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NEW FIXED POINT RESULTS FOR MULTI-VALUED MAPS VIA

MANAGEABLE FUNCTIONS AND AN APPLICATION ON A

BOUNDARY VALUE PROBLEM

Abdelbasset Felhi1, Hassen Aydi2

In this paper, by using the concepts of α-admissible mappings and manageable
functions, we establish some fixed point results for multi-valued-maps in the setting of
metric-like spaces. Some examples and an application on a boundary value problem are

presented making effective our results.
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1. Introduction and Preliminaries

In 1969, Nadler [19] was the first who generalized the Banach contraction principle
for multi-valued mappings. Later, this theorem has been generalized and extended in many
directions. The notion of metric-like spaces (also named as dislocated metric spaces) were
considered by Hitzler and Seda [13] as a generalization of the notion of partial metric spaces
[17]. Many authors proved some (common) fixed point results on (generalized) metric-like
spaces. In 2008, Aage and Salunke [1] established some fixed point results in dislocated
and dislocated quasi-metric spaces. Recently, Aydi and Karapinar [6] (see also [9]) studied
the case of generalized α − ψ-contractions. Later, some best proximity point theorems on
metric-like spaces have been presented in [8]. Moreover, Karapinar and Salimi [15] gave some
details on dislocated metric spaces to metric spaces. For other related results, see [16,23,25].
In what follows, we recall some definitions and results we will need in the sequel.

Definition 1.1. [12,13] Let X be a nonempty set. A function σ : X ×X → R+ is said to
be a metric-like
(or a dislocated metric) on X if for any x, y, z ∈ X, the following conditions hold:

(P1) σ(x, y) = 0 =⇒ x = y;
(P2) σ(x, y) = σ(y, x);
(P3) σ(x, z) ≤ σ(x, y) + σ(y, z).

The pair (X,σ) is then called a metric-like (dislocated metric) space.

Let (X,σ) be a metric-like space. A sequence {xn} converges to a point x ∈ X if and
only if σ(x, x) = lim

n→∞
σ(x, xn). A sequence {xn} in X is said to be a Cauchy sequence if

lim
n,m→∞

σ(xn, xm) exists and is finite. (X,σ) is said to be complete if every Cauchy sequence
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{xn} in X converges to a point x ∈ X such that

lim
n→∞

σ(x, xn) = σ(x, x) = lim
n,m→∞

σ(xn, xm).

We also have

σ(x, x) ≤ 2σ(x, y) for all x, y ∈ X. (1)

Very recently, Aydi et al. [5] introduced the concept of a Hausdorff metric-like. Let
CBσ(X) be the family of all nonempty, closed and bounded subsets of the metric-like space
(X,σ), induced by the metric-like σ. For A,B ∈ CBσ(X) and x ∈ X, define

σ(x,A) = inf{σ(x, a), a ∈ A}, δσ(A,B) = sup{σ(a,B) : a ∈ A} and

δσ(B,A) = sup{σ(b, A) : b ∈ B}.
We have the the following useful lemmas.

Lemma 1.1. [5, 7] Let (X,σ) be a metric-like space and A any nonempty set in (X,σ),
then

σ(a,A) = 0 =⇒ a ∈ Ā,

where A denotes the closure of A with respect to the metric-like σ. Also, if {xn} is a sequence
in (X,σ) that is τσ-convergent to x ∈ X, then

lim
n→∞

|σ(xn, A)− σ(x,A)| = σ(x, x).

Let (X,σ) be a metric-like space. For A,B ∈ CBσ(X), define

Hσ(A,B) = max {δσ(A,B), δσ(B,A)} .
We have also some properties of Hσ : CBσ(X)× CBσ(X) → [0,∞).

Proposition 1.1. [5,7] Let (X,σ) be a metric-like space. For any A,B,C ∈ CBσ(X), we
have the following:

(i) : Hσ(A,A) = δσ(A,A) = sup{σ(a,A) : a ∈ A};
(ii) : Hσ(A,B) = Hσ(B,A);

(iii) : Hσ(A,B) = 0 implies that A = B;

(iv) : Hσ(A,B) ≤ Hσ(A,C) +Hσ(C,B).

The mapping Hσ : CBσ(X) × CBσ(X) → [0,∞) is called a Hausdorff metric-like
induced by σ.

The following definition we find it in [2, 18].

Definition 1.2. Let X be a nonempty set and T : X → 2X , be a multi-valued mapping. We
say that

T is α−admissible if, for each x ∈ X and y ∈ Tx with α(x, y) ≥ 1, we have α(y, z) ≥ 1
for all z ∈ Ty.

We have the following useful lemma.

Lemma 1.2. Let (X,σ) be a metric-like space, B ∈ CBσ(X) and c > 0. If a ∈ X and
σ(a,B) < c then there exists b = b(a) ∈ B such that σ(a, b) < c.

In 2014, Du and Khojasteh [11], introduced a new class of mappings called manageable
functions and they obtained some fixed point theorems. Very recently, Hussain et al. [14]
established some fixed point theorems for manageable contractions in the setting of metric
spaces.

Definition 1.3. [11] A manageable function is a mapping η : R × R → R satisfying the
following conditions:
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(η1) η(t, s) < s− t for all t, s > 0;
(η2) for any bounded sequence {tn} in (0,∞) and any non-increasing sequence {sn} in

(0,∞), it holds that

lim sup
n→∞

tn + η(tn, sn)

sn
< 1.

Let M̂an(R) be the set of manageable functions. We provide the following two ex-
amples.

Example 1.1. [11] Let k ∈ [0, 1). Then ηk : R× R → R defined by

ηk(t, s) = ks− t

is a manageable function.

Example 1.2. Let η : R× R → R be the function defined by

η(t, s) =

{
ψ(s)− φ(t) if (t, s) ∈ [0,∞)× [0,∞),

f(s, t) otherwise,

where f : R × R → R is any function and ψ,φ : [0,∞) → R are two functions such that

ψ(t) < t ≤ φ(t) for all t > 0 and lim sup
r→t+

ψ(r)

r
< 1 for all t ∈ [0,∞). Then, η ∈ M̂an(R).

Indeed, for any s, t > 0,

η(t, s) = ψ(s)− φ(t) < s− t,

so, (η1) holds. Let {tn} in (0,∞) be a bounded sequence and {sn} in (0,∞) be a non-

increasing sequence. Then lim
n→∞

sn exists in [0,∞). Hence lim sup
n→∞

ψ(sn)

sn
= lim sup

r→t+

ψ(r)

r
<

1. Thus, we get

lim sup
n→∞

tn + η(tn, sn)

sn
= lim sup

n→∞

ψ(sn) + tn − φ(tn)

sn
≤ lim sup

n→∞

ψ(sn)

sn
< 1.

It follows that (η2) holds.

In this paper, we present variant fixed point results for multivalued mappings involv-
ing manageable contractions via α-admissible mappings in the class of metric-like spaces.
Some examples and an application on a boundary value problem are given illustrating the
presented concepts and obtained results.

2. Fixed points via manageable functions

Now, we state and prove our first main result.

Theorem 2.1. Let (X,σ) be a complete metric-like space and T : X → CBσ(X) be a given

multi-valued mapping. Suppose that there exist a manageable function η ∈ M̂an(R) and
α : X ×X → [0,∞) such that

η(Hσ(Tx, Ty),Mσ(x, y)) ≥ 0 (2)

for all x, y ∈ X satisfying α(x, y) ≥ 1, where

Mσ(x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty), 1
4
[σ(x, Ty) + σ(Tx, y)]}.

Assume that

(i) T is α-admissible mapping;
(ii) there exist elements x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
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(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x in (X,σ)
as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1
for all k.

Then T has a fixed point.

Proof. By assumption (ii), there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1.
Clearly, if x1 = x0 or x1 ∈ Tx1, we conclude that x1 is a fixed point of T and so the proof is
finished. Now, we assume that x1 ̸= x0 and x1 ̸∈ Tx1. So, σ(x0, x1) > 0 and σ(x1, Tx1) > 0.

Since α(x0, x1) ≥ 1, by (2), we have

η(Hσ(Tx0, Tx1),Mσ(x0, x1)) ≥ 0, (3)

where

Mσ(x0, x1) = max{σ(x0, x1), σ(x0, Tx0), σ(x1, Tx1),
1

4
[σ(x0, Tx1) + σ(x1, Tx0)]}

= max{σ(x0, x1), σ(x1, Tx1),
1

4
[σ(x0, Tx1) + σ(x1, x1)]}.

Note that
1

4
[σ(x0, Tx1) + σ(x1, x1)] ≤

1

4
[σ(x1, Tx1) + 3σ(x0, x1)]} ≤ max{σ(x0, x1), σ(x1, Tx1)}.

Therefore

Mσ(x0, x1) = max{σ(x0, x1), σ(x1, Tx1)}).
Define the function λ : R× R → R by

λ(t, s) =

{
t+η(t,s)

s if t, s > 0,

0 otherwise.

By (η1), we have

0 < λ(t, s) < 1 for all t, s > 0. (4)

Also, if η(t, s) ≥ 0, then

0 < t ≤ sλ(t, s) for all t, s > 0. (5)

From (3) and (4), we get

0 < λ(Hσ(Tx0, Tx1),Mσ(x0, x1)) < 1. (6)

Since σ(x1, Tx1) > 0, by using (6), we have

σ(x1, Tx1) <
1√

λ(Hσ(Tx0, Tx1),Mσ(x0, x1))
σ(x1, Tx1).

Lemma 1.2 implies the existence of a point x2 ∈ Tx1 such that

σ(x1, x2) <
1√

λ(Hσ(Tx0, Tx1),Mσ(x0, x1))
σ(x1, Tx1). (7)

From (5), we have

Hσ(Tx0, Tx1) ≤Mσ(x0, x1)λ(Hσ(Tx0, Tx1),Mσ(x0, x1)) < Mσ(x0, x1).

Then

σ(x1, Tx1) ≤ Hσ(Tx0, Tx1) < Mσ(x0, x1),

which implies that Mσ(x0, x1) = σ(x0, x1). It follows that

σ(x1, Tx1) ≤ σ(x0, x1)λ(Hσ(Tx0, Tx1), σ(x0, x1)). (8)

Combining (7) and (8), we get

σ(x1, x2) ≤
√
λ(Hσ(Tx0, Tx1), σ(x0, x1))σ(x0, x1).
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Note that x2 ̸= x1 because x1 ̸∈ Tx1. If x2 ∈ Tx2, we conclude that x2 is a fixed point of
T and so the proof is finished. Now, we assume that x2 ̸∈ Tx2. Since T is α-admissible and
x2 ∈ Tx1, we have

α(x1, x2) ≥ 1.

Hence by (2)

η(Hσ(Tx1, Tx2),Mσ(x1, x2)) ≥ 0,

where

Mσ(x1, x2) = max{σ(x1, x2), σ(x1, Tx1), σ(x2, Tx2),
1

4
[σ(x1, Tx2) + σ(x2, Tx1)]}

= max{σ(x1, x2), σ(x2, Tx2)}).

Since σ(x2, Tx2) > 0, by using (6), we have

σ(x2, Tx2) <
1√

λ(Hσ(Tx1, Tx2),Mσ(x1, x2))
σ(x1, Tx2).

Lemma 1.2 implies the existence of a point x3 ∈ Tx2 such that

σ(x2, x3) <
1√

λ(Hσ(Tx1, Tx2),Mσ(x1, x2))
σ(x2, Tx2).

Similarly, we get α(x2, x3) ≥ 1 and

σ(x2, x3) ≤
√
λ(Hσ(Tx1, Tx2), σ(x1, x2))σ(x1, x2).

Continuing in this fashion, we construct a sequence {xn} in X such that for all n ≥ 1

(i) α(xn, xn+1) ≥ 1, xn ̸∈ Txn, xn ̸= xn+1, xn+1 ∈ Txn;
(ii)

σ(xn, xn+1) ≤
√
λ(Hσ(Txn−1, Txn), σ(xn−1, xn))σ(xn−1, xn). (9)

From (9) and (4), we get 0 < σ(xn, xn+1) < σ(xn−1, xn) for all n, which implies that
{σ(xn−1, xn)} is a non-increasing sequence of positive reals, then it is convergent. Also, we
have

0 < Hσ(Txn−1, Txn) < σ(xn−1, xn),

for all n, which implies that {Hσ(Txn−1, Txn)} is a bounded sequence. From (η2), we have

lim sup
n→∞

λ(Hσ(Txn−1, Txn), σ(xn−1, xn)) < 1. (10)

Let

λn =
√
λ(Hσ(Txn−1, Txn), σ(xn−1, xn)), ∀n ≥ 1.

From (9), we get

σ(xn, xn+1) ≤ λnσ(xn−1, xn), ∀n ≥ 1. (11)

By (10), there exist γ ∈ (0, 1) and n0 ∈ N such that

λn ≤ γ, ∀n ≥ n0.

Hence, by (11), we get

σ(xn, xn+1) ≤ γσ(xn−1, xn), ∀n ≥ n0.

Thus

σ(xn, xn+1) ≤ γn−n0+1σ(xn0−1, xn0), ∀n ≥ n0.

Now, for m > n ≥ n0, we have

σ(xn, xm) ≤
m−1∑
i=n

σ(xi, xi+1) ≤
m−1∑
i=n

γi−n0+1σ(xn0−1, xn0) ≤ σ(xn0−1, xn0)

∞∑
i=n

ki → 0n as n→ ∞.
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Thus,

lim
n,m→∞

σ(xn, xm) = 0.

So {xn} is σ−Cauchy in the complete metric-like space (X,σ). Then there exists u ∈ X
such that

lim
n→∞

σ(xn, u) = σ(u, u) = lim
n,m→∞

σ(xn, xm) = 0.

We will show that u is a fixed point of T. If there exists a subsequence {xnk
} of {xn} such

that xnk
= u or Txnk

= Tu for all k, then Txnk
= Tu for all k. Since xnk+1 ∈ Txnk

for
all k, then xnk+1 ∈ Tu for all k. Hence σ(u, Tu) ≤ σ(u, xnk+1) for all k. Letting k → ∞, we
get σ(u, Tu) ≤ 0 and so by Lemma 1.1, we have u ∈ Tu = Tu.
So, without loss of generality, we may suppose that xn ̸= u and xn ̸= Tu for all nonnega-
tive integer n. By assumption (iii), there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), u) ≥ 1 for all k. Hence by (2), we have

η(Hσ(Txn(k), Tu),Mσ(xn(k), u)) ≥ 0, ∀k,

where

Mσ(xn(k), u) = max{σ(xn(k), u), σ(u, Tu), σ(xn(k), Txn(k)),
1

4
[σ(xn(k), Tu) + σ(u, Txn(k))]}.

From (5), we have

Hσ(Txn(k), Tu) ≤ λ(Hσ(Txn(k), Tu),Mσ(xn(k), u))Mσ(xn(k), u) < Mσ(xn(k), u), ∀k.

Since

σ(u, Tu) ≤ σ(u, xn(k)+1) + σ(xn(k)+1, Tu) ≤ σ(u, xn(k)+1) +Hσ(Txn(k), Tu),

then

σ(u, Tu) ≤ σ(u, xn(k)+1) +Hσ(Txn(k), Tu)

≤ σ(u, xn(k)+1) + λ(Hσ(Txn(k), Tu),Mσ(xn(k), u))Mσ(xn(k), u), ∀k.

Suppose that σ(u, Tu) > 0. Then, there exists N ∈ N such that

Mσ(xn(k), u) = σ(u, Tu), ∀k ≥ N.

It follows that

σ(u, Tu) ≤ σ(u, xn(k)+1) + λ(Hσ(Txn(k), Tu), σ(u, Tu))σ(u, Tu), ∀k ≥ N.

Passing to lim sup as k → ∞, we get

σ(u, Tu) ≤ lim sup
k→∞

σ(u, xn(k)+1) + σ(u, Tu) lim sup
k→∞

λ(Hσ(Txn(k), Tu), σ(u, Tu))

< σ(u, Tu),

which is a contradiction. Hence σ(u, Tu) = 0 and so u ∈ Tu, that is, u is a fixed point of
T . �

By using the same techniques, we may state the following results in the setting of
partial metric and metric-like spaces. Mention that the partial Hausdorff metric Hp written
in Theorem 2.2 has been already introduced by Aydi et al. [3].

Theorem 2.2. Let (X, p) be a complete partial metric space and T : X → CBp(X) be a

given multi-valued mapping. Suppose that there exist a manageable function η ∈ M̂an(R)
and α : X ×X → [0,∞) such that

η(Hp(Tx, Ty), Np(x, y)) ≥ 0 (12)
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for all x, y ∈ X satisfying α(x, y) ≥ 1, where

Np(x, y) = max{p(x, y), p(x, Tx), p(y, Ty), 1
2
[p(x, Ty) + p(Tx, y)]}.

Assume that

(i) T is α-admissible mapping;
(ii) there exist elements x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x in (X,σ)

as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1
for all k.

Then T has a fixed point.

Theorem 2.3. Let (X,σ) be a complete metric-like space and T : X → CBσ(X) be a given

multi-valued mapping. Suppose that there exist a manageable function η ∈ M̂an(R) and
α : X ×X → [0,∞) such that

η(Hσ(Tx, Ty), σ(x, y)) ≥ 0 (13)

for all x, y ∈ X satisfying α(x, y) ≥ 1. Assume that

(i) T is α-admissible mapping;
(ii) there exist elements x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x in (X,σ)

as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1
for all k.

Then T has a fixed point.

Remark 2.1. Theorem 2.1 is a generalization of Theorem 2 in [5]. Theorem 2.2 is a
generalization of Theorem 2.2 in [4] (when considering one mapping).

We give an example to illustrate the utility of Theorem 2.1.

Example 2.1. Let X = [0,∞) and σ : X ×X → [0,∞) defined by

σ(x, y) = x+ y, ∀x, y ∈ X

Then (X,σ) is a complete metric-like space. Define the map T : X → CBσ(X) by

Tx =

{
[2,∞) ifx > 1

{0, x2

1+x} ifx ∈ [0, 1]

Note that Tx is bounded and closed for all x ∈ X in metric-like space (X,σ). Take the
applications α : X ×X → [0,∞) and η : R× R → R defined as follow

α(x, y) =

{
2 ifx, y ∈ [0, 1]

0 if not

η(t, s) = rs− t for all s, t ∈ R with r ∈ [ 12 , 1).
It is easy tho show that η is a manageable function and T is an α-admissible mapping.
Let x, y ∈ X such that α(x, y) ≥ 1. This implies that x, y ∈ [0, 1]. We shall show that

Hσ(Tx, Ty) ≤
1

2
Mσ(x, y), ∀x, y ∈ [0, 1].
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For this, we consider the following cases:
Case 1: x = y. We have

Hσ(Tx, Ty) = max{σ(0, Tx), σ( x2

1 + x
, Tx)}

= max{min{σ(0, 0), σ(0, x2

1 + x
)}, min{σ(0, x2

1 + x
), σ(

x2

1 + x
,
x2

1 + x
)}}

= max{0, x2

1 + x
} =

x2

1 + x
≤ x =

1

2
σ(x, x) ≤ 1

2
Mσ(x, y).

Case 2: x ̸= y. Since σ is symmetric, it suffices to consider the case where x > y. We have

Hσ(Tx, Ty) = Hσ({0,
x2

1 + x
}, {0, y2

1 + y
})

= max{max{σ(0, {0, y2

1 + y
}), σ( x2

1 + x
, {0, y2

1 + y
})},

max{σ(0, {0, x2

1 + x
}), σ( y2

1 + y
, {0, x2

1 + x
})}}

= max{σ( x2

1 + x
, {0, y2

1 + y
})}, σ( y2

1 + y
, {0, x2

1 + x
})}}

= max{ x2

1 + x
,

y2

1 + y
} =

x2

1 + x
≤ 1

2
x ≤ 1

2
(x+ y) =

1

2
σ(x, y) ≤ 1

2
Mσ(x, y).

Thus

η(Hσ(Tx, Ty),Mσ(x, y)) = rMσ(x, y)−Hσ(Tx, Ty) ≥ (r − 1

2
)Mσ(x, y) ≥ 0.

Moreover, the conditions (ii) and (iii) of Theorem 2.1 are verified. Indeed, for x0 = 0 and
x1 = 0, we have α(x0, x1) = 2 > 1. Also, if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1
for all n and xn → x in (X,σ) as n→ ∞, we get {xn} ⊆ [0, 1] and |xn −x| → 0 as n→ ∞.
So, x ∈ [0, 1]. Hence α(xn, x) = 2 ≥ 1 for all n. Then all required hypotheses of Theorem
2.1 are satisfied. Here u = 0 is a fixed point of T.

3. Fixed point theory in ordered metric-like spaces

The study of fixed points in partially ordered sets was developed in [10,20–22,24]. In
this section, we give some fixed point results for multi-valued mappings in the concept of
metric-like spaces endowed with a partial order. Finally, we say that x, y ∈ X are comparable
if x ≼ y or y ≼ x holds. Moreover, for A,B ⊆ X, we have A ≼ B whenever for each x ∈ A
there exists y ∈ B such that x ≼ y.

First, we introduce the following concept.

Definition 3.1. Let (X,σ) be a metric-like space and T : X → CBσ(X) be a multi-valued
mapping. The pair (X,≼) is said to be regular if the following condition holds: for any
sequence {xn} in X with Txn ≼ Txn+1, for all n ∈ N and xn → x ∈ (X,σ), then there
exists a subsequence {xn(k)} of {xn} such that Txn(k) ≼ Tx, for all k ∈ N.

We also have the following results.

Theorem 3.1. Let (X,σ,≼) be a complete partially ordered metric-like space. Suppose
that T : X → CBσ(X) is a multi-valued mapping. Suppose that there exists a manageable

function η ∈ M̂an(R) such that

η(Hσ(Tx, Ty),Mσ(x, y)) ≥ 0 (14)
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for all x, y ∈ X, with Tx ≼ Ty, where

Mσ(x, y) = max{σ(x, y), σ(x, Tx), σ(y, Ty), 1
4
[σ(x, Ty) + σ(Tx, y)]}.

Assume that

(i) for each x ∈ X and y ∈ Tx with Tx ≼ Ty, we have Ty ≼ Tz for all z ∈ Ty;
(ii) there exist x0 ∈ X and x1 ∈ Tx0 such that Tx0 ≼ Tx1;
(iii) (X,≼) is regular.

Then T has a fixed point.

Proof. Take α : X ×X → [0,∞) such that

α(x, y) =

{
1 if Tx ≼ Ty

0 otherwise.

The multi-valued mapping T is α-admissible. In fact, if x ∈ X and y ∈ Tx with α(x, y) ≥ 1,
then Tx ≼ Ty. By condition (i), we have Ty ≼ Tz for all z ∈ Ty, then α(y, z) = 1. Also, by
(16), T verifies (2) of Theorem 2.1. Proceeding as in proof of Theorem 2.1, we may construct
a sequence {xn} which converges to x ∈ (X,σ) and xn+1 ∈ Txn for all n ∈ N. Finally, by
condition (iii) and Lemma 1.1, we conclude that x is a fixed point of T. �

Theorem 3.2. Let (X, p,≼) be a complete partially ordered partial metric space. Suppose
that T : X → CBp(X) is a multi-valued mapping. Suppose that there exists a manageable

function η ∈ M̂an(R) such that

η(Hp(Tx, Ty), Np(x, y)) ≥ 0 (15)

for all x, y ∈ X, with Tx ≼ Ty, where

Np(x, y) = max{p(x, y), p(x, Tx), p(y, Ty), 1
2
[p(x, Ty) + p(Tx, y)]}.

Assume that

(i) for each x ∈ X and y ∈ Tx with Tx ≼ Ty, we have Ty ≼ Tz for all z ∈ Ty;
(ii) there exist x0 ∈ X and x1 ∈ Tx0 such that Tx0 ≼ Tx1;
(iii) (X,≼) is regular.

Then T has a fixed point.

Theorem 3.3. Let (X,σ,≼) be a complete partially ordered metric-like space. Suppose
that T : X → CBσ(X) is a multi-valued mapping. Suppose that there exists a manageable

function η ∈ M̂an(R) such that

η(Hσ(Tx, Ty), σ(x, y)) ≥ 0 (16)

for all x, y ∈ X, with Tx ≼ Ty. Assume that

(i) for each x ∈ X and y ∈ Tx with Tx ≼ Ty, we have Ty ≼ Tz for all z ∈ Ty;
(ii) there exist x0 ∈ X and x1 ∈ Tx0 such that Tx0 ≼ Tx1;
(iii) (X,≼) is regular.

Then T has a fixed point.
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4. Application

In this section, we consider the following two-point boundary value problem for second
order differential equation: {

−d2x
dt2 = f(t, x(t)), t ∈ [0, 1]

x(0) = x(1) = 0,
(17)

where f : [0, 1]×R → R is a continuous function. The Green’s function associated to (17) is{
G(t, s) = t(1− s) if 0 ≤ t ≤ s ≤ 1

G(s, t) = s(1− t) if 0 ≤ s ≤ t ≤ 1.
(18)

Let us take X = C(I)(I = [0, 1]) the space of all continuous functions defined on I. Consider
the metric-like σ given by

σ(x, y) = ∥x∥∞ + ∥y∥∞ for all x, y ∈ X,

where ∥u∥∞ = max
t∈[0,1]

|u(t)| for each u ∈ X. Clearly, (X,σ) is complete. Note that σ is not a

partial metric.
It is well known that x ∈ C2(I) is a solution of (17) if and only if x ∈ X = C(I) is a

solution of the integral equation

x(t) =

∫ 1

0

G(t, s)f(s, x(s))ds, t ∈ I. (19)

Inspired from [6], we state the following result.

Theorem 4.1. Suppose the following conditions hold:

• there exists a continuous function β : I → [0,∞) such that

|f(s, a)| ≤ 8β(s) |a|,

for each s ∈ I and a ∈ R;
• sup

s∈I
β(s) = k ∈ (0, 1).

Then the problem (17) has a solution u ∈ X.

Proof. Consider the mapping T : X → X defined by

Tx(t) =

∫ 1

0

G(t, s)f(s, x(s))ds,

for all x ∈ X and t ∈ I. Note that problem (17) is equivalent to finding u ∈ X that is a
fixed point of T . For x, y ∈ X, we have

|Tx(t)| = |
∫ 1

0

G(t, s) f(s, x(s))ds|

≤
∫ 1

0

G(t, s) |f(s, x(s))| ds

≤ 8

∫ 1

0

G(t, s)β(s) |x(s)| ds

≤ 8k ∥x∥∞ sup
t∈I

∫ 1

0

G(t, s) ds

= k ∥x∥∞.
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We have used the fact that for each t ∈ I, we have
∫ 1

0
G(t, s) ds = − t2

2 + t
2 , and so

sup
t∈I

∫ 1

0

G(t, s) ds =
1

8
. Thus

∥Tx∥∞ ≤ k ∥x∥∞. (20)

Proceeding similarly, one can get

∥Ty∥∞ ≤ k ∥y∥∞. (21)

Summing (20) to (21), we find

σ(Tx, Ty) = ∥Tx∥∞ + ∥Ty∥∞
≤ k( ∥x∥∞ + ∥y∥∞)

= k σ(x, y) ≤ kM(x, y).

Thus
η(Hσ(Tx, Ty),Mσ(x, y)) =: kM(x, y)−Hσ(Tx, Ty) ≥ 0.

So all hypotheses of Theorem 2.1 are satisfied (with α(x, y) = 1), and so T has a fixed point
u ∈ X, that is, the problem (17) has a solution u ∈ C2(I). �
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