
U.P.B. Sci. Bull., Series A, Vol. 75, Iss. 2, 2013                                                     ISSN 1223-7027 

PHOTONIC CRYSTAL FIBER MODE CHARACTERIZATION 
WITH MULTIPOLE METHOD 

Dana Georgeta POPESCU1, Paul STERIAN2 

Photonic crystal fibers (PCFs) have shown great capacity in overcoming the 
limits of conventional fibers and obtaining remarkable results the regular fiber 
cannot achieve, such as high nonlinear effects, controlled dispersion, low bending 
losses, low losses and high power transmittance. In this paper we considered a PCF 
having N inclusions and a hole-diameter of 3.0/ =ad . For different values of the 
wavelength varying between 1 mμ to 2 mμ and for different pitch size we studied the 
fundamental mode of a PCF having the refractive index of the cylinders 1=cn  (air) 
and a silica background with the multipole method. This method takes into account 
both the real and imaginary parts of the mode propagation constant, providing 
information about losses using Bloch transform. It allows a clear distinction 
between cladding and defect modes and it is highly stable when varying the fiber 
parameters and wavelength. 

Keywords: photonic crystal fiber, multipole method, field distribution, Bloch 
transform. 

1. Introduction 

The first photonic crystal fiber (PCF) was realized after the prediction of 
Birks et al. [1] in 1995. They highlight the guidance of the light through PBG 
(photonic bang gap) effects in a hollow core along the length of a fiber with air 
holes, which lead to the first PCF [2] that had remarkable properties such as 
unprecedented dispersion [3], endlessly single mode guidance [4] and nonlinear 
properties. These interesting features have led to multiple novel applications. 
PCFs are attracting tremendous attention in recent years because of their 
important properties and unique propagation characteristics that cannot be realized 
with conventional optical fibers, incorporating a larger refractive index contrast 
and requiring a complete electromagnetic treatment rather than a weak guidance 
approximation [5-8]. PCF became a major topic of research because they have 
allowed technological breakthrough, permitting the discovery of new physical 
phenomena and unveiling new aspects of wave guidance. Endlessly single mode 
fibers or hollow core guidance made possible the development of novel 
application in sensing, metrology, nonlinear optics, and particle guidance or 
dispersion management [9-12]. In cross-section, a photonic crystal fiber appears 
as a periodic structure of dielectric materials, commonly a solid silica material 
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pierced by air holes grouped in a triangular lattice that extends parallel to the fiber 
axes. The creation of a defect leads to an enhanced propagation of the light 
through this periodic lattice.  One type of MOF has a central air hole and confines 
light in it by PBG effects making possible the propagation of the light in air. 
However the location of the modes which propagates in this kind of fiber 
represents a numerically difficult task. Another type of MOF is the one with silica 
core, which allows the propagation of the light by means of modified total internal 
reflection. To guide the design process precise numerical simulations are 
essentials for reduction of the costs and the effort needed for the fabrication of 
photonic crystal fibers. In this paper we determine the fundamental mode for a 
PCF structure that is studied by numerical simulation based on multipole method 
[13-14]. 

2. Method 

Lately, remarkable progress has been made in the design and manufacture 
of MOFs in an area of new applications as dispersion compensation and light 
guiding in air. The finding and analyzing of PCF modes properties was possible 
due to sophisticated numerical method called multipole method. 

Multipole method is part of the important class of computational and 
theoretical techniques used for photonic crystal (PhC) structures study, a 
numerical formulation that developed the mode finding of holey fibers, being 
useful as a mode solver. It concerns the both real and imaginary parts of the mode 
propagation constant, providing information about losses and it is used for full 
vector modal calculation of photonic band gap fibers, achieving rapid 
convergence and high accuracy with modest computing resources. A freely 
software is available [15] that implements this method for circular inclusions and 
can be extended for the noncircular ones. In practice it deals with two types of 
PCF: solid core PCF and air core PCF, surrounded by air holes, permitting the 
modeling of a large number of inclusions, calculation time being reduced for a 
structure with discrete rotational symmetry by capitalization of symmetry 
properties of the modes.  

To represent the electromagnetic field, the multipole method uses two 
different kind of field expansion: the first one, the local expansion, which is valid 
just outside each inclusion, is related to the field components that are scattered 
away by the inclusions, being incident on them. The second one is valid along the 
different parts of the structure.  

The electromagnetic field must satisfy boundary conditions at the margins 
of each inclusion which are given by the Maxwell’s equation. So we can find a 
relation between the coefficients of expansions defined on the opposite side of the 
boundary and another one by applying the Rayleigh identity, obtaining a 
homogeneous system of algebraic equations in one of the coefficients only that 
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can be expressed in a matrix form which depends on the propagation constant of 
the mode that is propagation in PCF. Therefore we can reduce the problem of 
finding modes that propagates in the photonic structure in a solution discovery 
corresponding to finding the propagation constant. 

Considering the balance of incoming and outgoing fields we can solve the 
problem of scattering consisting of multipole inclusions [7, 13-14]. If we consider 
a single inclusion in the matrix that can be seen in Fig. 1, the field being 

),()2,( θπθ rUrU =+   periodic along the angular coordinate, we can expand ),( θrU  
in a Fourier series fixing r:   
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In relation (1), the Fourier coefficients )(rfn  are regular functions of r.  
For the Helmholtz equation,  
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Because ),( θrU   is a continuous function, one obtains 
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standing for all n where rkv 1=  . This equation is the Bessel differential equation 
of order n.  

The functions  
 )()()( vHDvJCvf nnnnn +=                                        (5) 

are linear combination of Bessel functions of the first and second kind of order n 
( )(),( vYvJ nn ) or of Bessel and Hankel functions of the first kind of order n 
( )()()( viYvJvH nnn += ). 

The expression  
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is called a Fourier Bessel series. 
The Fourier Bessel series can be split in two parts: the Bessel functions of 

the first kind (regular everywhere) and the Hankel functions (they have a 
singularity at 0). When we consider no inclusions, the whole space is 
homogeneous. A source placed beyond the outer ring (S0) radiates a field which is 
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regular in the region delimited by the inner circle and its field expansion can only 
contain Bessel functions. In this manner ),( θrU  becomes: 

),(),(),( θθθ rOrRrU +=                                         (7) 
with 
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the regular part of U and  
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its singular counterpart. 

 
Fig. 1. Single inclusion in the matrix where oiS ,  are sources. 

 
For an inclusion, the field reaching it will be scattered. So, R and O are 

linked by a linear scattering operator S, where O=SR. S is represented by a matrix 
which links the Fourier Bessel coefficients Cn with R and Dn with O. For two 
inclusions the incoming field for inclusion 1 results from the superposition of the 
field radiated from So and the scattered field from inclusion 2 and similarly for the 
incoming field for inclusion 2.   

3. Results and discussion 

We are interested in PCFs having the inclusions in the nodes of a periodic 
lattice, their properties being closely related to the cladding’s band structure. We 
used a discrete Fourier transformation on specific points along the structure to 
isolate the Bloch components for a mode.  

We considered a PCF having N inclusions centered around position 
vectors ])...1[( Nlc j ∈ . Supposing that the positions are defined by a finite subset 
of a periodic lattice, we can generate a Bloch transform of a given PCF mode by 
choosing a number of )( jm cB quantities which can characterize the complex field 
amplitudes for each N inclusion. In multipole formulation this quantities are 
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considered to be the multipole’s amplitudes occurring in the Ez and Hz expansion. 
We define the Bloch transform for mB quantities: 
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Bloch transform term is usually used in Bloch-Floquet theory. If a mode 
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mB̂  is the complex amplitude of Bloch wave associated nkΒ  Bloch vector in 

)( jm cB decomposition.  
For a given mode the important information obtained from Bloch 

transform can be visualized plotting |)(| kBm  vs. k. We can find the total Bloch 
transform summing over transformations of all representative quantities: 

∑
ℜ∈

=
m

kmB
kBk

kTB
m

)(
|)'(|'sup

1)(
2                                    

 (11) 

 
All Bloch transform and field distribution figures are depict in a 

normalized, linear color scale, as in Fig. 2. The darkest color represents the 
smallest value of the distribution within the drawn frame and the brightest one 
represents the maximum value. 

 
Fig. 2. Color scale used for Bloch transform plots and field distribution. 

 
The total Bloch transform was computed with the Ez Bessel Fourier 

coefficients, but the transform has the same graphical accuracy when calculated 
with Hz coefficients. The symmetry properties of the mode induce the symmetry 
properties of the Bloch transform. 

In Tables 1 to 4, using the Bloch transform we identified modes of PCFs 
with different but comparable structures. These lines of contour plots relate to the 
fundamental mode of a PCF with Nr=4 holes of air inclusions in silica, with the 
same relative hole size d/a=0.3, but with different values of the wavelength from 
1 μm to 2 μm and with different pitch. 
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Comparing the figures from Tables 1 to 3 with the ones in Table 4 we 
observe that the Bloch transform remains similar for the two values of the pitch 
(0.254 μm and 2.3 μm) even if the field patterns differ considerably, being only 
one peak centered on k=0. For the wider mode the width of the peak changes, 
being much narrower than for the well confined mode. Nevertheless, the shape of 
the Bloch transform remains mainly unchanged, supporting the robustness of the 
mode analysis based on the Bloch transform.  

Since the challenge in numerical calculations of physical properties of 
PCF is to minimize the otherwise time consuming computational costs i.e memory 
load, CPU processing time resulting in efficient manipulation of information 
acquired in simulations, the Bloch transform approach offers such a solution.  

Based on the theorem which states the equivalence of the analysis 
performed in real space of the field pattern and the reciprocal space analysis of the 
Bloch transform characteristics, a tremendous reduction in time and 
computational costs comes together with a high accuracy of the mode analysis in 
PCF. Its analysis allows in this manner to avoid the more complex and resources 
consuming attempt of studying the mode propagation based on the direct space 
methods. The analysis performed in this framework is way less expensive 
concerning the computational costs, at the end allowing the conversion from 
Bloch transform to real space shape of the fields, up to a phase factor. 

In this context, in Table 1 - 3 it is well pictured the Heisenberg-type 
property for Bloch transform correlating it to the finite Fourier transform. The 
Heisenberg relation links the width of the Bloch transform peaks with the spatial 
extent of the mode: when the propagating mode is highly collimated, well 
localized in the real space, the Bloch transform in the reciprocal space is sparse. 
The most important property of the Bloch transform is the geometric distribution 
of the peaks, meaning the form of the Bloch transform (the mode characteristic of 
the PCF), being extremely stable when varying the wavelength and the fiber 
parameters. 

Table 1 
Fundamental mode of a photonic crystal fiber with the same pitch ma μ254.0=  , hole 

diameter 3.0/ =ad  and number of rings 4=rN , but with different wavelength. The 

refractive index of the cylinders is  1=cn  (air) and a silica background 
λ(µm)  1.0  1.00005  1.1  1.2 

Sin   1.45042 1.45042 1.44920 1.44805 
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It is known that the field distribution and Bessel-Fourier coefficients of the 
same mode can vary a lot with the modification of the fiber parameters and 
because of that it is very difficult to identify the similar modes that have 
comparable structures. Our simulations revealed that the Bloch transform of a 
given mode does not change its form even if we modify the fiber parameters and 
this is the most precise and the most convenient method for defining and 
differentiating specific modes. This property is very difficult to demonstrate 
without a clear classification of the modes, but it can be understood due to the 
decomposition of each mode by the Bloch transform in natural bases of the 
structure. 

Upon a careful analysis of data depicted in Table 1 - 3 one can easily draw 
a few conclusions. First of them is that, even small variations of the PBG fiber are 
reflected in the different propagating patterns of the electric and magnetic fields. 
This is not surprising since the dependence between the field patterns, dielectric 
constants and geometric parameters is clearly stated and fixed by the Maxwell 
equations. A striking fact is that, even when the electric and magnetic field are 
featured by significant variations, the pattern deduced for the Bloch transform 
does not change significantly. Based on the Bloch theorem, is easy to understand 
why it is more convenient to choose in the last representation: it is easier to 
manipulate it and at the end, the reformulation in the direct space may be realized, 
allowing for a direct visualization of the field patterns. 
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Table 2 
Fundamental mode of a photonic crystal fiber with the same pitch ma μ254.0=  , hole 

diameter 3.0/ =ad  and number of rings 4=rN , but with different wavelength. The 

refractive index of the cylinders is  1=cn  (air) and a silica background 

λ(µm)  1.3  1.4  1.5  1.6 

Sin   1.44692 1.44560 1.44462 1.44342 
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Table 3 

Fundamental mode of a photonic crystal fiber with the same pitch ma μ254.0=  , hole 

diameter 3.0/ =ad  and number of rings 4=rN , but with different wavelength. The 

refractive index of the cylinders is  1=cn  (air) and a silica background 

λ(µm)  1.7  1.8  1.9  2.0 

Sin   1.44217 1.44087 1.43951 1.43809 
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On the other hand, in Table 4 are depicted the field patterns for a pitch size 

of ma μ3.2= . Despite at a brief visual inspection of the Bloch transform we 
would be tempted to conclude that the differences are only minor compared to the 
previous cases, the conversion of fields in direct space shows a significant 
difference. The losses minimized in this latter case, the modes being highly 
collimated around the center of the PCF. 

This result allows on one hand the optimization of dielectric and geometric 
parameters of PCF in order to minimize the losses and on the other hand proves 
the efficiency of Bloch transform method in predicting the optical properties of 

systems with cylindrical symmetry, in particular of photonic band gap fibers. 
Table 4 

Fundamental mode of a photonic crystal fiber with the same pitch ma μ3.2=  , hole diameter 

3.0/ =ad  and number of rings 4=rN , but with different wavelength. The refractive 

index of the cylinders is  1=cn  (air) and a silica background 

λ(µm 1.0  1.5  2.0 

Sin   1.45042 1.44462 1.43809 

 
 

|| zE
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6. Conclusions 

In this paper we proved that the Bloch transform method is a very 
powerful tool for the PCF mode study.  

Its analysis in terms of Bloch resonant waves allows a better identification 
of the modes and allows a clear distinction between cladding and defect modes. 

Based on the equivalence between the description of the physical system 
under study by a direct space approach and a reciprocal space description based 
on the Bloch transform analysis, we showed that the analysis of the field patterns, 
symmetry and propagation conditions can be efficiently described, reducing the 
computational costs significantly. Additionally, the predicted results are highly 
accurate. 

We established under which conditions the losses can be minimized, 
varying the dielectric and geometric parameters of the PCF.  

These results will further furnish the premises for accurate calculations on 
photonic systems with cylindrical symmetry in order to improve the working 
parameters of PCF for applications in optical electronics. 
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