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ANNULI FOR THE ZEROS OF A POLYNOMIAL

Pantelimon George Popescu1 and Jose Luis Dı́az-Barrero2

To Octavian Stănăşilă on his 75th birthday

In this paper, ring shaped regions containing all the zeros of
a polynomial with complex coefficients involving binomial coefficients and
Fibonacci–Pell numbers are given. Furthermore, bounds for strictly positive
polynomials involving their derivatives are also presented. Finally, using
MAPLE, some examples illustrating the bounds proposed are computed and
compared with other existing explicit bounds for the zeros.
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1. Introduction

Problems involving polynomials in general, and location of their zeros in
particular, have a long history. But, recently come under reexamination be-
cause of their importance in many areas of applied mathematics such as control
theory, signal processing and electrical networks, coding theory, cryptography,
combinatorics, number theory, and engineering among others [16, 17, 12, 13].
Specially, the zeros of polynomials play an important role to solve control engi-
neering problems [2], digital audio signal processing problems [18], eigenvalue
problems in mathematical physics [10], and in mathematical biology, where
polynomials with strictly positive coefficients have efficiently used [3]. A lot
of methods to approximate the actual value of the zeros of polynomials with
real or complex coefficients, such as Sturm sequence method start with an es-
timate of an upper bound for the moduli of the zeros. If we have and accurate
estimation for the bound, then the amount of work needed to search the range
of possible values to begin with can be considerably reduced in comparison
with the classical starting searchers such as the bisection methods. Therefore,
it should be important to have a set of available bounds to choose what is
most accurate to begin the computation. It is well-known that one of the first
explicit bounds for the zeros is a classical result due to Cauchy (1829) [5] and
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since then a lot of papers devoted to the subject can be found in the literature.
Some of them that will be used in the computations performed to obtain the
numerical results presented at the end of this paper, and for ease of reference,
are summarized in the following three theorems.

Theorem A (Upper bounds for the zeros) Let A(z) =
∑n

k=0 akz
k,

(ak 6= 0) be a nonconstant polynomial with complex coefficients. Then, all its
zeros lie in the disc C = {z ∈ C : |z| ≤ r}, where

(i): r < 1 + max
0≤k≤n−1

{
|ak|
}

(Cauchy [5])

(ii): r = max

{
1,

n−1∑
k=0

|ak|

}
(Tikoo [14])

(iii): r < 1 + δ3, where δ3 is the unique positive root of the equation

Q3(x) = x3 + (2− |an−1|)x2 + (1− |an−1| − |an−2|)x− A = 0

Here A = max0≤k≤n−1 |ak| (Sun et al. [11])

(iv): r <
√

1 + A, where A = max
0≤k≤n−1

{
|a2k + 2(−1)k(B − C)|

}
and

B =
∑

0≤i<j≤[n/2]
i+j=k

a2ia2j and C =
∑

0≤i<j≤[(n−1)/2]
i+j=k−1

a2i+1a2j+1

(Zilovic [17])

(v): r =
n−1∑
k=0

|ak|1/n−k (Walsh [15])

(vi): r =

√√√√1 +
n−1∑
k=0

|ak|2 (Carmichael et. al. [4])

Another refinement of the explicit bound of Cauchy was given by Dı́az-
Barrero [6], by proving the following

Theorem B Let A(z) =
∑n

k=0 akz
k, (ak 6= 0) be a nonconstant polyno-

mial with complex coefficients. Then, all its zeros lie in the annulus C = {z ∈
C : r1 ≤ |z| ≤ r2}, where

r1 =
3

2
min
1≤k≤n

{
2nFkC(n, k)

F4n

∣∣∣∣a0ak
∣∣∣∣}1/k

, and r2 =
2

3
max
1≤k≤n

{
F4n

2nFkC(n, k)

∣∣∣an−k
an

∣∣∣}1/k

Here Fk are Fibonacci’s numbers, namely, F0 = 0, F1 = 1, and for k ≥ 2,
Fk = Fk−1 + Fk−2. Furthermore, C(n, k) are the binomial coefficients.

Recently Affane-Aji et al. [1] have generalized the results obtained in
[11], by given the following

Theorem C Let A(z) =
∑n

k=0 akz
k, (ak 6= 0) be a nonconstant polyno-

mial with complex coefficients. Then, all its zeros lie in the annulus C = {z ∈
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C : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{
kC(n, k)

n2n−1

∣∣∣∣a0ak
∣∣∣∣}1/k

, and r2 = 1 + δk.

Here, δk is the unique positive root of the equation

Qk(z) = zk +

k∑
ν=2

C(k − 1, k − ν)−
ν−1∑
j=1

C(k − j − 1, k − ν)|an−j |

 zk+1−ν −A = 0,

where A = max0≤k≤n−1 |ak|, ak = 0 if k < 0.

Our goal in this paper is to present some ring-shaped regions in the
complex plane containing all the zeros of a polynomial involving the elements of
second order recurrences such as the Fibonacci and Pell numbers and binomial
coefficients. Moreover, bounds polynomials with strictly positive coefficients
are also obtained. To illustrate the results given, numerical computations using
a MAPLE code are performed and the results obtained are exhibited in the
last section where they are compared with other bounds appeared previously.

2. Main results

In the following some theorems on the location of the zeros are given.
We begin with

Theorem 2.1. Let A(z) =
∑n

k=0 akz
k, (ak 6= 0) be a nonconstant polynomial

with complex coefficients. Then, all its zeros lie in the ring shaped region
C = {z ∈ C : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{
23(1−n)

(
2n

n+ k

)
P2
k

∣∣∣∣a0ak
∣∣∣∣}1/k

(1)

and

r2 = max
1≤k≤n

{
23(n−1)

(
2n

n+ k

)−1
P−2k

∣∣∣∣an−kan

∣∣∣∣
}1/k

(2)

Here Pk stands for the kth Pell number defined by P0 = 0, P1 = 1, and for
n ≥ 2, Pn = 2Pn−1 + Pn−2.

Proof. To prove the preceding result, we will use the identity
n∑
k=0

(
2n

n+ k

)
(zk + z−k) =

(
2n

n

)
+ z−n(z + 1)2n, (3)

valid for all nonnegative integer n and for all nonzero complex number z. In
fact, developing the LHS of the preceding expression, we have

zn
n∑
k=0

(
2n

n+ k

)
(zk+z−k) = 2

(
2n

n

)
zn+

(
2n

n+ 1

)
(zn+1+zn−1)+. . .+

(
2n

2n

)
zn(zn+z−n)

= 2

(
2n

n

)
zn+

(
2n

n+ 1

)
zn+1+. . .+

(
2n

2n

)
z2n+

(
2n

n− 1

)
zn−1+. . .+

(
2n

0

)
z0
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=

(
2n

n

)
zn +

2n∑
k=0

(
2n

k

)
zk =

(
2n

n

)
zn + (z + 1)2n

and (3) is proven after dividing by zn. Now, using the above result we can
obtain

n∑
k=0

(
2n

n+ k

)
P2
k = 23(n−1) (4)

Indeed, putting z = −1 in (3) the identity becomes
∑n

k=0(−1)k
(

2n
n+k

)
= 1

2

(
2n
n

)
.

Putting z = α = 1 +
√

2, a characteristic root of the second order recurrence
x2−2x−1 = 0 that defines Pell’s numbers in (3), we get

∑n
k=0

(
2n
n+k

) (
α2k + α−2k

)
=

1
α2n (α2 + 1)

2n
+
(
2n
n

)
. On account of Binet’s formulae, we have Pn =

αn − βn

α− β
=

αn − βn

2
√

2
, where α = 1 +

√
2, and β = 1 −

√
2. Squaring the last expression,

and taking into account that αβ = −1, yields

P2
n =

1

23
(αn − βn)2 =

1

23

(
α2n + β2n − 2(αβ)n

)
=

1

23

(
α2n +

(
−1

α

)2n

− 2(−1)n

)
=

1

23

(
α2n + α−2n − 2(−1)n

)
from which follows

n∑
k=0

(
2n

n+ k

)
P2
k =

n∑
k=0

1

23

(
2n

n+ k

)(
α2k + α−2k − 2(−1)k

)
=

1

23

n∑
k=0

(
2n

n+ k

)(
α2k + α−2k

)
− 1

22

n∑
k=0

(−1)k
(

2n

n+ k

)
Finally,

n∑
k=0

(
2n

n+ k

)
P2
k =

1

23

[
1

α2n
(α2 + 1)2n +

(
2n

n

)]
− 1

23

(
2n

n

)
=

1

23

(
1

α
+ α

)2n

= 23(n−1)

on account of the preceding and the fact that α+α−1 = 2
√

2, as can be easily
checked.

From (1), it follows for 1 ≤ k ≤ n,

rk1 ≤ 23(1−n)
(

2n

n+ k

)
P2
k

∣∣∣∣a0ak
∣∣∣∣ (5)

Suppose that |z| < r1, then

|A(z)| =

∣∣∣∣∣
n∑
k=0

akz
k

∣∣∣∣∣ ≥ |a0| −
n∑
k=1

|ak||z|k > |a0| −
n∑
k=1

|ak|rk1
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= |a0|

(
1−

n∑
k=1

∣∣∣∣aka0
∣∣∣∣ rk1
)
≥ |a0|

(
1−

n∑
k=1

23(1−n)
(

2n

n+ k

)
P2
k

)
= 0

on account of (4) and (5). Consequently, A(z) does not have zeros in {z ∈ C :
|z| < r1}.

It is known ([5], [7]) that all the zeros of A(z) have modulus less or equal
than the unique positive root of the equation

G(z) = |an|zn − |an−1|zn−1 − · · · − |a1|z − |a0|

Hence, the second part of our statement will be proved if we show that G(r2) ≥
0. From (2), it follows for 1 ≤ k ≤ n,∣∣∣∣an−kan

∣∣∣∣ ≤ 23(1−n)
(

2n

n+ k

)
P2
kr
k
2 (6)

Then,

G(r2) = |an|

[
rn2 −

n∑
k=1

∣∣∣∣an−kan

∣∣∣∣ rn−k2

]
≥ |an|

[
rn2 −

(
n∑
k=1

23(1−n)
(

2n

n+ k

)
P2
kr
k
2

)
rn−k2

]

= |an|rn2

(
1−

n∑
k=1

23(1−n)
(

2n

n+ k

)
P2
k

)
= 0,

and the proof is complete. �

Using Fibonacci numbers instead of Pell’s numbers, we state and prove
the following

Theorem 2.2. Let A(z) =
∑n

k=0 akz
k, (ak 6= 0) be a nonconstant polynomial

with complex coefficients. Then, all its zeros lie in the ring shaped region
C = {z ∈ C : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{
51−n

(
2n

n+ k

)
F 2
k

∣∣∣∣a0ak
∣∣∣∣}1/k

and

r2 = max
1≤k≤n

{
5n−1

(
2n

n+ k

)−1
F−2k

∣∣∣∣an−kan

∣∣∣∣
}1/k

Here Fk stands for the kth Fibonacci number defined by F0 = 0, F1 = 1, and
for all n ≥ 2, Fn = Fn−1 + Fn−2.

Proof. To prove the preceding result we will use the same technique as in the
proof of Theorem 1. So, we begin claiming that

n∑
k=0

(
2n

n+ k

)
F 2
k = 5n−1 (7)
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Indeed, since the roots of the characteristic equation of the second order recur-

rence for Fibonacci numbers, x2−x− 1 = 0 are α =
1 +
√

5

2
and β =

1−
√

5

2
,

then we obtain Fn =
αn − βn

α− β
=
αn − βn√

5
, as it is well-known. From the pre-

ceding immediately follows F 2
n = 1

5

(
αn − βn

)2
= 1

5

(
α2n + α−2n − 2(−1)n

)
and

n∑
k=0

(
2n

n+ k

)
F 2
k =

n∑
k=0

(
2n

n+ k

)
1

5

(
α2k + α−2k − 2(−1)k

)
=

1

5

n∑
k=0

(
2n

n+ k

)(
α2k + α−2k

)
− 2

5

n∑
k=0

(−1)k
(

2n

n+ k

)

Putting z = −1 and z = α =
1 +
√

5

2
in (3) and substituting the identities

obtained in the preceding expression, immediately follows
n∑
k=0

(
2n

n+ k

)
F 2
k =

1

5

[
1

α2n
(α2 + 1)2n +

(
2n

n

)]
−1

5

(
2n

n

)
=

1

5

(
1

α
+ α

)2n

= 5n−1

because α + α−1 =
√

5, as can be easily checked.
Now using (7) instead of (4), and carrying out step by step the proof

of Theorem 1 the proof of Theorem 2 can be easily completed. We omit the
details. �

Hereafter, we state and prove two results involving explicit bounds for
the zeros of polynomials with strictly positive coefficients. We begin with a
bound involving the derivative of the polynomial. It is stated in the following

Theorem 2.3. Let A(z) =
∑n

k=0 akz
k be a nonconstant polynomial with strictly

positive coefficients. Then, all its zeros lie in the ring shaped region C = {z ∈
C : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{
kpk−1

(
a0

A′(p)

)}1/k

(8)

and

r2 = max
1≤k≤n

{
qk−n

n− k + 1

(
B′(q)

an

)}1/k

(9)

Here p > 0, q > 0 are positive real numbers and B(z) = z
(
A(z)− anzn

)
.

Proof. We will argue as in the proof of Theorem 1. So, we begin assuming
that |z| < r1, and we have

|A(z)| =

∣∣∣∣∣
n∑
k=0

akz
k

∣∣∣∣∣ ≥ |a0| −
n∑
k=1

|ak||z|k > |a0| −
n∑
k=1

|ak|rk1
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= |a0|

(
1−

n∑
k=1

∣∣∣∣aka0
∣∣∣∣ rk1
)

= a0

(
1−

n∑
k=1

(
ak
a0

)
rk1

)

From (8), we have for 1 ≤ k ≤ n,
(
ak
a0

)
rk1 ≤ kpk−1

(
ak
A′(p)

)
. Substituting in

the preceding, yields

|A(z)| > a0

(
1−

n∑
k=1

(
ak
a0

)
rk1

)
≥ a0

(
1−

n∑
k=1

kpk−1
(

ak
A′(p)

))
= 0

Therefore, A(z) does not have zeros in {z ∈ C : |z| < r1} and we are done
with the lower bound. For the upper bound we have to see that all the zeros
of A(z) have modulus less than or equal to the unique positive root of the
equation G(z) = |an|zn − |an−1|zn−1 − . . . − |a1|z − |a0| = 0. So, it will be
suffice to prove that G(r2) ≥ 0. Indeed, from (9) we get for 1 ≤ k ≤ n,

an−k

an
≤ (n − k + 1)qn−k

(
an−k

B′(q)

)
rk2 . Since G(r2) = an

(
rn2 −

n∑
k=1

an−k
an

rn−k2

)
,

then immediately follows

G(r2) ≥ an

(
rn2 −

n∑
k=1

(
an−k(n− k + 1)qn−krk2

B′(q)

)
rn−k2

)

= anr
n
2

(
1−

n∑
k=1

an−k(n− k + 1)qn−k

B′(q)

)
= 0

on account that B′(z) =
n∑
k=1

(n− k + 1)an−kz
n−k. This completes the proof.

�

Finally, we close this section stating a proving a result involving higher
order derivatives of the polynomial.

Theorem 2.4. Let A(z) =
∑n

k=0 akz
k be a nonconstant polynomial with strictly

positive coefficients. Then, all its zeros lie in the ring shaped region C = {z ∈
C : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{
(p− q)kA(k)(q)

k! [A(p)− A(q)]

(
a0
ak

)}1/k

(10)

and

r2 = max
1≤k≤n

{
k! [A(r)− A(s)]

A(k)(s) (r − s)k

(
an−k
an

)}1/k

(11)

Here p > q > 0 and r > s > 0 are strictly positive real numbers.
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Proof. Arguing out as in the proof of Theorem 1, if we suppose that |z| < r1,
then we have

|A(z)| =

∣∣∣∣∣
n∑
k=0

akz
k

∣∣∣∣∣ ≥ a0 −
n∑
k=1

ak|z|k > a0 −
n∑
k=1

akr
k
1 = a0

(
1−

n∑
k=1

ak
a0
rk1

)

From (10), we get for 1 ≤ k ≤ n,

(
ak
a0

)
rk1 ≤

A(k)(q) (p− q)k

k! [A(p)− A(q)]
. Substituting

in the preceding expression, we obtain

|A(z)| > a0

(
1−

n∑
k=1

ak
a0

rk1

)
≥ a0

(
1−

n∑
k=1

A(k)(q) (p− q)k

k! [A(p)− A(q)]

)
= 0,

because A(p)−A(q) = A′(q)(p−q)+A′′(q)
2!

(p−q)2+. . .+A(n)(q)
n!

(p−q)n on account
of Taylor’s formulae applied to A(p) at point q. Consequently, A(z) does not
have zeros in {z ∈ C : |z| < r1}. For the upper bound we have to find the unique
positive root of the equation G(z) = |an|zn−|an−1|zn−1− . . .−|a1|z−|a0| = 0
as it is well-known ([7], [8], [9]). Hence, we have to prove that G(r2) ≥ 0 and

we are done. From (11), we get for 1 ≤ k ≤ n, an−k

an
≤ A(k)(s)(r−s)k

k! [A(r)−A(s)] r
k
2 . Since

G(r2) = an

(
rn2 −

n∑
k=1

an−k
an

rn−k2

)
, then

G(r2) ≥ an

[
rn2 −

n∑
k=1

(
A(k)(s)(r − s)k

k! [A(r)− A(s)]
rk2

)
rn−k2

]

= anr
n
2

(
1−

n∑
k=1

A(k)(s)(r − s)k

k! [A(r)− A(s)]

)
= 0,

because A(r) − A(s) = A′(s)(r − s) + A′′(s)
2!

(r − s)2 + ... + A(n)(s)
n!

(r − s)n on
account of Taylor’s formulae applied to A(r) at point s. This completes the
proof.

�

3. Applications using MAPLE

In this section, we use a MAPLE code to compute the inner and outer
radius of a ring shaped region containing all the zeros for the polynomials
A1(z) = z3 +0.1z2 +0.3z+0.7 and A2(z) = z3 +0.1z2 +0.1z+0.04, obtainable
by the results presented in this paper. Also, the annuli obtained from the
known results given in Theorem A, Theorem B and Theorem C are computed
and compared with our results. These numerical results are shown in Table
1. Furthermore, by using MAPLE code, we also computed the actual zeros
of both polynomials. We found that for A1(z) they all lie in the annulus C =
{z ∈ C : 0.80579 ≤ |z| ≤ 0.93205} which has area equal to 0.68933. For A2(z)
the annulus containing all the zeros is C = {z ∈ C : 0.27228 ≤ |z| ≤ 0.38328}
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with area equal to 0.22862. These values has been used to express in terms
of percentage error the area of the annuli obtained. They can be found in
columns fourth and seventh of Table 1.

Table 1. Inner radius r1, outer radius r2 and Error for polynomials A1(z) and A2(z).

A1(z) A2(z)
Bounds r1 r2 Error r1 r2 Error

Cauchy [5] 0.41176 1.7 1139.82 0.03846 1.1 1560.69
Tikoo [14] 0.49999 1.1 337.51 0.03333 1.0 1272.63

Sun et al. [11] 0.58693 1.43399 680.16 0.21858 1.1 1497.07
Zilovic [17] 0.57346 1.22065 429.18 0.03996 1.00499 1285.70
Walsh [15] 0.51739 1.53563 825.71 0.14275 0.75822 662.00

Carmichael et al. [4] 0.55514 1.26095 484.18 0.03957 1.01074 1301.68
Dı́az-Barrero [6] 0.58333 1.23127 435.85 0.1 0.51639 252.70

Affane-Aji et al. [1] 0.55934 1.17510 386.73 0.1 1.05039 1402.40
Theorem 2.1 0.54687 1.21463 436.07 0.09375 0.51639 254.36
Theorem 2.2 0.48202 1.63553 1013.21 0.18566 0.64549 425.20
Theorem 2.3 0.74413 1.05601 155.87 0.21782 0.52254 210.01
Theorem 2.4 0.74665 1.03928 138.18 0.15370 0.53742 264.43

In the computation of the values presented in Table 1 for A1(z) using
Theorem 2.3 we have taken p = 0.43, q = 0.61, and using Theorem 2.4 we have
taken p = 0.75, q = 0.0001, r = 2.07 and s = 0.24. For the polynomial A2(z)
the values used for Theorem 2.3 were p = 0.13, q = 0.29, and for Theorem 2.4
we have taken p = 0.24, q = 0.016, r = 3.00 and s = 0.90.
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