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RELIABILITY LOGISTIC FUNCTION COMPARED TO
OTHER RELIABILITY FUNCTIONS

Cristian Ghiu1, Florian Ghionea2, Aura Ruscă3, Constantin Udrişte4

Our main results include: (i) the introduction and study of the reli-
ability logistic function, (ii) the relation with the dilogarithm function, (iii)
the finding of parameters b and c according to the mean and the standard
deviation, and (iv) comparison between logistic distribution and other well-
known distributions.
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1. Reliability logistic function

The reliability or survival function is the complement of the cumulative
distribution function [1]-[7].

From the authors’ point of view, the origins of reliability functions are
some engineering problems and their theory is made by mathematicians ac-
cording to the truism: “the mathematician makes what he can do - how he
must do, meanwhile the engineer does what must be done - how he can done”.
In this context, we introduce and study a new reliability function, conceived by
two mathematicians and two engineers, namely the reliability logistic function.

1.1. General statements

At the beginning of the activity of any “enterprise”, the initiating action
is made beginning with a certain level of achievements. The first period of
the enterprise activity may be characterized by slow development, but after a
certain period of time, the activity will intensify. However to the intensification
of the enterprise activity, subsequent in time, a more and more consistent
resistance will be opposed. If the analyzed term is denoted by y, its growth
rate in time is dy/dt which is proportional to y and also to the “distance”
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towards the level of saturation a. Taking into consideration a proportionality
factor c/a, the described mathematical model is given by the ODE

dy

dt
=
c

a
y(a− y).

The nonzero solutions of this ODE
y(t) =

a

1 + be−ct
,

are called logistic functions.
Modifying this function properly, it can relatively easily become a prob-

ability repartition function
(
with the codomain [0; 1)

)
. For b > −1 and c > 0

one obtains:

• Logistic distribution function

U(t) =


1− e−ct

1 + be−ct
if t ≥ 0

0 if t < 0.
(1)

• Reliability logistic function

R(t) = 1− U(t) =


1 + b

b+ ect
if t ≥ 0

1 if t < 0.
• Probability density function

u(t) =


1 + b

(b+ ect)2
cect if t ≥ 0

0 if t < 0.
• Mean time between failures

θ =


1 + b

bc
ln(1 + b) if b 6= 0

1

c
if b = 0.

(2)

One has lim
b→0

1 + b

bc
ln(1 + b) =

1

c
.

• The standard deviation: σ2 =

∞∫
0

t2u(t) dt− θ2.

1.2. Evaluation of standard deviation

To evaluate the standard deviation, we follow the next steps.
Step 1. For b 6= 0, we have

σ2 = 2(1 + b)

∞∫
0

t

b+ ect
dt− θ2 =

2(1 + b)

bc

∞∫
0

t bce−ct

1 + be−ct
dt− θ2

= −2(1 + b)

bc
t ln(1 + be−ct)

∣∣∣∣∣
∞

0

+
2(1 + b)

bc

∞∫
0

ln(1 + be−ct) dt− θ2.

By changing the variable x = be−ct, one obtains

σ2 =
2(1 + b)

bc2

b∫
0

ln(1 + x)

x
dx− θ2. (3)
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Step 2. For b = 0, we find σ2 = 2

∞∫
0

te−ct dt− θ2 =
2

c2
Γ(2)− 1

c2
=

1

c2
.

lim
b→0

(2(1 + b)

bc2

b∫
0

ln(1 + x)

x
dx− θ2

)
=

2

c2
lim
b→0

ln(1 + b)

b
− 1

c2
=

1

c2
.

It follows that formula (3) is also true for b = 0, extending by continuity
the function from the right side (with respect to the variable b).

To discuss further, we consider the function

ψ : (−1,∞)→ R, ψ(x) =

x∫
0

ln(1 + t)

t
dt, ∀x > −1.

For any x ∈ (−1, 1], the function ψ(x) admits the development

ψ(x) =
∞∑
n=1

(−1)n−1
xn

n2
. (4)

It follows that ψ(1) =
∞∑
n=1

(−1)n−1

n2
=
π2

12
and lim

x→−1
x>−1

ψ(x) = −π
2

6
.

To write the function ψ in another way, we use the dilogarithm functions

Li2 : (−∞, 1)→ R, Li2(y) = −
y∫

0

ln(1− t)
t

dt, ∀y < 1;

dilog : (0,∞)→ R, dilog y =

y∫
1

ln t

1− t
dt, ∀y > 0.

The function ψ can be expressed by using the functions Li2 or dilog as
follows

ψ(x) =

x∫
0

ln(1 + t)

t
dt = −Li2(−x) = −dilog (1 + x), ∀x > −1.

Now we come back to the properties of the functions U and R.

Proposition 1.1. i) For b ≤ 1, the function U is strictly concave on the
interval [0,∞) and R is strictly convex on the interval [0,∞).

ii) For b > 1, the point t0 =
ln b

c
(> 0) represents the inflection point

of the functions U and R. In this case, U is strictly convex on the interval
[0, t0] and strictly concave on the interval [t0,∞); R is strictly concave on the
interval [0, t0] and strictly convex on the interval [t0,∞).

Proof. The statements follow immediately, observing that

U ′′(t) = −R′′(t) =
(1 + b)c2ect

(b+ ect)3
(b− ect), ∀t > 0. �
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2. Finding parameters b and c according to
the mean and standard deviation

For any x > −1, x 6= 0, we have ψ′(x) =
ln(1 + x)

x
and ψ′(0) = 1. It can

easily be noted that ψ′(x) > 0, ∀x > −1.

From the relation (2) we deduce that θ =
1 + b

c
ψ′(b); since b > −1 and

c > 0, it follows that θ > 0. Being given θ > 0 and σ > 0, we want to
determine the parameters b > −1 and c > 0 for which the relations (2) and
(3) are fulfilled, namely 

1 + b

c
ψ′(b) = θ

2(1 + b)

bc2
ψ(b)− θ2 = σ2.

(5)

The left sides of the expressions (5) are consider being extended by continuity
in 0 (with respect to the variable b); hence, for b = 0 the two equalities from

(5) become
1

c
= θ,

2

c2
− θ2 = σ2.

The system (5) is equivalent to
c =

1 + b

θ
ψ′(b)

2

b(1 + b)

ψ(b)

(ψ′(b))2
− 1 =

σ2

θ2

(6)

(similar remark for the case b = 0).
The next result can be proven without difficulty.

Lemma 2.1. a) For any y > 0, y 6= 1, ln y < y − 1.
b) The next inequalities are satisfied

i) ∀y > 1, ln y <
y2 − 1

2y
; ii) ∀y ∈ (0, 1), ln y >

y2 − 1

2y
.

c) For any x > −1, x 6= 0, xψ′(x) >
x

1 + x
.

d) For any x > −1, x 6= 0, ψ′(x) <
1√

1 + x
≤ x+ 2

2(x+ 1)
.

e) For any x > −1, x 6= 0,

ψ′′(x) =
1

x

( 1

1 + x
− ψ′(x)

)
. (7)

f) For any x > −1, we deduce ψ′′(x) < 0 and ψ′′(0) = −1

2
. Therefore, the

function ψ′ is strictly decreasing, and the function ψ is strictly concave.

lim
x→0

( 2

x(1 + x)

ψ(x)

(ψ′(x))2
− 1
)

=
2

(ψ′(0))2
lim
x→0

ψ(x)

x
− 1 = 2ψ′(0)− 1 = 1. (8)

We define the function
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f : (−1,∞)→ R, f(x) =
2

x(1 + x)

ψ(x)

(ψ′(x))2
− 1, ∀x > −1, x 6= 0;

and f(0) = 1. From (8) it follows that f is continuous (it is even of class C∞).

Lemma 2.2. a) For any x > −1, we have f ′(x) < 0.
b) lim

x→−1
x>−1

f(x) =∞ and lim
x→∞

f(x) = 0.

c) The image of the function f is the interval (0,∞).

Proof. Let v1 : (−1,∞)→ R, v1(x) = 2ψ(x)− x(1 + x)(ψ′(x))2, ∀x > −1.
v′1(x) = 2ψ′(x)− (1 + 2x)(ψ′(x))2 − 2x(1 + x)ψ′(x)ψ′′(x), (∀x > −1).
We use the equality (7) and it follows that for any x > −1, x 6= 0, we

have: v′1(x) = ψ′(x)
(
2 − (1 + 2x)ψ′(x) − 2 + 2(1 + x)ψ′(x)

)
= (ψ′(x))2; and

for x = 0, v′1(0) = 2ψ′(0)− (ψ′(0))2 = 1 = (ψ′(0))2. Consequently
v′1(x) = (ψ′(x))2 > 0, ∀x > −1.

Therefore v1 is strictly increasing; for x > 0 =⇒ v1(x) > g(0) = 0; for
−1 < x < 0 =⇒ v1(x) < g(0) = 0.

We have f(x) =
v1(x)

2ψ(x)− v1(x)
, ∀x > −1, x 6= 0; and

f ′(x) =
2(ψ′(x))2(

2ψ(x)− v1(x)
)2 (ψ(x)− v1(x)

ψ′(x)

)
, ∀x > −1, x 6= 0. (9)

Also lim
x→0

f ′(x) = −1

2
. Therefore f ′(0) = −1

2
.

Let v2 : (−1,∞)→ R, v2(x) = ψ(x)− v1(x)

ψ′(x)
, ∀x > −1.

v′2(x) = ψ′(x) +
v1(x)

(ψ′(x))2
ψ′′(x)− v′1(x)

ψ′(x)
=
v1(x)ψ′′(x)

(ψ′(x))2
.

Since ∀x ∈ (−1, 0), v1(x) < 0; ∀x > 0, v1(x) > 0; ∀x > −1, ψ′′(x) < 0,
one gets: ∀x ∈ (−1, 0), v′2(x) > 0; ∀x > 0, v′2(x) < 0. One obtains that v2
is strictly increasing on the interval (−1, 0] and it is strictly decreasing on the
interval [0,∞).

For −1 < x < 0 =⇒ v2(x) < v2(0) = 0; for x > 0 =⇒ v2(x) < v2(0) = 0.
Therefore for any x ∈ (−1,∞), we have v2(x) < 0. From relation (9) it

follows that for any x > −1, x 6= 0, we have f ′(x) < 0. We deduce that f is a
strictly decreasing function.

We have lim
x→−1
x>−1

f(x) =∞ and lim
x→∞

f(x) = 0. Since f is a continuous and

strictly decreasing function, it follows that the image of the function f is the
interval (0,∞). �

Proposition 2.1. Let g : (−1,∞)→ (0,∞) be the function

g(x) = (1 + x)ψ′(x) =


(1 + x) ln(1 + x)

x
if x > −1, x 6= 0;

1 if x = 0.

(10)
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a) For any x ∈ (−1, 1], g(x) = 1 +
∞∑
n=1

(−1)n−1

n(n+ 1)
xn.

b) For any x > −1, g(x) = ψ′
( −x

1 + x

)
.

c) For any x ≥ −1

2
, g(x) =

∞∑
n=0

xn

(1 + n)(1 + x)n
.

d) For any x > −1, x 6= 0, g(x) <
√

1 + x ≤ 1 +
x

2
.

e) For each x ∈ (−1, 0), g(x) > 1 + x.

f) For any x > −1, g′(x) > 0, g′′(x) < 0. Therefore the function g is
strictly increasing and strictly concave. The function g is bijective.

g) For any x > −1, g′′(x) + (g′(x))2 < 0.

Proof. a) The statement follows easily using the equality

ln(1 + y) =
∞∑
n=1

(−1)n−1
yn

n
, ∀y ∈ (−1, 1]. (11)

b) One has ∀x > −1 =⇒ −x
1 + x

> −1. The respective equality is obtained

by direct calculation.

c) If x ≥ −1

2
then

−x
1 + x

∈ (−1, 1]. Further one uses the step b) and the

conclusion is obtained by replacing y =
−x

1 + x
in the equality (11).

d) The statement follows immediately from Lemma 2.1, d).
e) If x ∈ (−1, 0), then ψ′(x) > ψ′(0) = 1, equivalent to g(x) > 1 + x.

f) and g): Using the equality (11) it follows that: g′(0) =
1

2
and g′′(0) =

−1

3
. By direct calculation one obtains

g′(x) =
x− ln(1 + x)

x2
=

1 + x− g(x)

x(1 + x)
, ∀x > −1, x 6= 0. (12)

From Lemma 2.1, a), it follows that g′(x) > 0 (x > −1, x 6= 0).
The relation (12) is equivalent to x(1 + x)g′(x) = 1 + x− g(x). We take

the derivative and obtain: x(1 + x)g′′(x) + (2x+ 1)g′(x) = 1− g′(x) or
x(1 + x)g′′(x) = 1− 2(x+ 1)g′(x); we use (12) and obtain

g′′(x) =
2g(x)− 2− x

(1 + x)x2
, ∀x > −1, x 6= 0. (13)

Since g(x) > 0, lim
x→−1

g(x) = 0, lim
x→∞

g(x) = ∞, and g is a continuous

function it follows that the image of the function g is the interval (0,∞).
Therefore the function g is surjective.

The function g is strictly increasing (∀x > −1, g′(x) > 0), therefore the
function g is injective.
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Let x > −1, x 6= 0. Using (12) and (13) we deduce

g′′(x) + (g′(x))2 =
(g(x))2 − (1 + x)

x2(1 + x)2
< 0

(
step d)

)
.

For x = 0: g′′(0) + (g′(0))2 = −1

3
+

1

4
= − 1

12
< 0.

From g′′(x) + (g′(x))2 < 0 it follows that g′′(x) < 0. �

Theorem 2.1. Let f : (−1,∞)→ (0,∞) be the function

f(x) =


2x

(1 + x)
(

ln(1 + x)
)2

x∫
0

ln(1 + t)

t
dt− 1 if x 6= 0;

1 if x = 0.

(14)

Let g : (−1,∞)→ (0,∞) be the function which is defined by (10).
a) The function f is well defined, strictly decreasing, bijective and continuous
(it is even of the class C∞).

b) Let be y0 =
π2

12(ln 2)2
− 1 = 0.7118573712... . We have f−1(y0) = 1.

The following statements are fulfilled: if y ∈ (1,∞), then f−1(y) ∈
(−1, 0); if y ∈ (0, 1), then f−1(y) ∈ (0,∞); if y ∈ (0, y0), then f−1(y) ∈ (1,∞);
if y ∈ (y0, 1), then f−1(y) ∈ (0, 1).
c) For any θ > 0 and σ > 0, the parameters b > −1 and c > 0 exist and are
unique such that, the relations (2) and (3) are fulfilled (i.e., the relations (5)
hold). These parameters are

b = f−1
(σ2

θ2

)
; c =

g(b)

θ
=

1

θ
g
(
f−1
(σ2

θ2

))
. (15)

The necessary and sufficient condition for b to be strictly positive is σ < θ.
The necessary and sufficient condition for b to be zero is σ = θ. In this case

one obtains the exponential distribution with the parameter c =
1

θ
. Therefore

the exponential distribution is a particular case of logistic distribution.
The necessary and sufficient condition for b = 1 is σ = θ

√
y0. In this

case we have c =
2 ln 2

θ

(√
y0 = 0.8437164045...

)
.

Proof. a) From Lemma 2.2, c), it follows that the function f : (−1,∞) →
(0,∞), defined by the relation (14), is well defined and surjective.

From Lemma 2.2, a), it follows that f is strictly decreasing; therefore the
function f is injective.

b) The image of the function f−1 is the interval (−1,∞). Therefore ∀y >

0 ⇒ f−1(y) > −1. On the other hand, f(1) =
ψ(1)

(ln 2)2
−1; since ψ(1) =

π2

12
, we

deduce that f(1) = y0, f
−1(y0) = 1. From f(0) = 1 it follows that f−1(1) = 0.

Since f is strictly decreasing, it follows that also f−1 is strictly decreasing.
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If y > 1, then f−1(y) < f−1(1) = 0; if y < 1, then f−1(y) > f−1(1) = 0;
if y < y0, then f−1(y) > f−1(y0) = 1; if y0 < y < 1, then 1 = f−1(y0) >
f−1(y) > f−1(1) = 0.

c) The equations of the system (6) are written as f(b) =
σ2

θ2
, c =

g(b)

θ
.

They are equivalent to the relations (15). It can be noted that c is really
strictly positive, because g(b) > 0.

The other statements are immediately checked. �

Remark 2.1. We conclude that for the determination of b, one needs to know

only the ratio
σ

θ
.

Remark 2.2. Let be b > 1. According to Proposition 1.1, t0 =
ln b

c
is the only

inflection point of the functions U and R in the interval (0,∞).
Taking into account the relations (15), (10) it follows that

t0 = θ
b ln b

(b+ 1) ln(b+ 1)
.

The inflection point t0 is strictly smaller than θ and lim
b→∞

t0(b) = θ.

According to relation (15), to determine the parameter b we have to know
the values of the function f−1.

3. Comparison between the logistic distribution and
the exponential distribution

Let X1, X2 be two random variables, with the distribution functions F1,
respectively F2, and reliability functions R1, respectively R2. The inequality
F1(t) ≤ F2(t), t ∈ I, is equivalent to R1(t) ≥ R2(t), t ∈ I.

Definition 3.1. The random variable X1 is called better than X2 on the in-
terval I, if R1(t) ≥ R2(t), ∀t ∈ I.

We consider, the exponential and logistic distributions, both, with the

same average θ > 0. The logistic distribution function is (1), with c =
g(b)

θ
;

and for exponential distribution we have the following distribution function

F (t) =

{
1− e−λt if t ≥ 0;

0 if t < 0,
with λ =

1

θ
.

In the above conditions, the following result is obtained.

Proposition 3.1. i) If b ∈ (−1, 0), then, ∀t ∈ (0, θ], we have F (t) < U(t).
Hence, the exponential repartition is better than the logistic repartition, on
(−∞, θ].

ii) If b > 0, then, for any t ∈ (0, θ], one gets U(t) < F (t). Hence, the
logistic repartition is better than the exponential repartition, on (−∞, θ].

iii) If b = 0, then, ∀t ∈ R, we have U(t) = F (t).

Proof. If b = 0 then it is obvious that U(t) = F (t).
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If b ∈ (−1, 0), then g(b) < g(0) = 1. From Proposition 2.1, we obtain

g(b) > 1 + b. It follows that b < g(b)− 1 < 0 and
b

g(b)− 1
> 1.

If b > 0, then g(b) > g(0) = 1. From Proposition 2.1, we deduce g(b) <
√

1 + b ≤ 1 + b. This implies 0 < g(b)− 1 < b and
b

g(b)− 1
> 1.

We have showed that
b

g(b)− 1
> 1, ∀b ∈ (−1, 0) ∪ (0,∞). From the

above, it follows that to get the results i) and ii) it is sufficient to show that:

∀b ∈ (−1, 0) ∪ (0,∞) and ∀t ∈ (0, θ],
U(t)− F (t)

g(b)− 1
< 0.

Let v : [0,∞)→ R, v(t) =
eλ(g(b)−1)t + b(e−λt − 1)− 1

g(b)− 1
, ∀t ≥ 0;

v′(t) =
λ(g(b)− 1)eλ(g(b)−1)t − λbe−λt

g(b)− 1
= λe−λt

(
eλg(b)t − b

g(b)− 1

)
.

Let t1 =
θ

g(b)
ln
( b

g(b)− 1

)
. Since

b

g(b)− 1
> 1, we deduce t1 > 0. One

observes that eλg(b)t1 =
b

g(b)− 1
; hence v′(t1) = 0.

If t ∈ [0, t1), then v′(t) < 0, and hence the function v is strictly decreasing
on [0, t1]. It follows that, for any t ∈ (0, t1], we have v(t) < v(0) = 0.

We have shown that v is strictly negative on the interval (0, t1]. Partic-
ularly, v(t1) < 0.

If t ≥ t1, then v′(t) > 0, hence v is strictly increasing on [t1,∞); if

b ∈ (−1, 0), then g(b) − 1 < 0 and lim
t→∞

v(t) =
−(b+ 1)

g(b)− 1
> 0; if b > 0, then

g(b) − 1 > 0 and lim
t→∞

v(t) = ∞. Hence, for any b > −1, b 6= 0, we have

lim
t→∞

v(t) > 0. Since v(t1) < 0, we deduce that there exists t2 ∈ (t1,∞), such

that v(t2) = 0. This t2 is the only number in (t1,∞) where v vanishes, since
v is strictly increasing (hence injective) on this interval. In fact, t2 is the only
number in (0,∞) where v vanishes, since v is strictly negative on (0, t1].

Hence, on each of the intervals (0, t2), (t2,∞), the function v has constant
sign. Since t1 ∈ (0, t2), v(t1) < 0, and lim

t→∞
v(t) > 0, it follows that: ∀t ∈ (0, t2),

v(t) < 0; and ∀t ∈ (t2,∞), v(t) > 0.
We shall show that θ < t2, hence (0, θ] ⊆ (0, t2); from the above discus-

sion it follows that: ∀t ∈ (0, θ], v(t) < 0; equivalent to
U(t)− F (t)

g(b)− 1
< 0.

The inequality θ < t2 is equivalent to v(θ) < 0, i.e.,

eg(b) + b(1− e)− e > 0 if b ∈ (−1, 0) (16)
eg(b) + b(1− e)− e < 0 if b > 0. (17)

Let v1 : (−1,∞)→ R, v1(x) = eg(x) + x(1− e)− e, ∀x > −1;
v′1(x) = g′(x)eg(x) + 1− e;



24 Cristian Ghiu, Florian Ghionea, Aura Ruscă, Constantin Udrişte

v′′1(x) = g′′(x)eg(x) +
(
g′(x)

)2
eg(x) =

(
g′′(x) + (g′(x))2

)
eg(x).

From Proposition 2.1, it follows that v′′1 is strictly negative, hence v′1 is

strictly decreasing. Since lim
x→−1
x>−1

v′1(x) =∞ and v′1(0) =
2− e

2
< 0, there exists

b0 ∈ (−1, 0), such that v′1(b0) = 0.
If −1 < x < b0, then v′1(x) > v′1(b0) = 0. If x > b0, then v′1(x) <

v′1(b0) = 0. Hence the function v1 is strictly increasing on (−1, b0] and strictly
decreasing on [b0,∞).

If x ∈ (−1, b0], then v1(x) > lim
y→−1
y>−1

v1(y) = 0. Particularly, v1(b0) > 0.

We have v1(0) = 0; 0 is the only point in [b0,∞) where v1 vanishes, since
v1 is strictly decreasing (injective) on [b0,∞). Hence v1 has constant sign on
each of the intervals [b0, 0) and (0,∞).

Since v1(b0) > 0, we deduce that v1 is strictly positive on [b0, 0).
We have proved that v1 is strictly positive on (−1, 0), i.e., (16).
Due to lim

x→∞
v1(x) = −∞, it follows that v1 is strictly negative on (0,∞),

i.e., (17). �
4. Comparison between the logistic distribution and

the Weibull distribution

Consider a random variable with Weibull distribution; the repartition
function is

Fβ,λ(t) =

{
1− e−λtβ if t ≥ 0

0 if t < 0,
(18)

with λ > 0, β > 0, β 6= 1 (for β = 1 one obtains the exponential repartition).
Proposition 4.1. i) If β ∈ (0, 1), then there exists q > 0, such that, for any
t ∈ (0, q), we have U(t) < Fβ,λ(t). Consequently the logistic repartition is
better than Weibull repartition on (−∞, q).

ii) If β > 1, then there exists q > 0, such that, for any t ∈ (0, q), we have
Fβ,λ(t) < U(t). Hence the Weibull repartition is better than logistic repartition
on (−∞, q).

Proof. Let w : [0,∞)→ R, w(t) = ect−λt
β

+ be−λt
β − b− 1,

w′(t) =
(
c− λβtβ−1

)
ect−λt

β − bλβtβ−1e−λtβ , ∀t > 0.

i) β ∈ (0, 1). We have t1−βw′(t) =
(
ct1−β − λβ

)
ect−λt

β − bλβe−λtβ and

lim
t→0
t>0

t1−βw′(t) = −λβ(1 + b) < 0; it follows that there exists q > 0 such

that, ∀t ∈ (0, q) we have w′(t) < 0, hence w is strictly decreasing on [0, q).
For any t ∈ (0, q), w(t) < w(0) = 0. It is easily seen that inequality

w(t) < 0 is equivalent to U(t) < Fβ,λ(t).
ii) We have lim

t→0
t>0

w′(t) = c > 0; it follows that there exists q > 0 such

that, ∀t ∈ (0, q), we have w′(t) > 0, hence w is strictly increasing on [0, q).
For any t ∈ (0, q), w(t) > w(0) = 0. It follows that Fβ,λ(t) < U(t). �
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Further, we study what is equivalent to condition β ∈ (0, 1).

Let θ̃, σ̃2 be the mean and dispersion of the random variable which has

the Weibull repartition, i.e., θ̃ = ηΓ
( 1

β
+ 1
)

, σ̃2 = η2Γ
( 2

β
+ 1
)
− θ̃ 2, where

η =
1

λ
1
β

. It follows that:
σ̃2

θ̃ 2
+ 1 = Γ

( 2

β
+ 1
)(

Γ
( 1

β
+ 1
))−2

.

We introduce three functions w1, w2, w3 : (0,∞)→ R,

w1(x) = ln Γ(x), w2(x) =
Γ(2x+ 1)(
Γ(x+ 1)

)2 , w3(x) = lnw2(x).

For any x > 0, we have w′3(x) = 2w′1(2x + 1) − 2w′1(x + 1). According
to Lagrange Theorem it follows that there exists ξ ∈ (x+ 1, 2x+ 1), such that
w′3(x) = 2xw′′1(ξ). One knows that w′′1(y) > 0 (∀y > 0). We obtain w′3(x) > 0,
hence w3 is strictly increasing, equivalent to w2 is strictly increasing. The

inequality β < 1 is equivalent to w2

( 1

β

)
> w2(1) or

σ̃2

θ̃ 2
+ 1 > 2, i.e., σ̃ > θ̃.

Furthermore we assume that repartitions considered above have the same
mean and the same dispersion, i.e., θ̃ = θ and σ̃ = σ. From Theorem 2.1, it
follows that σ > θ is equivalent to b ∈ (−1, 0).

One obtains the following result.
Proposition 4.2. Suppose that the logistic and Weibull repartitions have the
same mean θ and the same dispersion σ2, the repartition functions being (1)
and (18) (with λ > 0, β > 0, β 6= 1).

The following statements are equivalent.
i) β ∈ (0, 1) (respectively β > 1).
ii) b ∈ (−1, 0) (respectively b > 0).
iii) σ > θ (respectively σ < θ).
iv) There exists q > 0, such that, for any t ∈ (0, q), we have

U(t) < Fβ,λ(t)
(
respectively Fβ,λ(t) < U(t)

)
.

5. Comparison between the logistic distribution and
the uniform distribution

We consider a logistic repartition, with c =
g(b)

θ
, and a uniform repar-

tition on the interval [0, 2θ]. Both have the same mean θ > 0. The logistic
repartition is (1); the uniform repartition, on the interval [0, 2θ], has the for-

mula: V (t) =


0 if t < 0;
t

2θ
if t ∈ [0, 2θ];

1 if t > 2θ.

Lemma 5.1. There exists a unique solution b0 of the equation ψ′(x) =
1

2
.

This solution b0 belongs to the interval (2, 3).

Proof. According to Lemma 2.1, ψ′(3) <
1√

1 + 3
=

1

2
; ψ′(2) =

ln 3

2
>

1

2
.

Hence there exists b0 ∈ (2, 3), such that ψ′(b0) =
1

2
. The solution is

unique since the function ψ′ is strictly decreasing. �
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Proposition 5.1. Let b0 be the solution of the equation ψ′(x) =
1

2
.

i) If b > b0, then there exists q > 0, such that, for any t ∈ (0, q), we have
U(t) < V (t). Hence, on the interval (−∞, q), the logistic repartition is better
than the uniform repartition.

ii) If b ∈ (−1, b0], then there exists q > 0, such that, for any t ∈ (0, q),
we have V (t) < U(t). Hence, on the interval (−∞, q), the uniform repartition
is better than the logistic repartition.

Proof. Let h : [0, 2θ] → R, h(t) = U(t) − t

2θ
, ∀t ∈ [0, 2θ]. For any t > 0, we

get h′(t) = u(t)− 1

2θ
=

1 + b

(b+ ect)2
cect − 1

2θ
. Hence h′(0) =

1

θ

(
ψ′(b)− 1

2

)
.

i) If b > b0, then ψ′(b) < ψ′(b0) =
1

2
; hence h′(0) < 0. Hence, there

exists q ∈ (0, 2θ) such that, for any t ∈ (0, q), we have h′(t) < 0, i.e., h is
strictly decreasing on [0, q). It follows that, for any t ∈ (0, q), the inequality
h(t) < h(0) = 0 holds, equivalent to U(t) < V (t).

ii) If b ∈ (−1, b0), then ψ′(b) > ψ′(b0) =
1

2
; hence h′(0) > 0. Conse-

quently, there exists q ∈ (0, 2θ) such that, for any t ∈ (0, q), we have h′(t) > 0,
i.e., h is strictly increasing on [0, q). It follows that, for any t ∈ (0, q), the
inequality h(t) > h(0) = 0 holds, equivalent to V (t) < U(t).

If b = b0, then h′(0) = 0; lim
t→0
t>0

h(t)

t2
= (twice l’Hospital) =

c2(b0 − 1)

2(b0 + 1)2
> 0

(b0 > 2). Since lim
t→0
t>0

h(t)

t2
> 0, it follows that there exists q ∈ (0, 2θ) such that,

for any t ∈ (0, q), we have h(t) > 0, equivalent to V (t) < U(t). �
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