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ANALYSIS OF AN ITERATIVE ALGORITHM FOR SOLVING

GENERALIZED VARIATIONAL INEQUALITIES AND FIXED POINT

PROBLEMS
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In this paper, we investigate iterative algorithms for solving the generalized
variational inequalities and fixed point problems in Hilbert spaces. We construct an

iterative algorithm for finding a common solution of the generalized variational inequal-

ities involved in inverse strongly monotone operator and relaxed cocoercive operator and
fixed point problem of asymptotically pseudocontractive operators. Strong convergence

analysis of the constructed algorithm is given.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a
nonempty closed convex subset of H. Let f : C → H and ϕ : C → C be two operators.
Recall that the generalized variational inequality is to find a point x† ∈ C such that

〈f(x†), ϕ(x)− ϕ(x†)〉 ≥ 0, ∀x ∈ C. (1)

The solution set of (1) is denoted by Sol(C, f, ϕ).
If ϕ = I, then the generalized variational inequality (1) reduces to find a point x† ∈ C

such that

〈f(x†), x− x†〉 ≥ 0, ∀x ∈ C. (2)

The solution set of (2) is denoted by Sol(C, g).
Variational inequality acts as a key role and offers helpful techniques and means

for solving many important problems arising in industry, finance, economics, social, ecology,
regional, pure and applied sciences and so on ([8, 12, 15]). It has been shown that variational
inequality theory provides a simple, natural and unified framework for a general treatment
of unrelated problems. Variational inequality (2) was introduced by Stampacchia [28] in
1964. A lot of work and a great deal of algorithms for solving (2) have been proposed and
investigated, see, e.g., [1, 18, 44, 45, 46, 49]. One of basic techniques for solving (2) is the
projection method which generates a sequence {xn} by the following iterate

xn+1 = PC(I − τf)xn, n ≥ 0, (3)

where τ > 0 is step-size and PC is the orthogonal projection from H onto C.
Projection method (3) delegates a critical tool for finding the approximate solution

of assorted types of variational inequalities. The general variational inequality (1) was
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introduced and studied by Noor in [20]. It has been shown that the minimum of a dif-
ferentiable nonconvex function on the nonconvex set can be characterized by the general
variational inequality ([21]). On the other hand, we note that the variational inequalities
(1) and (2) can be transformed into fixed points problems. These equivalent relations have
been applied to construct relevant iterative algorithms including proximal point methods
([2, 10, 53]), projection methods [14, 35, 51], Wiener-Hopf equations ([22, 25]), auxiliary
principle techniques ([11, 16], extragradient methods ([4, 7, 33, 54]), subgradient meth-
ods ([6, 34]), Tseng’s methods ([48]) and splitting methods ([3]) for solving variational
inequalities (1) and (2). Especially, iterative algorithms for solving variational inequalities
and/or fixed point problems have been investigated extensively by many authors ([5, 19],[24]-
[31],[38]-[43],[13, 23, 37, 50, 52, 56]).

The main purpose of this paper is to investigate the following variational inequalities
and fixed point problems of finding a point p̃ such that

p̃ ∈ Sol(C, f, ϕ) and ϕ(p̃) ∈ Sol(C, g) ∩ Fix(S), (4)

where g : C → H, S : C → C are two operators and Fix(S) denotes the fixed point set of
S.

We construct an iterative algorithm for solving (4) in which the involved operators
f , g and S are inverse strongly ϕ-monotone, relaxed (γ, %)-cocoercive, and asymptotically
pseudocontractive, respectively. Under some additional assumptions, we show that the
constructed algorithm converges strongly to a special solution of problem (4).

2. Preliminaries

In this section, we collect several relevant notations and lemmas. Let C be a nonempty
closed convex subset of a real Hilbert space H. For ∀x† ∈ H, there exists a unique point
in C, denoted by PC [x†], such that ‖x† − PC [x†]‖ ≤ ‖x− x†‖,∀x ∈ C. Furthermore, PC is
firmly nonexpansive, namely,

‖PC [ũ]− PC [v†]‖2 ≤ 〈PC [ũ]− PC [v†], ũ− v†〉, ∀ũ, v† ∈ H. (5)

PC has the characteristic ([47]), ∀ũ ∈ H,

〈ũ− PC [ũ], x† − PC [ũ]〉 ≤ 0, ∀x† ∈ C. (6)

In Hilbert space H, we have the following equality

‖cp+ (1− c)p†‖2 = c‖p‖2 + (1− c)‖p†‖2 − c(1− c)‖p− p†‖2, (7)

for all p, p† ∈ H and any constant c ∈ R.
Recall that an operator f : C → H is said to be

• σ-strongly monotone, if ∀u, v ∈ C,

〈f(u)− f(v), u− v〉 ≥ σ‖u− v‖2,

where σ > 0 is a constant.
• α-inverse strongly ϕ-monotone, if ∀u, v ∈ C,

〈f(u)− f(v), ϕ(u)− ϕ(v)〉 ≥ α‖f(u)− f(v)‖2,

where α > 0 is a constant and ϕ : C → C is an operator.
• relaxed (γ, %)-cocoercive ([9, 32]), if ∀u, v ∈ C,

〈f(u)− f(v), u− v〉 ≥ (−γ)‖f(u)− f(v)‖2 + %‖u− v‖2,

where γ > 0 and % > 0 are two constants.
Recall that an operator S : C → C is said to be
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• kn-asymptotically pseudocontractive if for all n ≥ 1 and for all p̃, v† ∈ C,

〈Sn(p̃)− Sn(v†), p̃− v†〉 ≤ kn‖p̃− v†‖2,
equivalently,

‖Sn(p̃)− Sn(v†)‖2 ≤ (2kn − 1)‖p̃− v†‖2 + ‖(I − Sn)p̃− (I − Sn)v†‖2, (8)

where {kn} is a real number sequence in [1,∞) satisfying limn→∞ kn = 1.
• uniformly L2-Lipschitz if for all n ≥ 1 and for all p̃, v† ∈ C,

‖Sn(p̃)− Sn(v†)‖ ≤ L2‖p̃− v†‖,
where L2 > 0 is a constant.

An operator h : C → C is said to be κ-contractive if for all p̃, v† ∈ C,

‖h(p̃)− h(v†)‖ ≤ κ‖p̃− v†‖,
where κ is a constant in [0, 1).

Let T be a multi-valued operator of H into 2H . The effective domain of T is denoted
by dom(T ), that is, dom(T ) = {x ∈ H : T (x) 6= ∅}. A multi-valued operator T is said to
be monotone iff 〈x − y, x∗ − y∗〉 ≥ 0 for all x, y ∈ dom(T ), x∗ ∈ T (x), and y∗ ∈ T (y). A
multi-valued operator T is said to be a maximal monotone operator iff T is monotone and
its graph is not properly contained in the graph of any other monotone operator on H.

Lemma 2.1 ([42]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Let f be an α-inverse strongly ϕ-monotone operator. Then, ∀x, y ∈ C, we have

‖(ϕ(x)− βf(x))− (ϕ(y)− βf(y))‖2 ≤ ‖ϕ(x)− ϕ(y)‖2 + β(β − 2α)‖f(x)− f(y)‖2.

Lemma 2.2 ([55]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Let S : C → C be a uniformly L-Lipschtzian and asymptotically pseudocontractive operator.
Then, I − S is demiclosed at zero.

Lemma 2.3 ([36]). Let {%n} ⊂ [0,∞), {αn} ⊂ (0, 1) and {ζn} be real number sequences.
Suppose that the following conditions are satisfied
(i) %n+1 ≤ (1− αn)%n + ζn,∀n ≥ 1;
(ii)

∑∞
n=1 αn =∞;

(iii) lim sup
n→∞

ζn
αn
≤ 0 or

∑∞
n=1 |ζn| <∞.

Then limn→∞ %n = 0.

Lemma 2.4 ([17]). Let {φn} be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {φni

} of {φn} such that φni
≤ φni+1 for all i ≥ 0.

For every n ≥ n0, define an integer sequence {γ(n)} as

γ(n) = max{k ≤ n : φni < φni+1}.
Then γ(n)→∞ as n→∞ and for all n ≥ n0,

max{φγ(n), φn} ≤ φγ(n)+1.

3. Main results

In this section, we introduce our main results. Let C be a nonempty closed convex
subset of a real Hilbert space H. Assume that the operators h, ϕ, f , g and S satisfy the
following conditions

(C1): h : C → C is κ-contractive;
(C2): ϕ : C → C is σ-strongly monotone and weakly continuous with R(ϕ) = C;
(C3): f : C → H is α-inverse strongly ϕ-monotone;
(C4): g : C → H is relaxed (γ, %)-cocoercive and L1-Lipschitz continuous;
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(C5): S : C → C is kn-asymptotically pseudocontractive and uniformly L2-Lipschitz contin-
uous.

Let {αn}, {ϑn} and {ζn} be three real number sequences in [0, 1] and {βn} and {τn} be two
real number sequences in (0,∞). Let η be a positive constant in (0, 1). Use ∆ to denote the
solution set of problem (4), that is, ∆ = Sol(C, f, ϕ)

⋂
ϕ−1(Sol(C, g) ∩ Fix(S)). Now, we

construct an iterative algorithm for solving problem (4).

Algorithm 3.1. Let x0 ∈ C be a fixed point. Let {xn} be a sequence generated by the
following iterative format

sn = αnh(xn) + (1− αn)PC [ϕ(xn)− βnf(xn)],

tn = PC [sn − τng(sn)],

wn = (1− ϑn)tn + ϑnS
n[(1− ζn)tn + ζnS

n(tn)],

ϕ(xn+1) = (1− η)ϕ(xn) + ηwn, n ≥ 0.

(9)

Theorem 3.1. Suppose that ∆ 6= ∅. Suppose that the following restrictions hold:
(r1): limn→∞ αn = 0 and

∑∞
n=1 αn =∞;

(r2): 0 ≤ κ < σ < 2α and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 2α;

(r3): % > γL2
1 + 1

2 and 0 < a1 ≤ τn ≤ a2 <
2(%−γL2

1)

L2
1

for all n ≥ 0;

(r4): L2 > 1 and 0 < b1 < ϑn < b2 < ζn <
1

2+
√
L2

2+4
for all n ≥ 0;

(r5): 1 ≤ kn ≤ 2, limn→∞
kn−1
αn

= 0 and
∑∞
n=1(kn − 1) < +∞.

Then the sequence {xn} generated by (9) converges strongly to p̃ ∈ ∆ which solves the
following VI

〈h(p̃)− ϕ(p̃), ϕ(x†)− ϕ(p̃)〉 ≤ 0, ∀x† ∈ ∆. (10)

Proof. Since ϕ is σ-strongly monotone, we deduce ‖ϕ(ũ)−ϕ(ṽ)‖ ≥ σ‖ũ− ṽ‖ for all ũ, ṽ ∈ C.
This indicates that VI (10) has a unique solution p̃. Then, p̃ ∈ Sol(C, f, ϕ) and ϕ(p̃) ∈
Sol(C, g) ∩ Fix(S). By inequality (6), we receive ϕ(p̃) = PC [ϕ(p̃) − βnf(p̃)] for all n ≥ 0.
Set yn = PC [ϕ(xn) − βnf(xn)] and vn = ϕ(xn) − βnf(xn) − (ϕ(p̃) − βnf(p̃)) for all n ≥ 0.
According to Lemma 2.1, we deduce

‖yn − ϕ(p̃)‖2 ≤ ‖vn‖2 ≤ ‖ϕ(xn)− ϕ(p̃)‖2 − βn(2α− βn)‖f(xn)− f(p̃)‖2. (11)

Note that ‖ϕ(xn)− ϕ(p̃)‖ ≥ σ‖xn − p̃‖. From (9), (11) and (r2), we achieve

‖sn − ϕ(p̃)‖ = ‖αnh(xn) + (1− αn)yn − PC [ϕ(p̃)− βnf(p̃)]‖
≤ ‖αn(h(xn)− ϕ(p̃) + βnf(p̃)) + (1− αn)vn‖
≤ αn‖h(xn)− h(p̃)‖+ αn‖h(p̃)− ϕ(p̃) + βnf(p̃)‖+ (1− αn)‖vn‖
≤ [1− (1− κ/σ)αn]‖ϕ(xn)− ϕ(p̃)‖+ αn(‖h(p̃)− ϕ(p̃)‖+ 2α‖f(p̃)‖).

(12)

Taking into account (11) and (12), we obtain

‖sn − ϕ(p̃)‖2 ≤ ‖αn(h(xn)− ϕ(p̃) + βnf(p̃)) + (1− αn)vn‖2

≤ αn‖h(xn)− ϕ(p̃) + βnf(p̃)‖2 + (1− αn)‖vn‖2

≤ αn‖h(xn)− ϕ(p̃) + βnf(p̃)‖2 + (1− αn)[‖ϕ(xn)− ϕ(p̃)‖2

+ βn(2α− βn)‖f(xn)− f(p̃)‖2].

(13)

Since g is relaxed (γ, %)-cocoercive and L1-Lipschitz, for all x, y ∈ C, we have

〈g(x)− g(y), x− y〉 ≥ (−γ)‖g(x)− g(y)‖2 + %‖x− y‖2 ≥ (%− γL2
1)‖x− y‖2 ≥ 0, (14)

which implies that g is monotone and it follows from (14) that

〈g(sn)− g(ϕ(p̃)), sn − ϕ(p̃)〉 ≥ (%− γL2
1)‖sn − ϕ(p̃)‖2.
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Thus,

‖sn − ϕ(p̃)− τn(g(sn)− g(ϕ(p̃)))‖2

= ‖sn − ϕ(p̃)‖2 − 2τn〈g(sn)− g(ϕ(p̃)), sn − ϕ(p̃)〉+ τ2
n‖g(sn)− g(ϕ(p̃))‖2

≤ ‖sn − ϕ(p̃)‖2 + 2τnγL
2
1‖sn − ϕ(p̃)‖2 − 2τn%‖sn − ϕ(p̃)‖2

+ τ2
nL

2
1‖sn − ϕ(p̃)‖2

= (1 + 2τnγL
2
1 − 2τn%+ τ2

nL
2
1)‖sn − ϕ(p̃)‖2.

(15)

Since 0 < τn <
2(%−γL2

1)

L2
1

, 0 < 1 + 2τnγL
2
1 − 2τn%+ τ2

nL
2
1 < 1. Hence, from (15), we obtain

‖sn − ϕ(p̃)− τn(g(sn)− g(ϕ(p̃)))‖ ≤ ‖sn − ϕ(p̃)‖.

Therefore,

‖tn − ϕ(p̃)‖ = ‖PC(I − τng)sn − PC(I − τng)ϕ(p̃)‖
≤ ‖(I − τng)sn − (I − τng)ϕ(p̃)‖
≤ ‖sn − ϕ(p̃)‖.

(16)

Set un = (1− ζn)tn + ζnS
n(tn) for all n ≥ 0. By (8), we have

‖Sn(tn)− ϕ(p̃)‖2 = ‖Sn(tn)− Sn(ϕ(p̃))‖2 ≤ (2kn − 1)‖tn − ϕ(p̃)‖2 + ‖tn − Sn(tn)‖2, (17)

and

‖Sn(un)− ϕ(p̃)‖2 ≤ (2kn − 1)‖un − ϕ(p̃)‖2 + ‖un − Sn(un)‖2. (18)

Using (7) and (17), we have

‖un − ϕ(p̃)‖2 = ‖(1− ζn)(tn − ϕ(p̃)) + ζn(Sn(tn)− ϕ(p̃))‖2

= (1− ζn)‖tn − ϕ(p̃)‖2 + ζn‖Sn(tn)− ϕ(p̃)‖2 − ζn(1− ζn)‖tn − Sn(tn)‖2

≤ (1− ζn)‖tn − ϕ(p̃)‖2 + ζn
(
(2kn − 1)‖tn − ϕ(p̃)‖2 + ‖tn − Sn(tn)‖2

)
− ζn(1− ζn)‖tn − Sn(tn)‖2

= [1 + 2(kn − 1)ζn]‖tn − ϕ(p̃)‖2 + ζ2
n‖tn − Sn(tn)‖2.

(19)

As a result of uniform L2-Lipschitz continuity of S, ‖Sn(un) − Sn(tn)‖ ≤ L2‖un − tn‖ =
L2ζn‖tn − Sn(tn)‖. This together with (7) implies that

‖un − Sn(un)‖2 = ‖(1− ζn)(tn − Sn(un)) + ζn(Sn(tn)− Sn(un))‖2

= (1− ζn)‖tn − Sn(un)‖2 + ζn‖Sn(tn)− Sn(un)‖2

− ζn(1− ζn)‖tn − Sn(tn)‖2

≤ (1− ζn)‖tn − Sn(un)‖2 − ζn(1− ζn − L2
2ζ

2
n)‖tn − Sn(tn)‖2.

(20)

By virtue of (18)-(20), we obtain

‖Sn(un)− ϕ(p̃)‖2 ≤ (2kn − 1)[1 + 2(kn − 1)ζn]‖tn − ϕ(p̃)‖2 + (2kn − 1)ζ2
n‖tn − Sn(tn)‖2

+ (1− ζn)‖tn − Sn(un)‖2 − ζn(1− ζn − L2
2ζ

2
n)‖tn − Sn(tn)‖2

= (2kn − 1)[1 + 2(kn − 1)ζn]‖tn − ϕ(p̃)‖2 + (1− ζn)‖tn − Sn(un)‖2

− ζn(1− 2knζn − L2
2ζ

2
n)‖tn − Sn(tn)‖2.

(21)

Since ζn <
1

2+
√
L2

2+4
≤ 1

kn+
√
k2n+L2

2

, 1− 2knζn − ζ2
nL

2
2 > 0. On account of (21), we deduce

‖Sn(un)− ϕ(p̃)‖2 ≤ (2kn − 1)[1 + 2(kn − 1)ζn]‖tn − ϕ(p̃)‖2 + (1− ζn)‖tn − Sn(un)‖2. (22)
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In the light of (7) and (22), we get

‖wn − ϕ(p̃)‖2 = ‖(1− ϑn)(tn − ϕ(p̃)) + ϑn
(
Sn(un)− ϕ(p̃)

)
‖2

= (1− ϑn)‖tn − ϕ(p̃)‖2 + ϑn‖Sn(un)− ϕ(p̃)‖2

− ϑn(1− ϑn)‖tn − Sn(un)‖2

≤ ϑn(2kn − 1)[1 + 2(kn − 1)ζn]‖tn − ϕ(p̃)‖2 + (1− ϑn)‖tn − ϕ(p̃)‖2

+ ϑn(1− ζn)‖tn − Sn(un)‖2 − ϑn(1− ϑn)‖tn − Sn(un)‖2

= [1 + 2ϑn(kn − 1) + 2ζnϑn(2kn − 1)(kn − 1)]‖tn − ϕ(p̃)‖2

+ ϑn(ϑn − ζn)‖tn − Sn(un)‖2

≤ [1 + 8(kn − 1)]‖tn − ϕ(p̃)‖2 − ϑn(ζn − ϑn)‖tn − Sn(un)‖2.

(23)

Furthermore,

‖wn − ϕ(p̃)‖ ≤ [1 + 4(kn − 1)]‖tn − ϕ(p̃)‖. (24)

From (9), (12), (16) and (24), we obtain

‖ϕ(xn+1)− ϕ(p̃)‖ ≤ (1− η)‖ϕ(xn)− ϕ(p̃)‖+ η‖wn − ϕ(p̃)‖
≤ (1− η)‖ϕ(xn)− ϕ(p̃)‖+ η[1 + 4(kn − 1)]‖sn − ϕ(p̃)‖
≤ η[1 + 4(kn − 1)][1− (1− κ/σ)αn]‖ϕ(xn)− ϕ(p̃)‖

+ η[1 + 4(kn − 1)]αn(‖h(p̃)− ϕ(p̃)‖+ 2α‖f(p̃)‖)
+ (1− η)‖ϕ(xn)− ϕ(p̃)‖
≤ [1 + 4(kn − 1)][1− (1− κ/σ)ηαn]‖ϕ(xn)− ϕ(p̃)‖

+ [1 + 4(kn − 1)](1− κ/σ)ηαn
‖h(p̃)− ϕ(p̃)‖+ 2α‖f(p̃)‖

1− κ/σ
.

(25)

It follows that

‖ϕ(xn)− ϕ(p̃)‖ ≤
n∏
i=1

[1 + 4(ki − 1)] max
{
‖ϕ(x0)− ϕ(p̃)‖, ‖h(p̃)− ϕ(p̃)‖+ 2α‖f(p̃)‖

1− κ/σ

}
.

Then, {ϕ(xn)} is bounded. Note that ‖xn − p̃‖ ≤ 1
σ‖ϕ(xn) − ϕ(p̃)‖. So, {xn}, {sn} {tn}

and {wn} are bounded. By (9), we receive

‖ϕ(xn+1)− ϕ(p̃)‖2 − ‖ϕ(xn)− ϕ(p̃)‖2

= η[‖wn − ϕ(p̃)‖2 − ‖ϕ(xn)− ϕ(p̃)‖2 − ‖wn − ϕ(xn)‖2] + η2‖wn − ϕ(xn)‖2

= η[‖wn − ϕ(p̃)‖2 − ‖ϕ(xn)− ϕ(p̃)‖2]− η(1− η)‖wn − ϕ(xn)‖2.
(26)

In terms of (12), (16) and (23), we get

‖wn − ϕ(p̃)‖2 ≤ [1 + 8(kn − 1)]‖sn − ϕ(p̃)‖2

≤ [1 + 8(kn − 1)][1− (1− κ/σ)αn]‖ϕ(xn)− ϕ(p̃)‖2

+ [1 + 8(kn − 1)](1− κ/σ)αn

(
‖h(p̃)− ϕ(p̃)‖+ 2α‖f(p̃)‖

1− κ/σ

)2

.

(27)

Next, we consider two possibilities: the sequence {‖ϕ(xn) − ϕ(p̃)‖} is either monotone
decreasing (Case 1) or not (Case 2), i.e.,

Case 1. There exists positive integer n0 such that {‖ϕ(xn)− ϕ(p̃)‖} is decreasing for
all n ≥ n0.

Case 2. For any positive integer N , there exists at least a positive integer n0 > N
such that ‖ϕ(xn0)− ϕ(p̃)‖ ≤ ‖ϕ(xn0+1)− ϕ(p̃)‖.
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For Case 1, it is obviously that limn→∞ ‖ϕ(xn) − ϕ(p̃)‖ exists. Owing to (26) and
(27), we obtain

η(1− η)‖wn − ϕ(xn)‖2 ≤ ‖ϕ(xn)− ϕ(p̃)‖2 − ‖ϕ(xn+1)− ϕ(p̃)‖2

+ η[‖wn − ϕ(p̃)‖2 − ‖ϕ(xn)− ϕ(p̃)‖2]

≤ ‖ϕ(xn)− ϕ(p̃)‖2 − ‖ϕ(xn+1)− ϕ(p̃)‖2 + 8(kn − 1)‖ϕ(xn)− ϕ(p̃)‖2

+ [1 + 8(kn − 1)](1− κ/σ)αn

(
‖h(p̃)− ϕ(p̃)‖+ 2α‖f(p̃)‖

1− κ/σ

)2

→ 0,

which implies that

lim
n→∞

‖wn − ϕ(xn)‖ = 0. (28)

Therefore,

lim
n→∞

‖ϕ(xn+1)− ϕ(xn)‖ = lim
n→∞

η‖wn − ϕ(xn)‖ = 0. (29)

From (9), (13) and (23), we achieve

‖ϕ(xn+1)− ϕ(p̃)‖2 ≤ (1− η)‖ϕ(xn)− ϕ(p̃)‖2 + η‖wn − ϕ(p̃)‖2

≤ (1− η)‖ϕ(xn)− ϕ(p̃)‖2 + η[1 + 8(kn − 1)]‖sn − ϕ(p̃)‖2

≤ [1 + 8(kn − 1)]ηαn‖h(xn)− ϕ(p̃) + βnf(p̃)‖2

+ [1 + 8(kn − 1)]η(1− αn)βn(βn − 2α)‖f(xn)− f(p̃)‖2

+ [1 + 8(kn − 1)]η(1− αn)‖ϕ(xn)− ϕ(p̃)‖2

+ (1− η)‖ϕ(xn)− ϕ(p̃)‖2

≤ [1 + 8(kn − 1)]ηαn‖h(xn)− ϕ(p̃) + βnf(p̃)‖2

+ [1 + 8(kn − 1)]η(1− αn)βn(βn − 2α)‖f(xn)− f(p̃)‖2

+ [1 + 8(kn − 1)]‖ϕ(xn)− ϕ(p̃)‖2.

(30)

It results in that

η[1 + 8(kn − 1)](1− αn)βn(2α− βn)‖f(xn)− f(p̃)‖2

≤ [1 + 8(kn − 1)]‖ϕ(xn)− ϕ(p̃)‖2 − ‖ϕ(xn+1)− ϕ(p̃)‖2

+ [1 + 8(kn − 1)]ηαn‖h(xn)− ϕ(p̃) + βnf(p̃)‖2

→ 0.

It follows that

lim
n→∞

‖f(xn)− f(p̃)‖ = 0. (31)

Using (6) and (11), we have

‖yn − ϕ(p̃)‖2 = ‖PC [ϕ(xn)− βnf(xn)]− PC [ϕ(p̃)− βnf(p̃)]‖2

≤ 〈vn, yn − ϕ(p̃)〉

=
1

2

{
‖vn‖2 + ‖yn − ϕ(p̃)‖2 − ‖ϕ(xn)− yn − βn(f(xn)− f(p̃))‖2

}
≤ 1

2

{
‖ϕ(xn)− ϕ(p̃)‖2 + ‖yn − ϕ(p̃)‖2 − ‖ϕ(xn)− yn‖2 − β2

n‖f(xn)− f(p̃)‖

+ 2βn〈ϕ(xn)− yn, f(xn)− f(p̃)〉
}
.
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It leads to

‖yn − ϕ(p̃)‖2 ≤ ‖ϕ(xn)− ϕ(p̃)‖2 − β2
n‖f(xn)− f(p̃)‖ − ‖ϕ(xn)− yn‖2

+ 2βn〈ϕ(xn)− yn, f(xn)− f(p̃)〉.
(32)

On the basis of (9) and (32), we have

‖sn − ϕ(p̃)‖2 ≤ αn‖h(xn)− ϕ(p̃)‖2 + (1− αn)‖yn − ϕ(p̃)‖2

≤ αn‖h(xn)− ϕ(p̃)‖2 + (1− αn)‖ϕ(xn)− ϕ(p̃)‖2

+ 2βn‖ϕ(xn)− yn‖‖f(xn)− f(p̃)‖ − (1− αn)‖ϕ(xn)− yn‖2.
(33)

In view of (30) and (33), we obtain

‖ϕ(xn+1)− ϕ(p̃)‖2 ≤ [1 + 8(kn − 1)]‖ϕ(xn)− ϕ(p̃)‖2 + [1 + 8(kn − 1)]αn‖h(xn)− ϕ(p̃)‖2

− [1 + 8(kn − 1)]η(1− αn)‖ϕ(xn)− yn‖2

+ 2[1 + 8(kn − 1)]βn‖ϕ(xn)− yn‖‖f(xn)− f(p̃)‖.

Hence,

[1 + 8(kn − 1)]η(1− αn)‖ϕ(xn)− yn‖2

≤ [1 + 8(kn − 1)]‖ϕ(xn)− ϕ(p̃)‖2 − ‖ϕ(xn+1)− ϕ(p̃)‖2

+ 2[1 + 8(kn − 1)]ηβn‖ϕ(xn)− yn‖‖f(xn)− f(p̃)‖
+ [1 + 8(kn − 1)]ηαn‖h(xn)− ϕ(p̃)‖2.

(34)

By virtue of (29), (31) and (34), we deduce

lim
n→∞

‖ϕ(xn)− yn‖ = 0. (35)

Since sn − yn = αn(h(xn)− yn)→ 0, from (28), (29) and (35), we have

lim
n→∞

‖ϕ(xn)− sn‖ = lim
n→∞

‖ϕ(xn+1)− sn‖ = lim
n→∞

‖wn − sn‖ = 0. (36)

From (15) and (16), we get

‖tn − ϕ(p̃)‖2 ≤ ‖sn − ϕ(p̃)‖2 − 2τn[−γ‖g(sn)− g(ϕ(p̃))‖2 + %‖sn − ϕ(p̃)‖2]

+ τ2
n‖g(sn)− g(ϕ(p̃))‖2

≤ ‖sn − ϕ(p̃)‖2 + (2τnγ + τ2
n −

2τn%

L2
1

)‖g(sn)− g(ϕ(p̃))‖2.

This together with (23) and (30) implies that

‖ϕ(xn+1)− ϕ(p̃)‖2 ≤ (1− η)‖ϕ(xn)− ϕ(p̃)‖2 + [1 + 8(kn − 1)]η‖sn − ϕ(p̃)‖2

+ [1 + 8(kn − 1)]η(2τnγ + τ2
n −

2τn%

L2
1

)‖g(sn)− g(ϕ(p̃))‖2,

which together with (34) implies that

−[1+8(kn − 1)]η(2τnγ + τ2
n −

2τn%

L2
1

)‖g(sn)− g(ϕ(p̃))‖2

≤ (1− η)‖ϕ(xn)− ϕ(p̃)‖2 − ‖ϕ(xn+1)− ϕ(p̃)‖2 + [1 + 8(kn − 1)]η‖sn − ϕ(p̃)‖2

→ 0.

Therefore,

lim
n→∞

‖g(sn)− g(ϕ(p̃))‖ = 0. (37)
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In accordance with (6) and (16), we have

‖tn − ϕ(p̃)‖2 = ‖PC(I − τng)sn − PC(I − τng)ϕ(p̃)‖2

≤ 〈(I − τng)sn − (I − τng)ϕ(p̃), tn − ϕ(p̃)〉

=
1

2

{
‖(I − τng)sn − (I − τng)ϕ(p̃)‖2 + ‖tn − ϕ(p̃)‖2

− ‖(I − τng)sn − (I − τng)ϕ(p̃)− (tn − ϕ(p̃))‖2
}

≤ 1

2

{
‖sn − ϕ(p̃)‖2 + ‖tn − ϕ(p̃)‖2 − ‖sn − tn − τn(g(sn)− g(ϕ(p̃)))‖2

}
=

1

2

{
‖sn − ϕ(p̃)‖2 + ‖tn − ϕ(p̃)‖2 − ‖sn − tn‖2 − τ2

n‖g(sn)− g(ϕ(p̃))‖2

+ 2τn〈g(sn)− g(ϕ(p̃)), sn − tn〉
}
,

which yields

‖tn − ϕ(p̃)‖2 ≤ ‖sn − ϕ(p̃)‖2 − ‖sn − tn‖2 + 2τn‖g(sn)− g(ϕ(p̃))‖‖sn − tn‖.
This together with (28) implies that

‖ϕ(xn+1)− ϕ(p̃)‖2 ≤ (1− η)‖ϕ(xn)− ϕ(p̃)‖2 + η[1 + 8(kn − 1)]‖sn − ϕ(p̃)‖2

+ 2[1 + 8(kn − 1)]ητn‖g(sn)− g(ϕ(p̃))‖‖sn − tn‖
− η[1 + 8(kn − 1)]‖sn − tn‖2.

It follows that

η[1 + 8(kn − 1)]‖sn − tn‖2 ≤ (1− η)‖ϕ(xn)− ϕ(p̃)‖2 + η[1 + 8(kn − 1)]‖sn − ϕ(p̃)‖2

+ 2[1 + 8(kn − 1)]ητn‖g(sn)− g(ϕ(p̃))‖‖sn − tn‖
− ‖ϕ(xn+1)− ϕ(p̃)‖2.

(38)

By (29), (37) and (38), we gain

lim
n→∞

‖sn − tn‖ = 0. (39)

Combining (36) and (39), we have

lim
n→∞

‖wn − tn‖ = 0. (40)

In view of (23), we get

ϑn(ζn − ϑn)‖tn − Sn(un)‖2 ≤ [1 + 8(kn − 1)]‖tn − ϕ(p̃)‖2 − ‖wn − ϕ(p̃)‖2. (41)

It follows from (40) and (41) that

lim
n→∞

‖tn − Sn(un)‖ = 0. (42)

Since S is uniformly L2-Lipschitz, we have

‖tn − Sn(tn)‖ ≤ ‖tn − Sn(un)‖+ ‖Sn(un)− Sn(tn)‖
≤ ‖tn − Sn(un)‖+ L2ζn‖tn − Sn(tn)‖.

It follows that

‖tn − Sn(tn)‖ ≤ 1

1− L2ζn
‖tn − Sn(un)‖. (43)

Based on (42) and (43), we deduce

lim
n→∞

‖tn − Sn(tn)‖ = 0. (44)
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Observe that

‖tn+1 − S(tn+1)‖ ≤ ‖tn+1 − Sn+1(tn+1)‖+ ‖Sn+1(tn+1)− Sn+1(tn)‖
+ ‖Sn+1(tn)− S(tn+1)‖
≤ ‖tn+1 − Sn+1(tn+1)‖+ L2‖tn+1 − tn‖+ L2‖Sn(tn)− tn+1‖
≤ ‖tn+1 − Sn+1(tn+1)‖+ 2L2‖tn+1 − tn‖+ L2‖Sn(tn)− tn‖.

(45)

Meanwhile, from (9), we have

‖tn+1 − tn‖ ≤ ‖tn+1 − wn+1‖+ ‖wn+1 − wn‖+ ‖wn − tn‖

≤ ‖tn+1 − wn+1‖+ ‖wn − tn‖+
1

η
‖ϕ(xn+2)− ϕ(xn+1)‖

+
1− η
η
‖ϕ(xn+1)− ϕ(xn)‖.

(46)

On the basis of (29), (40), (44), (45) and (46), we deduce

lim
n→∞

‖tn − S(tn)‖ = 0.

This together with (39) implies that

lim
n→∞

‖sn − S(sn)‖ = 0. (47)

Since {sn} is bounded, choose be a subsequence {sni
} of {sn} such that

lim sup
n→∞

〈h(p̃)− ϕ(p̃), sn − ϕ(p̃)〉 = lim
i→∞
〈h(p̃)− ϕ(p̃), sni

− ϕ(p̃)〉. (48)

Furthermore, by the boundedness of {xni
}, there exists a subsequence {xnij

} of {xni
}

satisfying xnij
⇀ z ∈ C. For convenience, we assume that xni

⇀ z. It follows that

ϕ(xni
) ⇀ ϕ(z) due to the weak continuity of ϕ. Then, tni

⇀ ϕ(z) and sni
⇀ ϕ(z). From

Lemma 2.2 and (47), we obtain ϕ(z) ∈ Fix(S). Next, we show that ϕ(z) ∈ Sol(C, g). Set

S1(x) =

{
g(x) +NC(x), x ∈ C,
∅, x /∈ C.

It is clearly that S1 is maximal monotone. Let (x†, y†) ∈ G(S1). Owing to y† − g(x†) ∈
NC(x†) and tni

∈ C, we get

〈x† − tni , y
† − g(x†)〉 ≥ 0. (49)

According to (6), we obtain

〈x† − tni
, tni
− (I − τni

g)sni
〉 ≥ 0.

It yields

〈x† − tni ,
tni − sni

τni

+ g(sni
)〉 ≥ 0. (50)

Combining (49) and (50), we achieve

〈x† − tni
, y†〉 ≥ 〈x† − tni

, g(x†)− g(tni
)〉+ 〈x† − tni

, g(tni
)− g(sni

)〉

− 〈x† − tni ,
tni
− sni

τni

〉

≥ 〈x† − tni
, g(tni

)− g(sni
)〉 − 〈x† − tni

,
tni
− sni

τni

〉.

(51)
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Since tni ⇀ ϕ(z), ‖tni − sni‖ → 0 and ‖g(tni) − g(sni)‖ → 0, it follows from (51) that
that 〈x† − ϕ(z), y†〉 ≥ 0. Therefore, ϕ(z) ∈ S−1

1 (0) and ϕ(z) ∈ Sol(C, g). Next, we prove
z ∈ Sol(C, f, ϕ). Set

S2(x) =

{
f(x) +NC(x), x ∈ C,
∅, x 6∈ C.

It is known that S2 is maximal ϕ-monotone. Take (z†, v†) ∈ G(S2). In virtue of v†−f(z†) ∈
NC(z†) and xni ∈ C, we have

〈ϕ(z†)− ϕ(xni
), v† − f(z†)〉 ≥ 0. (52)

By (6), we receive

〈ϕ(z†)− yni
, yni

− [ϕ(xni
)− βni

f(xni
)]〉 ≥ 0.

It follows that

〈ϕ(z†)− yni
,
yni − ϕ(xni)

βni

+ f(xni
)〉 ≥ 0. (53)

Combining (52) and (53), we deduce

〈ϕ(z†)− ϕ(xni), v
†〉 ≥ 〈ϕ(z†)− ϕ(xni), f(z†)− f(xni)〉+ 〈ϕ(z†)− ϕ(xni), f(xni)〉

− 〈ϕ(z†)− yni
,
yni − ϕ(xni)

βni

〉 − 〈ϕ(z†)− yni
, f(xni

)〉

≥ −〈ϕ(z†)− yni ,
yni
− ϕ(xni

)

βni

〉 − 〈ϕ(xni)− yni , f(xni)〉.

(54)

Since ‖ϕ(xni
) − yni

‖ → 0 and ϕ(xni
) ⇀ ϕ(z), we deduce that 〈ϕ(z†) − ϕ(z), v†〉 ≥ 0 by

taking i → ∞ in (54). Thus, z ∈ S−1
2 (0) by the maximal ϕ-monotonicity of S2. Hence,

z ∈ Sol(C, f, ϕ). Therefore, z ∈ ϕ−1(Fix(S) ∩ Sol(C, g))
⋂
Sol(C, f, ϕ) = ∆.

By (10) and (48), we obtain

lim sup
n→∞

〈h(p̃)− ϕ(p̃), sn − ϕ(p̃)〉 = lim
i→∞
〈h(p̃)− ϕ(p̃), ϕ(xni

)− ϕ(p̃)〉

= 〈h(p̃)− ϕ(p̃), ϕ(z)− ϕ(p̃)〉 ≤ 0.
(55)

Thanks to (9) and (11), we have

‖sn − ϕ(p̃)‖2 ≤ (1− αn)2‖yn − ϕ(p̃)‖2 + 2αn〈h(xn)− ϕ(p̃), sn − ϕ(p̃)〉
≤ (1− αn)2‖ϕ(xn)− ϕ(p̃)‖2 + 2αn〈h(xn)− h(p̃), sn − ϕ(p̃)〉

+ 2αn〈h(p̃)− ϕ(p̃), sn − ϕ(p̃)〉
≤ (1− αn)2‖ϕ(xn)− ϕ(p̃)‖2 + 2αnκ/σ‖ϕ(xn)− ϕ(p̃)‖‖sn − ϕ(p̃)‖

+ 2αn〈h(p̃)− ϕ(p̃), sn − ϕ(p̃)〉
≤ (1− αn)2‖ϕ(xn)− ϕ(p̃)‖2 + αnκ/σ‖ϕ(xn)− ϕ(p̃)‖2

+ αnκ/σ‖sn − ϕ(p̃)‖2 + 2αn〈h(p̃)− ϕ(p̃), sn − ϕ(p̃)〉.

It follows that

‖sn − ϕ(p̃)‖2 ≤
[
1− 2(1− κ/σ)αn

1− αnκ/σ

]
‖ϕ(xn)− ϕ(p̃)‖2 +

α2
n

1− αnκ/σ
‖ϕ(xn)− ϕ(p̃)‖2

+
2αn

1− αnκ/σ
〈h(p̃)− ϕ(p̃), sn − ϕ(p̃)〉.
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Set M = supn{‖ϕ(xn)− ϕ(p̃)‖2, ‖sn − ϕ(p̃)‖2}. Therefore,

‖ϕ(xn+1)− ϕ(p̃)‖2 ≤ (1− η)‖ϕ(xn)− ϕ(p̃)‖2 + η[1 + 8(kn − 1)]‖sn − ϕ(p̃)‖2

≤
[
1− 2(1− κ/σ)αnη

1− αnκ/σ

]
‖ϕ(xn)− ϕ(p̃)‖2 +

α2
nη

1− αnκ/σ
‖ϕ(xn)− ϕ(p̃)‖2

+
2αnη

1− αnκ/σ
〈h(p̃)− ϕ(p̃), sn − ϕ(p̃)〉+ 8ηM(kn − 1)

=

[
1− 2(1− κ/σ)αnη

1− αnκ/σ

]
‖ϕ(xn)− ϕ(p̃)‖2 +

2(1− κ/σ)αnη

1− αnκ/σ

×
{

αn
2(1− κ/σ)

M +
4M(kn − 1)

(1− κ/σ)αn
+

1

1− κ/σ
〈h(p̃)− ϕ(p̃), sn − ϕ(p̃)〉

}
.

(56)

By Lemma 2.3, (55) and (56), we conclude that ϕ(xn)→ ϕ(p̃) and xn → p̃.
For Case 2, setting φn = {‖ϕ(xn) − ϕ(p̃)‖2}, we have φn0

≤ φn0+1. Let {γn} be an
integer sequence defined by, for all n ≥ n0,

γ(n) = max{l ∈ N|n0 ≤ l ≤ n, φl ≤ φl+1}.
It is obvious that γ(n) is non-decreasing and there hold limn→∞ γ(n) = ∞ and φγ(n) ≤
φγ(n)+1 for all n ≥ n0. Similarly, we have

lim sup
n→∞

〈h(p̃)− ϕ(p̃), sγ(n) − ϕ(p̃)〉 ≤ 0 (57)

and

φγ(n)+1 ≤
[
1− 2(1− κ/σ)αγ(n)η

1− αγ(n)κ/σ

]
φγ(n) +

2(1− κ/σ)αγ(n)η

1− αγ(n)κ/σ

×
{

αγ(n)

2(1− κ/σ)
M +

4M(kγ(n) − 1)

(1− κ/σ)αγ(n)
+

1

1− κ/σ
〈h(p̃)− ϕ(p̃), sγ(n) − ϕ(p̃)〉

}
.

(58)

Since φγ(n) ≤ φγ(n)+1, it follows from (58) that

φγ(n) ≤
αγ(n)

2(1− κ/σ)
M +

4M(kγ(n) − 1)

(1− κ/σ)αγ(n)
+

1

1− κ/σ
〈h(p̃)− ϕ(p̃), sγ(n) − ϕ(p̃)〉. (59)

According to (r1), (r5), (57) and (59), we derive lim supn→∞ φγ(n) ≤ 0 which yields

lim
n→∞

φγ(n) = 0. (60)

Combining (57) and (58) to deduce that lim supn→∞ φγ(n)+1 ≤ lim supn→∞ φγ(n). This
together with (60) implies that limn→∞ φγ(n)+1 = 0. Applying Lemma 2.4, we obtain
0 ≤ φn ≤ max{φγ(n), φγ(n)+1}. Therefore, φn → 0. That is, ϕ(xn) → ϕ(p̃) and thus
xn → p̃. This completes the proof. �

Setting S = I in Algorithm 3.1 and Theorem 3.1, we have the following algorithm
and corollary.

Algorithm 3.2. Let x0 ∈ C be a fixed point. Let {xn} be a sequence generated by the
following iterative format

sn = αnh(xn) + (1− αn)PC [ϕ(xn)− βnf(xn)],

tn = PC [sn − τng(sn)],

ϕ(xn+1) = (1− η)ϕ(xn) + ηtn, n ≥ 0.

Corollary 3.1. Suppose that ∆1 := Sol(C, f, ϕ)
⋂
ϕ−1(Sol(C, g)) 6= ∅. Suppose that the

following restrictions hold:
(r1): limn→∞ αn = 0 and

∑∞
n=1 αn =∞;

(r2): 0 ≤ κ < σ < 2α and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 2α;
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(r3): % > γL2
1 + 1

2 and 0 < a1 ≤ τn ≤ a2 <
2(%−γL2

1)

L2
1

for all n ≥ 0.

Then the sequence {xn} generated by Algorithm 3.2 converges strongly to p̃1 ∈ ∆1 which
solves the following VI

〈h(p̃1)− ϕ(p̃1), ϕ(x†)− ϕ(p̃1)〉 ≤ 0, ∀x† ∈ ∆1.

Setting ϕ = I and f being α-inverse strongly monotone, from Algorithm 3.1 and
Theorem 3.1, we have the following algorithm and corollary.

Algorithm 3.3. Let x0 ∈ C be a fixed point. Let {xn} be a sequence generated by the
following iterative format

sn = αnh(xn) + (1− αn)PC [xn − βnf(xn)],

tn = PC [sn − τng(sn)],

wn = (1− ϑn)tn + ϑnS
n[(1− ζn)tn + ζnS

n(tn)],

xn+1 = (1− η)xn + ηwn, n ≥ 0.

Corollary 3.2. Suppose that ∆2 := Sol(C, f)∩Sol(C, g)∩Fix(S). Suppose that the following
restrictions hold:

(r1): limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(r2): 0 < κ < 2α and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 2α;

(r3): % > γL2
1 + 1

2 and 0 < a1 ≤ τn ≤ a2 <
2(%−γL2

1)

L2
1

for all n ≥ 0;

(r4): L2 > 1 and 0 < b1 < ϑn < b2 < ζn <
1

2+
√
L2

2+4
for all n ≥ 0;

(r5): 1 ≤ kn ≤ 2, limn→∞
kn−1
αn

= 0 and
∑∞
n=1(kn − 1) < +∞.

Then the sequence {xn} generated by Algorithm 3.3 converges strongly to p̃2 ∈ ∆2 which
solves the following VI

〈h(p̃2)− p̃2, x
† − p̃2〉 ≤ 0, ∀x† ∈ ∆2.
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