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DESIGNING COPY CONSTRUCTION FOR THE D
PROGRAMMING LANGUAGE

Rézvan Nitu!, Eduard Staniloiu', Rizvan Deaconescu?, Rizvan Rughinis®

The D programming language was developed as a natural replace-
ment for the C and C++ languages with emphasis on memory safety, fast
compile time, fast run time and advanced meta-programming. However, D
makes use of a garbage collector that severely impacts runtime performance
for low level applications. The garbage collector may be disabled, but then
the user is constrained to manually manage the applications’ memory.

The alternative is to implement a lightweight reference counted object as a
library solution that manages the memory internally. Then, the user simply
has to declare the desired object as being reference counted and everything
will be handled with no extra effort. Although simple, this solution can-
not be implemented currently, because of the incompatibility between certain
functional aspects of the language, such as transitive type qualifiers, and the
existing copy construction semantics.

In this paper, we propose a novel copy construction mechanism that can
be used to implement reference counting in functional style contexts. More-
over, we design a generation strategy of both copy constructors and assign-
ment operators for situations where objects are composed. Our design has
been implemented and integrated in the D programming language and the
current release version contains the novel copy constructor.

Keywords: copy construction, language design, D, reference counting, func-
tional

1. Introduction

In the past 20 years incredible advances were made in almost all areas
of computer science. Distributed systems, operating systems, artificial intelli-
gence, trading algorithms, IoT, acceleration hardware, gaming, virtual reality
are just a few examples of fields that have have evolved significantly in the past
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decade. This progress has created new market shares in the world of program-
ming languages leading to an increased pressure on the existing languages [2]
or emerging ones to develop new programming concepts and techniques that
would minimize the time to market and maximize the performance of a pro-
gram. As a result, the last two decades have witnessed the birth of a myriad
of programming languages, domain specific and general purpose alike.

One of the promising new languages is D, an imperative, general pur-
pose, systems programming language. D aims to fulfill the requirements of
a full stack programming language, under the mantra ”One language to rule
them all”. As a consequence, D has support for mechanical safety checks[9],
functional programming [10], meta-programming|[3], parallel programming, ob-
ject oriented programming etc. Heavily inspired from popular languages like
C, C++, Java and Python, D builds upon the features that exist in other
languages: C-style syntax and manual memory management, Java-like classes
and garbage collection, similar C++ template system, Scheme-like functional
programming etc. Although some of the features are mutually exclusive (for
example: manual memory management and garbage collection), the user may
choose from the different options via command line switches.

Given the fact that D fights for the same market share as languages that
have existed for more than 40 years, D comes with C, C++ interoperability
out of the box[1], offering the possibility to gradually transition from old code-
bases to D[11]. In addition, most C code can be compiled with the D compiler
with minor modifications.

Although D is uniquely positioned as the successor of C due to its com-
patibility with it and the additional modern programming techniques that it
enables, the garbage collector still represents an obstacle when it comes to low
level programming where performance is of utmost importance[13] [14]. The
additional overhead that the garbage collector imposes outweighs the expres-
siveness benefits in a typical performance critical application (such as a kernel
module). As a consequence, in such situations the garbage collector is disabled
and the user has to manually manage the application memory.

In this context, the reference counting memory management technique
presented in the form of a library solution [12] is a viable alternative. Reference
counting is lightweight, easy to understand and to implement, but has the
disadvantage that it is intrusive in the sense that the user must be aware of
it and needs to make use of it. However, the intrusion is minimal: the user
simply needs to declare that an object is being reference counted. Altogether,
this makes reference counting the best substitute for garbage collection.

Implementing a minimal intrusive reference counting[6] mechanism re-
quires that the language offers support for copy construction, move construc-
tion and their assignment counter-parts. Although D offers support for these
operations, it does it in a manner that is incompatible with the transitive
nature of the functional qualifiers such as const and immutable.
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This paper proposes the implementation of a copy constructor in the
D programming language that may be used in conjunction with transitive
qualifiers, thus enabling the implementation of a reference counting mechanism
as a library solution.

The remainder of this paper is organized as follows: Section 2 provides
a base understanding of D features that relate to copy construction, Section 3
highlights the problems with the existing copy construction mechanism and
Section 4 discusses the design aspects. Section 5 presents the evaluation and
we conclude with Section 6.

2. Background

For a clear understanding of the problem definition, this section defines
the term ”copy construction”, provides a brief presentation of type qualifiers
are and showcases how copy construction was implemented in D prior to this
work.

2.1. Copy Construction

In imperative programming languages copying an object from one loca-
tion of memory to another is done by a bit-wise copy, as shown in Listing 1
(the listing employs C++ code, but the concept applies to most imperative
languages).

struct A
{
int k;
int 1;
int p;
}
void main ()
{
A a = {2, 3, 4};
A b = a;
}

LisTING 1. Bit-wise copy

The expression ‘A b = a;‘ has the effect of bit-copying the contents of
a into b. The modification of an element of a is not going to be reflected
in b. However, there are situations when bit-copying may lead to surprising
behavior: pointer aliasing. When an object contains a pointer to some heap
allocated chunk of memory, whenever an instance of that particular object
is going to be bit-wise copied to another memory location, the 2 resulting
instances will contain a pointer that references the same memory location.
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This has proven to be problematic because although the two instances might
be viewed as independent logical pieces, they are actually sharing memory.

The solution that is employed in most languages is to implement a copy
function that takes care of creating the deep copy that needs to be manually
called by the user. This solution has two shortcomings: the user has to manu-
ally call the function every time a copy is needed (increased prolixity) and the
user may forget or not know that the copy function needs to be called (bug
prone).

In response to these shortcomings, the C++ community has created and
implemented the notion of a copy constructor: a user defined constructor func-
tion, defined in the scope of an aggregated declaration (struct or class) that is
used to initialize an object from another object [7]. The copy constructor de-
sign has the advantage that the compiler implicitly inserts calls to it whenever
a copy is created. This makes the code more expressive as there is no need to
explicitly call a function and also it increases correctness as the user does not
need to bother about copies - all of this is managed internally by the compiler.

2.2. Type Qualifiers

D type qualifiers modify a type by applying a type constructor. Type
constructors are const, immutable, shared, inout. The most important
aspect of D type qualifiers is that they apply transitively to each subtypel[4],
unlike C++’s const system (called head-const system) that applies only to the
head reference. For example, given a pointer to an object const P*, in C++
this is a mutable pointer to a const object P, while in D this is a const pointer
to a const object P. If P would contain other pointers to other objects, in
D, those would also be considered const, transitively, until a leaf definition
(basic type) is encountered.

In addition to types, qualifiers may also be applied to member function
of aggregated declarations (class, struct) with the meaning that the function
will be called on a qualified object. This feature is useful to specify behavior
depending on the particularities of each qualified type.

immutable data cannot change. Once constructed, immutable values
do not modify throughout the entire execution of the program. const data
cannot change through the current reference, however, there may exist other
mutable references to it. Therefore, data that is accessed through a const
reference, as opposed to immutable, may change.

In D, by default, variables are considered to be thread-local. In order
to specify that a variable may be accessed from different threads, the shared
qualifier is used. In addition, shared data access is required to be synchronized
by means of atomic read and atomic write, thus ensuring correctness of parallel
algorithms.
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2.3. Copy Construction in D

Although the C++ notion of a copy constructor offers many advantages,
it has some drawbacks in specific situations. For example, if an object contains
a lot of fields that are fine with normal bit-wise copies and only a few of them
need to be properly handled for deep copying, the copy constructor will have
to initialize all the fields. Consider Listing 3 where a typical C++ copy
constructor is showcased. In this situation, when an object of type A is copy
constructed from from another object of the same type for the majority of
fields shallow (bit-wise) copying is the correct action; the only field that needs
special treatment is the p pointer that needs to do a deep copy. However,
with the current semantics, the user still needs write all the boilerplate[5] field
initialization code, resulting in an extra 102 lines of code. One solution to
handle this boilerplate would be to not define a copy constructor and let the
compiler handle the bit-wise copy, after which the user may manually perform
the deep copy of the p pointer. This indeed solves the boilerplate code problem,
however it requires un-encapsulated attention at each copy site, making it an
invalid solution.

struct A
{
int *p;
int size;
int al, a2, ..., al00;
// Copy Constructor
A(const A &a)
{
this->p = malloc(a.size * sizeof (int));
for (int i = 0; 1 < a.size; i++)
this->p[i] = a.plil;
this->al = a.al;
this->a2 = a.a2;
this->a100 = a.al00;
+
}

L1STING 2. C++ Copy Constructor

The D implementation of copy constructors leverages this observation
and automatically takes care of the shallow copy. This is achieved by initializ-
ing the destination with a bit-copy of the source. After this operation control
is passed to a user defined function, called postblit. The posblit simply ad-
justs the fields that need updating, in our situation, the pointerp. The postblit
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is defined as this(this) and has access only to the destination, therefore the
source cannot be modified.

3. Motivation

Although the postblit has a clear advantage over the normal copy con-
struction scheme, it cannot cohabit with a powerful language feature: the
transitivity of type qualifiers. This section will highlight the nature of the
conflict between the two language features.

The postblit function cannot be meaningfully overloaded or qualified.
However, the compiler does not reject certain applications of qualifiers, as
illustrated below:

struct A { this(this) const {} }
struct B { this(this) immutable {} 7}
struct C { this(this) shared {} }

LisTING 3. Qualified Postblit

The semantics of the postblit in the presence of qualifiers is not defined,
and experimentation reveals that the behavior is a patchwork of happenstance
semantics: (1) const postblits are not able to modify any fields in the des-
tination, (2) immutable postblits never get called (resulting in compilation
errors) and (3) shared postblits cannot guarantee atomicity while bit-wise
copying the fields.

Defining and implementing some meaningful semantics will break code
that has been tested and deemed correct under the current semantics.

3.1. const / immutable postblits

A solution for const and immutable postblits would be to type check
them as normal constructors, where the first assignment of a member is con-
sidered an initialization and subsequent assignments count as modifications.
This is problematic because after the blitting phase, the destination object is
no longer in its initial state and subsequent assignments to its fields will be
regarded as modifications, making it impossible to construct nontrivial im-
mutable/const objects in the postblit. In addition, it is possible for multiple
postblits to modify the same field. Consider Listing 4.

When B ¢ = b; (line 18) is encountered, the following actions are taken:
(1) b’s fields are blitted to c, (2) A’s postblit is called and (3) B’s postblit is
called

After step 1, the object ¢ has the exact contents as b, but it is nei-
ther initialized (the postblits still need to run) nor uninitialized (the field B.a
does not have its initial value). From a type checking perspective this is a
problem because the assignment inside A’s postblit is breaking immutability.
This makes it impossible to postblit objects that have immutable / const
fields. To alleviate this problem one could consider that after the blitting
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phase the object is in a raw state, therefore uninitialized; this way, the first
assignment of B.a.a is considered an initialization. However, after this step
the field B.a.a is considered initialized, therefore how is the assignment inside
B’s postblit supposed to be type checked? Is it a violation of immutability, or
should it be legal? Indeed, it is breaking immutability because it is changing
an immutable value. However as this is part of initialization (recall that c
is initialized only after all the postblits are ran) it should be legal, thus weak-
ening the immutability concept and creating a different strategy from that
implemented by normal constructors.

struct A

{
immutable int a;
// modifying immutable, an error or OK?
this(this) { this.a += 2; }

}
struct B
{
A a;
// modifying immutable, an error or OK?
this(this) { this.a.a += 2; }
}
void main ()
{
B b = B(A(7));
B ¢ = b;
+

LI1STING 4. const and immutable postblits

3.2. shared postblits

shared postblits cannot guarantee atomicity while blitting the fields be-
cause that part is done automatically and it does not involve any synchro-
nization techniques. Consider A b = aj is executed in a multithreaded envi-
ronment: (1) a’s fields are copied to b bitwise (”blitted”) and (2) this(this)
is called. In the blitting phase, no synchronization mechanism is employed,
which means that while copying is in progress, another thread may modify a’s
data, resulting in the corruption of b.

4. Design

As discussed above, the postblit is difficult to type check without unrea-
sonable restrictions and cannot be synchronized without undue costs.
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This paper proposes the implementation of a copy constructor with the
following benefits: (1) the feature is used to good effect in the C++ language,
(2) the copy constructor can be type checked as a normal constructor - since no
blitting is done, the fields are initialized the same as in a normal constructor.
This offers the benefit that const / immutable / shared copy constructors
will be type checked exactly as their analogous regular constructors and (3)
offers encapsulation.

The downside of this solution is that the user must copy all fields by
hand, and every time a field is added to a struct, the copy constructor must
be modified. However, this issue can be easily worked around by using D’s
introspection mechanisms.

4.1. Syntax

Inside a struct definition, a declaration is a copy constructor declaration if
it is a constructor declaration that takes the first parameter as a non-defaulted
reference to the same type as the struct being defined. Additional parameters
may follow if and only if all have default values. Declaring a copy constructor in
this manner has the advantage that no parser modifications are required, thus
leaving the language grammar unchanged. Listing 5 highlights the described
syntax.

The argument to the copy constructor is passed by reference in order to
avoid infinite recursion. Note that if the source is an rvalue, no call to the
copy constructor is necessary because the value will be bit-wise moved into
the destination.

Type qualifiers may be applied to the parameter of the copy constructor
and also to the function itself in order to allow defining copies across objects
of different mutability levels. The type system handles the call to the best
matching copy constructor.

struct A

{
this(ref A rhs) { writeln("x"); 3}
this(ref A rhs, int b = 7) immutable
{ writeln(b);

}
void main ()
{
A a;
A b= a; // prints "z"
A c = A(b); // prints "z
immutable A d = a; // prints 7
}

LisTiNG 5. Copy Constructor Syntax
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4.2. Semantics

Copy constuctor and postblit cohabitation. In order to ensure
a smooth transition from postblit to copy constructor, this report proposes
the following strategy: if a struct defines a postblit (either user-defined or
generated), all copy constructor definitions will be ignored for that particular
struct and the postblit will be preferred. Existing code bases that do not
use the postblit may start using the copy constructor, whereas code bases
that currently rely on the postblit may start writing new code using the copy
constructor and remove the postblit from their code.

Copy constructor implicit calls. A call to the copy constructor is
implicitly inserted by the compiler whenever a struct variable is initialized as
a copy of another variable of the same unqualified type: (1) when a variable
is explicitly initialized, (2) when a parameter is passed by value to a function
and (3) when a variable is returned by value from a function. The parameter
of the copy constructor is passed by reference, so initializations will be lowered
to copy constructor calls only if the source is an lvalue. Although this can be
worked around by declaring temporary lvalues which can be forwarded to the
copy constructor, binding rvalues to lvalues is beyond the scope of this paper.

Type checking. The copy constructor type check is identical to that
of the constructor. The major difference between a constructor type check
and a normal function type check is the following: in constructors, the first
assignment of a field is considered initialization while subsequent assignments
are viewed as modifications; in normal functions, all assignments are viewed
as modifications. This difference stems from the fact that constructors are
supposed to initialize an object, including its const or immutable fields.
Once the initialization of non-mutable fields is done, their values are locked
down and attempts to modify them are signaled as compilation errors. This
is the fundamental reason why the postblit function could not accommodate
qualifiers - it had a normal function type-check and it couldn’t update non-
mutable fields.

Overloading. The copy constructor can be overloaded with different
qualifiers applied to the parameter - copying from a qualified source - or to the
copy constructor itself - copying to a qualified destination. The proposed model
enables the user to define the copy from an object of any qualified type to an
object of any qualified type: any combination of two among mutable, const,
immutable, shared, const shared. The inout qualifier may be applied
to the copy constructor parameter in order to specify that mutable, const,
or immutable types are treated the same. In the case of partial matching,
existing overloading and implicit conversion rules apply to the argument.

Copy Constructor call vs. Blitting. When a copy constructor is not
defined for a struct, initializations are handled by copying the contents from
the memory location of the right-hand side expression to the memory location
of the left-hand side expression (i.e. ”blitting”). When a copy constructor
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is defined for a struct, all implicit blitting is disabled for that struct. This
decision was taken to prevent the situations where the user forgets to define a
copy constructor for a specific transformation.

struct M

{
this (ref immutable M) {}
this(ref immutable M) shared {}

}
struct S
{
M m;
this(ref shared S) {}
// Generated copy constructors:
// this(ref immutable S)
// this(ref immutable S) shared
}

LisTING 6. Example of Generated Copy Constructors

For example, if a user wants to implement reference counting, but forgets
to define a copy constructor for const to const copies when a const object
is going to be initialized from another const object, a bit-wise copy is going
to be made and the reference count is going to miss one increment. With
the proposed solution, this situation is going to be flagged with a compilation
error.

Generation of copy constructors. A copy constructor is generated
for a struct S if any member of S defines a copy constructor that S does
not define. A field of a struct may define multiple copy constructors. In this
situation, a copy constructor is generated for each overload. Listing 6 exhibits
the implemented behavior. The body of all the generated copy constructors
performs member-wise initialization. Inside the body of the generated copy
constructors, each field assignment will be rewritten as a call to corresponding
copy constructor. Blitting is employed where possible for each field that does
not define a copy constructor. If any field is non-copyable (e.g. the copy
constructor is disabled), the generated copy constructor will be annotated
with @disable, rendering it unusable. If the copy constructors of of some
fields match in terms of qualifiers, a single copy constructor is generated.

5. Evaluation

To verify the soundness of our design, we have implemented our proposal
in the reference compiler [8] and substituted all uses of the postblit in the D
standard library with the novel copy constructor.
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Our implementation uses a fork of the reference compiler (dmd) and its
standard library. The changes that we had to make were to simply substitute
the posblit declaration this(this) with a copy constructor one this(ref in-
out(T) rhs) inout and use the code snippet presented in Listing ?? to do
the copy of fields. This works because the postblit behaves correctly only for
situations where the type of the source exactly matches the type of the desti-
nation. Moreover, profiling the test suite of the D standard library has shown
there is no significant performance difference between the postblit and copy
constructor versions. The D standard library requires that any implemented
feature has at least one unittest. We could not decide which unittests end up
calling a postblit/copy constructor, therefore, we have ran the entire test suite
and timed it with both the postblit and copy constructor implementations.
We have timed 100 such runs and computed the average time for each of the
implementations. The results were: 5 minutes 47 seconds for the postblit im-
plementation and 5 minutes and 56 seconds for the copy constructor. Given
that not all unittests result in the call of a copy constructor, we conclude that
the difference is negligible. Our findings are on par with our expectations since
the operations performed are largely the same.

In addition, we have tried to implement a reference counted object, how-
ever, we did not succeed. The problem stems from the fact that a reference
counted object needs to update a counter payload that is stored inside the ob-
ject. Once a reference counted object instance is declared as immutable, the
payload field cannot be updated. As a consequence, further language changes
are needed to enable the user to break the transitivity of qualifiers in certain
scenarios.

6. Conclusions

In this work we have presented a new design for copy construction for the
D programming language. Our approach is able to combine copy construction
and type qualifiers so that a destination object can be copy constructed from
a differently qualified source object.

We have implemented our approach in the reference D compiler and
showed that it can successfully substitute the existing postblit function with
no loss in expressiveness or performance. However, we are still not able to
implement reference counting for qualifier objects. A mechanism to break the
transitivity of qualifiers is an interesting topic for future work.

Our proposal has been analyzed by the D standard committee and has
been subjected to the rigors of the ”D improvement process”. Both the com-
munity and the leadership have found that our design is a suitable substitute
for the postblit. As a consequence, our proposed implementation has been
integrated in the language and is being used commercially.
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