. �

Theorem 2.4. If G = (G∗, F,K,A) is a complete soft graph of G∗ then every soft subgraph

G1 = (G∗, F1,K1, B) of complete soft graph is regular soft graph.

Proof. Suppose that G1 is a soft subgraph of G. Then by definition of soft subgraph, B ⊆ A

and H1(x) is a subgraph of H(x) for all x ∈ B. Since G is a soft complete graph then

subgraph H(x) is a complete subgraph for all x ∈ A. Since H1(x) is a subgraph of H(x) so

H1(x) is a regular graph for all x ∈ B, as each subgraph of a complete graph is complete

and every complete graph is regular. Thus, G1 is a regular soft subgraph of G. �

Definition 2.7. Let G∗ be a simple graph and G be a soft graph of G∗. Then G is said to

be irregular soft graph if H(x) is an irregular graph for all x ∈ A.

Example 2.10. Consider a simple graph G∗ as shown in Fig. 2.16.

a

b

cd

e

Figure 2.16. Simple graph G∗

Let A = {c, e}. We define an approximate function F : A → P(V ) by

F (x) = {y ∈ V : xRy ⇔ d(x , y) < rad(G∗)}

for all x ∈ A. That is, F (c) = {b, c, d} and F (e) = {a, b, d, e}.
We define an approximate function K : A → P(E) by

K(x) = {uv ∈ E : {u, v} ⊆ F (x)}
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for all x ∈ A. That is,

K(c) = {bc, cd} and K(e) = {ab, ae, eb, ed}. Subgraphs H(c) and H(e) are shown in Fig.2.17.

H(e)
H(c)

b

cd

a

e

d

b

Figure 2.17. Subgraphs H(c) and H(e)

Then G = {H(c),H(e)} is a soft graph of G∗. Here, H(x) is an irregular graph for

all x ∈ A. Therefore, G is an irregular soft graph.

Definition 2.8. Let G∗ be an undirected graph and G be a soft graph of G∗. Then G is said

to be neighbourly irregular soft graph if H(x) is a neighbourly irregular graph for all x ∈ A.

Example 2.11. Consider an undirected graph G∗ as shown in Fig. 2.18.

a

b

c

d

e

f

Figure 2.18. undirected graph G∗

Let A = {a, c, d}. We define an approximate function F : A → P(V ) by

F (x) = {y ∈ V : xRy ⇔ d(x , y) < rad(G∗)}

for all x ∈ A. That is, F (a) = {a, b, d, f}, F (c) = {b, c, d} and F (d) = {a, c, d, e}.
We define an approximate function K : A → P(E) by

K(x) = {uv ∈ E : {u, v} ⊆ F (x)}

for all x ∈ A. That is,

K(a) = {ab, ad, af}, K(c) = {bc, cd} and K(d) = {db, da, df}.
Subgraphs H(a), H(c) and H(d) are shown in Fig. 2.19.
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Figure 2.19. Subgraphs H(a), H(c) and H(d)

Then G is a soft graph of G∗. Here, H(x) is neighbourly irregular graph for all x ∈ A.

Therefore, G = {H(a),H(c), H(d)} is a neighbourly irregular soft graph of G∗.

Definition 2.9. Let G∗ be a graph and G be a soft graph of G∗. Then G is said to be highly

irregular soft graph if H(x) is a highly irregular graph for all x ∈ A.

Example 2.12. Consider a nontrivial graph G∗ as shown in Fig .2.20.

a

b

c

d

e

f

Figure 2.20. Nontrivial graph G∗

Let A = {b, e}. We define an approximate function F : A → P(V ) by F (x) = {y ∈ V :

xRy ⇔ d(x , y) < rad(G∗)} for all x ∈ A. That is, F (b) = {a, b, c, d} and F (e) = {c, d, e, f}.
We define an approximate function K : A → P(E) by K(x) = {uv ∈ E : {u, v} ⊆ F (x)}
for all x ∈ A. That is,

K(b) = {ab, bc, cd} and K(e) = {cd, de, ef}.
Subgraphs H(b) and H(e) are shown in Fig 2.21.
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H(b) H(e)

Figure 2.21. Subgraphs H(b) and H(e)

Then G is a soft graph of G∗. Here, H(x) is highly irregular graph for all x ∈ A.

Therefore, G = {H(b), H(e)} is a highly irregular soft graph of G∗.
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Remark 2.3. A highly irregular soft graph may not be a neighbourly irregular soft graph.

In above example 2.12 the adjacent vertices b and c in subgraph H(b) and the adjacent

vertices d and e in subgraph H(e) have same degrees.Therefore, H(x) is not neighbourly

irregular graph for all x ∈ A. Hence G is not neighbourly irregular soft graph. But it is

highly irregular soft graph.

Remark 2.4. A neighbourly irregular soft graph may not be a highly irregular soft graph.

Example 2.13. Consider a simple graph G∗ as shown in Fig.2.22.

d
f

g

a

b

ce

Figure 2.22. Simple graph G∗

Let A = {a, f}. We define an approximate function F : A → P(V ) by F (x) =

{y ∈ V : xRy ⇔ d(x , y) ≤ 1}. Then F (a) = {a, b, f}, F (f) = {a, d, g, f}. We define an

approximate function K : A → P(E) by K(x) = {uv ∈ E : {u, v} ⊆ F (x)} for all x ∈ A.

That is, K(a) = {ab, af}, K(f) = {fa, fd, fg}. Subgraphs H(a) and H(f) are shown in

Fig. 2.23.

a

bf

H(a)

a

df

g H(f)

Figure 2.23. Subgraphs H(a) and H(f)

Here, the adjacent vertices in subgraphs H(a) and H(f) have distinct degree so H(x)

is neighbourly irregular for all x ∈ A but consider a vertex a in subgraph H(a) which is

adjacent to the vertices b and f with same degree and a vertex f in subgraph H(f) which

is adjacent to the vertices a, d, g with same degree. Therefore, H(x) is not highly irregular

for all x ∈ A. Hence G is a neighbourly irregular soft graph but it is not highly irregular soft

graph.

We have seen from the above examples that there is no relation between highly irreg-

ular soft graphs and neighbourly irregular soft graphs. However, a necessary and sufficient

condition of a soft graph G to be both highly irregular and neighbourly irregular is provided

in the following theorem.
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Theorem 2.5. Let G∗ be a simple graph and G be a soft graph of G∗. Then G is both

highly irregular soft graph and neighbourly irregular soft graph if and only if the degrees of

all the vertices are distinct.

Proof. Let G be a soft graph of G∗. Suppose that G is highly irregular and neighbourly

irregular soft graph. Then each vertex in H(x) is adjacent to the vertices with distinct

degree for all x ∈ A since G is highly irregular soft graph. Also in H(x) no two adjacent

vertices have same degree for all x ∈ A since G is neighbourly irregular soft graph. Hence

the degrees of all vertices of G are distinct.

Conversely, suppose that all the vertices of G have distinct degrees. This means that every

two adjacent vertices have distinct degrees and to every vertex the adjacent vertices have

distinct degrees. Hence G is highly irregular soft graph and neighbourly irregular soft

graph. �

Proposition 2.8. Let soft graph G1 of G∗ be neighbourly irregular , the soft subgraph G2

of G1 may or may not be neighbourly irregular soft graph.

Example 2.14. Consider an undirected graph G∗ as shown in Fig.2.24.
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b

c

d

e

f

g

h

Figure 2.24. undirected graph G∗

Let A = {c, g, h} and B = {g, c}. We define an approximate function F1 : A → P(V )

by

F1(x) = {y ∈ V : xRy ⇔ d(x , y) < rad(G∗)}
for all x ∈ A. Then F1(c) = {a, b, c, d, e, f, g}, F1(g) = {c, e, f, g, h}, F1(h) = {e, g, h}. We

define an approximate function K1 : A → P(E) by

K1(x) = {uv ∈ E : {u, v} ⊆ F1(x)}

for all x ∈ B. Then K1(c) = {ac, cb, cd, bd, ce, df, eg, ef}, K1(g) = {ce, eg, ef, gh} and

K1(h) = {eg, gh}. Subgraphs H1(c) , H1(g) and H1(h) are shown in Fig. 2.25.
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e g

h

Figure 2.25. Subgraphs H1(c) , H1(g) and H1(h)

Therefore, G1 ∈ SG(G∗). Here H1(x) is neighbourly irregular for all x ∈ A. Hence G1

is neighbourly irregular soft graph.
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We define an approximate function F2 : B → P(V ) by F2(x) = {y ∈ V : xRy ⇔ d(x , y) <

2} for all x ∈ B. Then F2(c) = {a, b, c, d, e} , F2(g) = {e, g, h}. We define an approximate

function K2 : A → P(E) by K2(x) = {uv ∈ E : {u, v} ⊆ F2(x)} for all x ∈ B. That is,

K2(c) = {ac, cb, cd, bd, ce}, K2(g) = {eg, gh}. Subgraphs H2(c) = (F2(c),K2(c)) and H2(g) =

(F2(g),K2(g)) are shown in Fig. 2.26.
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(c)

Figure 2.26. Subgraphs H2(c) and H2(g)

Therefore, G2 ∈ SG(G∗). Here, B ⊆ A and H2(x) is a subgraph of H1(x) for all

x ∈ B. Therefore, G2 is a soft subgraph of G1. Here, H2(c) is not neighbourly irregular,

c ∈ A. So G2 is not neighbourly irregular soft subgraph.

Proposition 2.9. If soft graph G of G∗ is neither neighbourly irregular nor highly irregular

then G is a soft cycle.

Example 2.15. Consider a simple graph G∗ as shown in Fig.2.27.

a b

cd

Figure 2.27. Simple graph G∗

Let A = {a, c}. We define an approximate function F : A → P(V ) by

F (x) = {y ∈ V : xRy ⇔ d(x , y) = 1}

for all x ∈ A. That is, F (a) = {b, c, d} and F (c) = {a, b, d}.
We define an approximate function K : A → P(E) by

K(x) = {uv ∈ E : {u, v} ⊆ F (x)}

for all x ∈ A. That is, K(a) = {bc, cd, db} and K(c) = {ab, bd, da}.
Subgraphs H(a) and H(c) are shown in Fig. 2.28.
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b

cd

a b

d

Figure 2.28. Subgraphs H(a) and H(c)

Then G is a soft graph. Here, H(x) is neither neighbourly irregular nor highly ir-

regular, but it is a cycle for all x ∈ A. Hence G is neither neighbourly irregular nor highly

irregular soft graph but it is a soft cycle.

Proposition 2.10. A complete soft graph G is not neighbourly irregular soft graph.

As in Example 2.15 G is a soft complete graph since H(x) is a complete graph for all

x ∈ A but it is not neighbourly irregular soft graph as H(x) is not neighbourly irregular for

all x ∈ A.
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