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MINIMIZATION PROBLEM OF A VARIATIONAL INEQUALITY

ON A FAMILY OF SET-VALUED MAPPINGS

Mohammad Eslamian1, Kourosh Nourouzi2

In this paper we propose a new iterative scheme for a finite family of

quasi-nonexpansive set-valued mappings by the general viscosity iterative method.

We establish the strong convergence for the iterative scheme to prove the existence

of a unique solution for the variational inequality which is the optimality condition

for the minimization problem. Our results generalize and improve some results of

Xu (2003) and Marino, Xu (2006).
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1. Introduction

Let A be a strongly positive bounded linear operator on a real Hilbert space

H, that is, there exists γ > 0 such that

〈Ax, x〉 ≥ γ‖x‖2, (x ∈ H).

For a nonexpansive mapping T from a nonempty subset C of H into itself (‖Tx −
Ty‖ ≤ ‖x − y‖, for each x, y ∈ C), a typical problem is to minimize the quadratic

function

min
x∈F (T )

1

2
〈Ax, x〉 − 〈x, b〉, (1.1)

over the set of all fixed points F (T ) of T . In 2003, Xu [1] showed that the sequence

{xn} defined by the iterative method

xn+1 = (I − αnA)Txn + αnx0, (n ≥ 0), (1.2)

with the initial guess x0 ∈ H converges strongly to the unique solution of the mini-

mization problem (1.1) provided that the sequence {αn} satisfies certain conditions.

The viscosity approximation method for nonexpansive mappings was given in

[2] and followed in [3] . More precisely, for a contraction f on H, starting with an
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arbitrary initial point x0 ∈ H, define a sequence {xn} recursively by

xn+1 = (1− σn)Txn + σnf(xn), (n ≥ 0) (1.3)

where {σn} is a sequence in (0, 1). It is proved that under certain appropriate con-

ditions imposed on {σn}, the sequence {xn} generated by (1.3) strongly converges

to the unique solution x? of the variational inequality

〈(I − f)x?, x− x?〉 ≥ 0, (x ∈ F (T )).

A combination of the iterative method (1.2) with the viscosity approximation (1.3)

is given in [4] via considering the general iterative method

xn+1 = anγf(xn) + (I − anA)Txn, (n ≥ 0). (1.4)

It is shown that if the sequence {αn} of parameters satisfies appropriate conditions,

then the sequence {xn} generated by (1.4) converges strongly to the unique solution

of the variational inequality

〈(A− γf)x?, x− x?〉 ≥ 0, (x ∈ F (T ))

which is the optimality condition for the minimization problem

min
x∈F (T )

1

2
〈Ax, x〉 − h(x),

where h is a potential function for γf (i.e., h′(x) = γf(x), for every x ∈ H).

Also, recently Yao and Postolache [5] presented a new iterative methods for

variational inequalities and fixed point problems. In recent years, the methods

of approximating of fixed points of set-valued nonexpansive mappings have been

studied by many authors (see, for example, [6-10] and the references therein).

In this paper we introduce a new iterative process by the general viscosity

iterative method for a finite family of quasi-nonexpansive set-valued mappings. We

prove the strong convergence for the iterative process to prove the existence of a

unique solution for the variational inequality which is the optimality condition for

the minimization problem. Our results in this paper are new even for single valued

mappings and generalize and improve some results of Xu [1], and Marino, Xu [4].

We start with some preliminaries which will be needed in this paper. Through-

out the paper H will denote a real Hilbert space and C denote a nonempty closed,

convex subset of H, unless otherwise stated. We will write xn −→ x (xn ⇀ x, resp.)

if {xn} converges strongly (weakly, resp.) to x. For every element x ∈ H there exists

a unique nearest point PCx in C such that ‖x − PCx‖ ≤ ‖x − y‖, for each y ∈ C.

The metric projection PC of H onto C is a nonexpansive mapping. It is known that

H satisfies Opial’s condition, i.e., for any sequence {xn} with xn ⇀ x the inequality

lim inf
n−→∞

‖xn − x‖ < lim inf
n−→∞

‖xn − y‖

holds for every y ∈ H with y 6= x.

Lemma 1. ([4]) If x ∈ H and z ∈ C, then z = PCx if and only if 〈x− z, y− z〉 ≤ 0,

for each y ∈ C.



Minimization problem of a variational inequality on a family of set-valued mappings 101

Lemma 2. ([11]) For each x1, · · · , xm ∈ H and α1, · · · , αm ∈ [0, 1] with
∑m

i=1 αi = 1

the equality

‖α1x1 + ....+ αmxm‖2 =
m∑
i=1

αi‖xi‖2 −
∑

1≤i<j≤m
αiαj‖xi − xj‖2,

holds.

Lemma 3. ([1]) Let {γn} be a sequence in (0,1) and {δn} be a sequence in R
satisfying

(i)
∑∞

n=1 γn =∞,
(ii) lim supn−→∞ δn ≤ 0 or

∑∞
n=1 |γnδn| <∞.

If {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + γnδn,

for each n ≥ 0, then limn−→∞ an = 0.

Lemma 4. ([4]) Suppose that A is a strongly positive linear bounded operator on H

with coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1− ργ.

Lemma 5. ([12]) Let {un} be a sequence of real numbers that does not decrease at

infinity in the sense that there exists a subsequence {uni} of {un} such that uni <

uni+1 for all i ≥ 0. For every n ≥ n0, define an integer sequence {τ(n)} by

τ(n) = max{k ≤ n : uk < uk+1}.

Then τ(n) −→∞ as n −→∞ and max{uτ(n), un} ≤ uτ(n)+1, for every n ≥ n0.

A subset C ⊂ H is called proximinal if for each x ∈ H there exists an element

y ∈ C such that

‖ x− y ‖= dist(x,C) = inf{‖ x− z ‖: z ∈ C}.

We denote by CB(C),K(C) and P (C) the collection of all nonempty closed bounded

subsets, nonempty compact subsets, and nonempty proximinal bounded subsets of

C, respectively. The Hausdorff metric h on CB(H) is defined by

h(A,B) := max{sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)},

for all A,B ∈ CB(H).

For a set-valued mapping T : H −→ 2H an element x ∈ H is said to be a fixed

point of T if x ∈ Tx. The set of all fixed points of T will be denoted by F (T ).

Definition 1.1. A set-valued mapping T : H −→ CB(H) is called

(i) nonexpansive if

h(Tx, Ty) ≤ ‖x− y‖, (x, y ∈ H).

(ii) quasi-nonexpansive if F (T ) 6= ∅ and h(Tx, Tp) ≤ ‖x− p‖ for every x ∈ H and

p ∈ F (T ).
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Definition 1.2. Let T : C −→ CB(C) be a set-valued mapping. The mapping

I − T is said to be demiclosed at zero if for any sequence {xn} in C, the conditions

xn ⇀ x and limn−→∞ dist(xn, Txn) = 0, imply x ∈ Tx.

2. General iterative process

Let T : C −→ C be a quasi-nonexpansive mapping. Itoh and Takahashi [13]

showed that the set of all fixed points F (T ) is closed and convex. Now we have the

following generalization in the setting of set-valued mappings.

Lemma 6. Let T : C −→ P (C) be a set-valued mapping such that PT is quasi-

nonexpansive, where PT (x) = {y ∈ Tx : ‖x − y‖ = dist(x, Tx)}. Then F (T ) is

closed and convex.

Proof. Let {pn} be a sequence in F (T ) such that pn −→ z as n −→ ∞. Since

PT pn = {pn} and PT is quasi-nonexpansive, we have

dist(z, PT z) ≤d(z, pn) + dist(pn, PT z)

≤d(z, pn) + h(PT pn, PT z)

≤2 d(z, pn) −→ 0, n −→∞.

This implies that z is a fixed point of T . To see that why F (T ) is convex, let

x, y ∈ F (T ), α ∈ [0, 1] and z = αx + (1− α)y. Since PTx = {x} and PT y = {y}, if

w ∈ PT z, then we have

‖w − z‖2 =‖α(w − x) + (1− α)(w − y)‖2

=α‖w − x‖2 + (1− α)‖w − y‖2 − α(1− α)‖x− y‖2

=α · dist(w,PTx)2 + (1− α) · dist(w,PT y)2 − α(1− α)‖x− y‖2

≤ α · h(PT z, PTx)2 + (1− α) · h(PT z, PT y)2 − α(1− α)‖x− y‖2

≤α‖z − x‖2 + (1− α)‖z − y‖2 − α(1− α)‖x− y‖2

≤α(1− α)2‖y − x‖2 + (1− α)α2‖x− y‖2 − α(1− α)‖x− y‖2

=α(1− α)(1− α+ α− 1)‖x− y‖2 = 0.

Therefore z = w ∈ PT z ⊂ T (z) and so z ∈ F (T ). �

Lemma 7. Let T : C −→ K(C) be a set-valued mapping such that PT is nonexpan-

sive. If xn ⇀ w and limn−→∞ dist(xn, PTxn) = 0, then w ∈ Tw.

Proof. For each n ≥ 1, we can choose yn ∈ PTw such that ‖xn−yn‖ = dist(xn, PTw).

Since PTw is compact, the sequence {yn} has a convergent subsequence {ynk
} with

limk−→∞ ynk
= v ∈ PTw. Now
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‖xnk
− v‖ ≤‖xnk

− ynk
‖+ ‖ynk

− v‖

=dist(xnk
, PTw) + ‖ynk

− v‖

≤dist(xnk
, PTxnk

) + h(PTxnk
, PTw) + ‖ynk

− v‖

≤dist(xnk
, PTxnk

) + ‖xnk
− w‖+ ‖ynk

− v‖,

for each k. Therefore

lim sup
k−→∞

‖xnk
− v‖ ≤ lim sup

k−→∞
‖xnk

− w‖.

Since H satisfies the Opial property, we get w = v ∈ PTw ⊂ Tw, i.e., w ∈ F (T ). �

Now we present an example of a set-valued mapping such that PT is quasi-

nonexpansive, but T is not quasi-nonexpansive.

Example 1. Let I = [0, 1], H = L2(I), and C = {f ∈ H : f(x) ≥ 0,∀x ∈ I}. Let

T : C −→ CB(C) be defined by

T (f) = {g ∈ C : f(x) ≤ g(x) ≤ 2 f(x)}.

Then we have

PT (f) = {g ∈ T (f), ‖g − f‖2 = dist(T (f), f)} = {f}

and hence

h(PT (f1), PT (f2)) ≤ ‖f1 − f2‖2, (f1, f2 ∈ C).

Therefore PT is quasi-nonexpansive. Now putting f1 ≡ 0 and f2 ≡ 1 we have

T (f1) = 0 and T (f2) = {g ∈ C : 1 ≤ g(x) ≤ 2}. Hence

h(T0, T1) = ‖2‖2 = 2 > 1 = ‖0− 1‖2,

which shows that T is not quasi-nonexpansive.

Now we give the main result.

Theorem 2.1. Let Ti : C −→ K(C), i = 1, 2, ...,m be a finite family of set-valued

mappings such that for each 1 ≤ i ≤ m, PTi is quasi-nonexpansive and I − PTi is

demiclosed at zero. Let F =
⋂m
i=1 F (Ti) 6= ∅. Suppose that f is a contraction from

H into itself with constant b ∈ (0, 1) and A is a strongly positive bounded linear

operator on H with coefficient γ and 0 < γ < γ
b . Let {xn} be a sequence generated

by an arbitrary x0 ∈ C and{
yn = bn,0xn + bn,1zn,1 + bn,2zn,2 + ...+ bn,mzn,m,

xn+1 = anγfxn + (I − anA)yn,
(2.1)

for every n ≥ 0, where
∑m

i=0 bn,i = 1, zn,i ∈ PTi(xn) and the sequences {an} and

{bn,i} satisfy the following conditions:

(i) an ⊂ (0, 1), limn−→∞ an = 0,
∑∞

n=1 an =∞,

(ii) {bn,i} ⊂ [c, 1) ⊂ (0, 1), i = 0, 1, ...,m.
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Then, the sequence {xn} converges strongly to q ∈ F which solves the variational

inequality

〈(A− γf)q, x− q〉 ≥ 0, (x ∈ F). (2.2)

Proof. By Lemma 2.1 each F (Ti) is closed and convex, so the projection PF is well-

defined. Putting Q = PF , we show that Q(I −A+ γf) is a contraction from C into

itself. In fact, for any x, y ∈ C we have

‖Q(I −A+ γf)(x)−Q(I −A+ γf)(y)‖ ≤‖(I −A+ γf)(x)− (I −A+ γf)(y)‖

≤‖(I −A)x− (I −A)y‖+ γ‖fx− fy‖

≤ (1− γ)‖x− y‖+ γb‖x− y‖

≤ (1− (γ − γb)‖x− y‖.

So there exists a unique element q ∈ C such that q = PF (I − A + γf)q, which by

Lemma 1.1 is equivalent to

〈(I −A+ γf)q − q, q − p〉 ≥ 0 (p ∈ F).

Since limn−→∞ an = 0, we can assume that an ∈ (0, ‖A‖−1), for all n ≥ 0. By

Lemma 1.4 we have ‖I − anA‖ ≤ 1 − anγ. Now we show that {xn} is bounded.

Choose p ∈ F . Since for each 1 ≤ i ≤ m, PTi is quasi-nonexpansive we have

‖yn − p‖ =‖bn,0xn + bn,1zn,1 + bn,2zn,2 + .....+ bn,mzn,m − p‖
= bn,0‖xn − p‖+ bn,1‖zn,1 − p‖+ bn,2‖zn,2 − p‖+ ....+ bn,m‖zn,m − p‖
≤ bn,0‖xn − p‖+ bn,1 dist(zn,1, PT1p) + bn,2 dist(zn,2, PT2p) + .... (2.3)

+ bn,m dist(zn,m, PTmp)

≤ bn,0‖xn − p‖+ bn,1h(PT1xn, PT1p) + bn,2h(PT2xn, PT2p) + .... (2.4)

+ bn,mh(PTmxn, PTmp)

≤ bn,0‖xn − p‖+ bn,1‖xn − p‖+ bn,2‖xn − p‖+ ....+ bn,m‖xn − p‖
≤‖xn − p‖, (2.5)

and

‖xn+1 − p‖ =‖an(γfxn −Ap) + (I − anA)(yn − p)‖

≤an‖γfxn −Ap‖+ ‖I − anA‖‖yn − p‖

≤an‖γfxn −Ap‖+ (1− anγ)‖xn − p‖

≤anγ‖fxn − fp‖+ an‖γfp−Ap‖+ (1− anγ)‖xn − p‖

≤anγb‖xn − p‖+ an‖γfp−Ap‖+ (1− anγ)‖xn − p‖

≤ (1− an(γ − γb))‖xn − p‖+ an‖γfp−Ap‖

=(1− an(γ − γb))‖xn − p‖+ an(γ − γb)‖γfp−Ap‖γ−γb .
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It follows, by induction, that

‖xn − p‖ ≤ max{‖x0 − p‖,
‖γfp−Ap‖
γ − γb

}.

Next, we show that for i = 1, 2, ...,m, limn−→∞ dist(xn, PTixn) = 0. Indeed, using

Lemma 1.2, for p ∈ F we have

‖yn − p‖2 =‖bn,0xn + bn,1zn,1 + bn,2zn,2 + .....+ bn,mzn,m − p‖2

≤ bn,0‖xn − p‖2 + bn,1‖zn,1 − p‖2 + bn,2‖zn,2 − p‖2

+ ....+ bn,m‖zn,m − p‖2 −
∑m

i=1 bn,0bn,i‖xn − zn,i‖2

≤ bn,0‖xn − p‖2 + bn,1 dist(zn,1, PT1p)
2 + bn,2 dist(zn,2, PT2p)

2

+ ....+ bn,m dist(zn,m, PTmp)
2 −

∑m
i=1 bn,0bn,i‖xn − zn,i‖2

≤ bn,0‖xn − p‖2 + bn,1h(PT1xn, PT1p)
2 + bn,2h(PT2xn, PT2p)

2

+ ....+ bn,mh(PTmxn, PTmp)
2 −

∑m
i=1 bn,0bn,i‖xn − zn,i‖2

≤ bn,0‖xn − p‖2 + bn,1‖xn − p‖2 + bn,2‖xn − p‖2

+ ....+ bn,m‖xn − p‖2 −
∑m

i=1 bn,0bn,i‖xn − zn,i‖2

≤‖xn − p‖2 −
∑m

i=1 bn,0bn,i‖xn − zn,i‖2.

Hence for i = 1, 2, ...,m, we have

‖xn+1 − p‖2 =‖an(γfxn −Ap) + (I − anA)(yn − p)‖2

≤a2n‖γfxn −Ap‖2 + (1− anγ)2‖yn − p‖2 + 2an(1− anγ)‖γfxn −Ap‖‖yn − p‖

≤a2n‖γfxn −Ap‖2 + (1− anγ)2‖xn − p‖2 + 2an(1− anγ)‖γfxn −Ap‖‖xn − p‖

− (1− anγ)bn,0bn,i‖xn − zn,i‖2.

Therefore

(1− anγ)bn,0bn,i‖xn − zn,i‖2 ≤‖xn − p‖2 − ‖xn+1 − p‖2

+2an(1− anγ)‖γfxn −Ap‖‖xn − p‖+ a2n‖γfxn −Ap‖2.

(2.6)

In order to prove that xn −→ q as n −→∞, we consider two possible cases.

Case 1. Assume that {‖xn − q‖} is a monotone sequence. In other words,

for n0 large enough, {‖xn− q‖}n≥n0 is either nondecreasing or nonincreasing. Since

{‖xn− q‖} is bounded, it is convergent. Since limn−→∞ an = 0 and {fxn}, {xn} are

bounded, from (2.6) we have

lim
n−→∞

(1− anγ)bn,0bn,i‖xn − zn,i‖2 = 0,

and by the assumption we get

lim
n−→∞

‖xn − zn,i‖ = 0.
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Hence for i = 1, 2, ...,m, we have

lim dist(xn, PTixn) ≤ ‖xn − zn,i‖ −→ 0, n −→∞.

Next, we show that

lim supn−→∞〈(A− γf)q, q − xn〉 ≤ 0.

To show this inequality, we choose a subsequence {xni} of {xn} such that

lim
i−→∞

(〈A− γf)q, q − xni〉 = lim supn−→∞〈(A− γf)q, q − xn〉.

Since {xni} is bounded, there exists a subsequence {xnij
} of {xni} which converges

weakly to w. Without loss of generality, we can assume that xni ⇀ w. Since I−PTi
is demiclosed at zero, we have w ∈ F . Since q = PF (I − A + γf)q and w ∈ F , by

Lemma 1.1 it follows that

lim supn−→∞〈(A−γf)q, q−xn〉 = lim
i−→∞

(〈A−γf)q, q−xni〉 = (〈A−γf)q, q−w〉 ≤ 0.

From

xn+1 − q = an(γfxn −Aq) + (I − anA)(yn − q),
and (2.3), we have

‖xn+1 − q‖2 ≤‖(I − anA)(yn − q)‖2 + 2an〈γfxn −Aq, xn+1 − q〉

≤ (1− anγ)2‖xn − q‖2 + 2anγ〈fxn − fq, xn+1 − q〉+ 2an〈γfq −Aq, xn+1 − q〉

≤ (1− anγ)2‖xn − q‖2 + 2anbγ‖xn − q‖‖xn+1 − q‖+ 2an〈γfq −Aq, xn+1 − q〉

≤ (1− anγ)2‖xn − q‖2 + anbγ(‖xn − q‖2 + ‖xn+1 − q‖2) + 2an〈γfq −Aq, xn+1 − q〉

≤ ((1− anγ)2 + anbγ)‖xn − q‖2 + anγb‖xn+1 − q‖2 + 2an〈γfq −Aq, xn+1 − q〉.

This implies that

‖xn+1 − q‖2 ≤ 1−2anγ+(anγ)2+anγb
1−anγb ‖xn − q‖2 + 2an

1−anγb〈γfq −Aq, xn+1 − q〉

=(1− 2(γ−γb)an
1−anγb )‖xn − q‖2 + (anγ)2

1−anγb‖xn − q‖
2 + 2an

1−anγb〈γfq −Aq, xn+1 − q〉

≤ (1− 2(γ−γb)an
1−anγb )‖xn − q‖2 + 2(γ−γb)an

1−anγb ( (anγ
2)M

2(γ−γb) + 1
γ−γb)〈γfq −Aq, xn+1 − q〉)

=(1− γn)‖xn − q‖2 + γnδn,

where

M = sup{‖xn − q‖2 : n ≥ 0}, γn =
2(γ − γb)an

1− anγb
,

and

δn =
(anγ

2)M

2(γ − γb)
+

1

γ − γb
〈γfq −Aq, xn+1 − q〉.

It is easily seen that γn −→ 0,
∑∞

n=1 γn = ∞ and lim supn−→∞ δn ≤ 0. Hence, by

Lemma 1.3 the sequence {xn} converges strongly to q.
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Case 2. Assume that {‖xn − q‖} is not a monotone sequence. Then, we can

define an integer sequence {τ(n)} for all n ≥ n0 (for some n0 large enough) by

τ(n) = max{k ∈ N; k ≤ n : ‖xk − q‖ < ‖xk+1 − q‖}.

Clearly, τ is a nondecreasing sequence such that τ(n) −→∞ as n −→∞ and for all

n ≥ n0,
‖xτ(n) − q‖ < ‖xτ(n)+1 − q‖.

From (2.6) we obtain that

lim
n−→∞

‖xτ(n) − zτ(n),i‖ = 0.

Following an argument similar to that in Case 1 we have

lim sup
n−→∞

〈f(q)− q, xτ(n)+1 − q〉 ≤ 0.

And by similar argument we have

‖xτ(n)+1 − q‖2 ≤ (1− ητ(n))‖xτ(n) − q‖2 + ητ(n)δτ(n),

where ητ(n) −→ 0,
∑∞

n=1 ητ(n) = ∞ and lim supn−→∞ δτ(n) ≤ 0. Hence, by Lemma

1.3, we obtain limn−→∞ ‖xτ(n)−q‖ = 0 and limn−→∞ ‖xτ(n)+1−q‖ = 0. Now Lemma

1.5 implies

0 ≤ ‖xn − q‖ ≤ max{‖xτ(n) − q‖, ‖xn − q‖} ≤ ‖xτ(n)+1 − q‖.

Therefore {xn} converges strongly to q = PF (I −A+ γf)q. �

A mapping T : C −→ CB(C) is ?-nonexpansive [14] if for every x, y ∈ C

and ux ∈ Tx with d(x, ux) = inf{d(x, z) : z ∈ Tx}, there exists uy ∈ Ty with

d(y, uy) = inf{d(y, w) : w ∈ Ty} such that

d(ux, uy) ≤ d(x, y).

It is not hard to see that if T is ?-nonexpansive, then PT is nonexpansive. It should

be mentioned that the ?-nonexpansiveness is different from the nonexpansiveness

for set-valued mappings, (see [15, 16, 17] for details).

Corollary 1. Let Ti : C −→ K(C), i = 1, 2, ...,m, be a finite family of ?-nonexpansive

set-valued mappings. Let F =
⋂m
i=1 F (Ti) 6= ∅. Assume that f is a contraction from

H into itself with constant b ∈ (0, 1) and A is a strongly positive bounded linear

operator on H with coefficient γ and 0 < γ < γ
b . Let {xn} be a sequence generated

by an arbitrary element x0 ∈ C and{
yn = bn,0xn + bn,1zn,1 + bn,2zn,2 + ...+ bn,mzn,m,

xn+1 = anγfxn + (I − anA)yn,

for all n ≥ 0, where
∑m

i=0 bn,i = 1, zn,i ∈ PTi(xn) and {an}, {bn,i} satisfy the

following conditions:

(i) an ⊂ (0, 1), limn−→∞ an = 0,
∑∞

n=1 an =∞,

(ii) {bn,i} ⊂ [c, 1) ⊂ (0, 1), i = 0, 1, ...,m.
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Then, the sequence {xn} converges strongly to q ∈ F which solves the variational

inequality (2.2).

Proof. Since each Ti is ?-nonexpansive, so PTi is nonexpansive, for every i, 1 ≤ i ≤
m. By Lemma 2.2, each mapping I − PTi is demiclosed at zero. Now by using

Theorem 2.4, we easily obtain the desired result. �

In Theorem 2.4, if we assume that each Ti, for i = 1, 2, ...,m is single-valued

and put γ = 1, A = I, we obtain the following corollary.

Corollary 2. Let Ti : C −→ C, i = 1, 2, ...,m, be a finite family of quasi-nonexpansive

mappings such that each I − Ti is demiclosed at zero. Let F =
⋂m
i=1 F (Ti) 6= ∅. As-

sume that f is a contraction from H into itself with constant b ∈ (0, 1). Let {xn} be

a sequence generated by an arbitrary element x0 ∈ C and{
yn = bn,0xn + bn,1T1xn + bn,2T2xn + ...+ bn,mTmxn,

xn+1 = anfxn + (1− an)yn,

for all n ≥ 0, where
∑m

i=0 bn,i = 1, and {an}, {bn,i} satisfy the following conditions:

(i) an ⊂ (0, 1), limn−→∞ an = 0,
∑∞

n=1 an =∞,

(ii) {bn,i} ⊂ [c, 1) ⊂ (0, 1), i = 0, 1, ...,m.

Then, the sequence {xn} converges strongly to q ∈ F which solves the variational

inequality:

〈q − fq, x− q〉 ≥ 0, (x ∈ F).

Remark 2.2. All the results above hold, if we assume that T is quasi-nonexpansive

and for all p ∈ F (T ), T (p) = {p}.

2.1. Application

Recently, Kohsaka and Takahashi [18, 19] introduced an important class of

mappings which they called the class of nonspreading mappings. More precisely, a

mapping T : C −→ C is called nonspreading if

2 ‖Tx− Ty‖2 ≤ ‖Tx− y‖2 + ‖Ty − x‖2, (x, y ∈ C).

Note that if T is nonespreading and F (T ) 6= ∅, then T is quasi-nonexpansive and

I − T is demiclosed at zero (see [20] for details). Recently, Iemoto and Takahashi

[20] obtained some fundamental properties for nonspreading mappings in Hilbert

spaces. Now, as a conclusion of Theorem 2.4, we give the following corollary for a

finite family of nonspreading mappings and a finite family of nonexpansive mappings.

Corollary 3. Let Ti : C −→ C, i = 1, 2, ...,m, be a finite family of nonexpansive

mappings and Si : C −→ C, i = 1, 2, ...,m, be a finite family of nonspreading

mappings such that F =
⋂m
i=1(F (Ti)

⋂
F (Si)) 6= ∅. Assume that f is a contraction

from H into itself with constant b ∈ (0, 1) and A is a strongly positive bounded linear
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operator on H with coefficient γ and 0 < γ < γ
b . Let {xn} be a sequence generated

by an arbitrary element x0 ∈ C and{
yn = αnxn +

∑m
i=1 βn,iTixn +

∑m
i=1 γn,iSixn,

xn+1 = anγfxn + (I − anA)yn,

for all n ≥ 0, where αn +
∑m

i=1 βn,i +
∑m

i=1 γn,i = 1, and {an}, {αn}, {βn,i} and

{γn,i} satisfy the following conditions:

(i) an ⊂ (0, 1), limn−→∞ an = 0,
∑∞

n=1 an =∞,

(ii) {αn}, {βn,i}, {γn,i} ⊂ [c, 1) ⊂ (0, 1) for i = 1, 2, ...,m.

Then, the sequence {xn} converges strongly to q ∈ F which solves the variational

inequality (2.2).

Now, we supply an example to illustrate the main result of this paper.

Example 2. We consider the nonempty closed convex subset C = [0, 3] of the

Hilbert space R. Define multivalued mappings T1, T2 : C −→ K(C) as follows:

T1(x) = [
x

5
,
x

2
], T2(x) = [

x

3
, x].

Observe that

PT1(x) = {x
2
}, PT2(x) = {x}.

Hence PT1 and PT2 are nonexpansive mappings. Define the contractive mapping

f(x) = 2x
3 . Also we define operator A(x) = x

3 . We see that A is a strongly positive

bounded linear operator on H with coefficient 1
3 . We choose γ = 1

3 , bn,i = 1
3 , (i =

1, 2, 3) and an = 1
n . Now, we have the following algorithm:

x1 ∈ C
yn = 5xn

6 ,

xn+1 = 2xn
9n + (3n−1)

3n yn : ∀n ≥ 1.

Hence we have

xn+1 =
2xn
9n

+
(3n− 1)

3n

5xn
6

=
(15n− 1)

18n
xn.

We observe that for an arbitrary x1 ∈ C, xn is convergent to zero. We note that

F = F (T1)
⋂
F (T2) = {0}.
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