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RELIABILITY LOGISTIC FUNCTION COMPARED TO
OTHER RELIABILITY FUNCTIONS

Cristian Ghiu', Florian Ghionea?, Aura Rusca?®, Constantin Udriste*

Our main results include: (i) the introduction and study of the reli-
ability logistic function, (ii) the relation with the dilogarithm function, (iii)
the finding of parameters b and ¢ according to the mean and the standard
deviation, and () comparison between logistic distribution and other well-
known distributions.
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1. Reliability logistic function

The reliability or survival function is the complement of the cumulative
distribution function [1]-[7].

From the authors’ point of view, the origins of reliability functions are
some engineering problems and their theory is made by mathematicians ac-
cording to the truism: “the mathematician makes what he can do - how he
must do, meanwhile the engineer does what must be done - how he can done”.
In this context, we introduce and study a new reliability function, conceived by
two mathematicians and two engineers, namely the reliability logistic function.

1.1. General statements

At the beginning of the activity of any “enterprise”, the initiating action
is made beginning with a certain level of achievements. The first period of
the enterprise activity may be characterized by slow development, but after a
certain period of time, the activity will intensify. However to the intensification
of the enterprise activity, subsequent in time, a more and more consistent
resistance will be opposed. If the analyzed term is denoted by vy, its growth
rate in time is dy/dt which is proportional to y and also to the “distance”

Lecturer Dr., Department of Mathematical Methods and Models, Faculty of Applied
Sciences, University Politehnica of Bucharest, Romania, e-mail: crisghiu@yahoo.com

2 Associate Professor Dr., Department Transports, Traffic and Logistic, University Po-
litehnica of Bucharest, Romania, e-mail: fghionea@yahoo.com

3Lecturer Dr., Department Transports, Traffic and Logistic, University Politehnica of
Bucharest, Romania, e-mail: aura_panica@yahoo.com

4Professor Dr., Department of Mathematics-Informatics, Faculty of Applied Sciences,
University Politehnica of Bucharest, Romania, e-mail: udriste@mathem.pub.ro

15



16 Cristian Ghiu, Florian Ghionea, Aura Rusca, Constantin Udrigte

towards the level of saturation a. Taking into consideration a proportionality
factor ¢/a, the described mathematical model is given by the ODE

dy c
a a yla—y).
The nonzero solutions of this ODE a
H=—
y( ) 1 + be_ct7

are called logistic functions.

Modifying this function properly, it can relatively easily become a prob-
ability repartition function (with the codomain [0;1)). For b > —1 and ¢ > 0
one obtains:

e Logistic distribution function

1— e—ct )
v =15 =0 0
0 if ¢<0.
L+b
R(t)=1-U(t) = b+e
e Probability density function 1 if t<0.

1+b ct .
u(t): mCe if tZO

0 it ¢<0.

e Reliability logistic function
if t>0

e Mean time between failures

1
O i b£0
o=1¢ b 2)
- if b=0.
“1
One has lim In(1+b) =—.
b—0 C &

e The standard deviation: o? = /t2 (t)dt — 62

0
1.2. Evaluation of standard deviation

To evaluate the standard deviation, we follow the next steps.
Step 1. For b # 0, we have

t ) 1+b [ thee )
:2(1+b>/b+eddt—0 /1+be —dt —0
0 O

2(1+0
=— (bj )tln(1+b6_6t)

1+b
+ (; )/1n(1+be—“)dt—92.
C

0 0
~“_one obtains

By changing the variable x = be
b
2(1+0 In(1
02: (+)/n< +x)dl'—(92. (3)

bc? T
0
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r 11

Step 2. Forb:O,weﬁnd02:2/ te” dt — F(2)——2:—2.

b C C
_/2(140) [In(l+z) N2 1(1+b) 1 1
py (T [ 9)—C2£E%T s e

0
It follows that formula (3) is also true for b = 0, extending by continuity
the function from the right side (with respect to the variable b).

To discuss further, we consider the function

¥ (=1,00) > R, w(@:/@

0
For any x € (—1, 1], the function ¢ (z) admits the development

dt, Vx> —1.

bla) = (-1 (4)
n=1
B o (_1)n—1 B 7T2 7.‘_2
It follows that (1) = ; T and zliml Y(z) = o

To write the function 1 in another way, we use the dilogarithm functions
y

In(1—t¢
Liy: (—o00,1) = R, Lig(y):—/ydt, Yy < 1,
0

y
Int
dilog: (0,00) — R, dilogy:/ln_t

dt, Vy>D0.

1
The function v can be expressed by using the functions Lis or dilog as
follows

P(x) = /Mdt = —Lis(—x) = —dilog (1 + z), V&> —1.

0
Now we come back to the properties of the functions U and R.

Proposition 1.1. i) For b < 1, the function U is strictly concave on the
interval [0,00) and R is strictly convex on the interval [0, c0).
Inb
it) For b > 1, the point to = — (> 0) represents the inflection point
c

of the functions U and R. In this case, U 1is strictly convex on the interval
[0,t0] and strictly concave on the interval [ty, 00); R is strictly concave on the
interval [0,to] and strictly convex on the interval [ty, 00).

Proof. The statements follow immediately, observing that

U"(t) = —R"(t) = % (b—et), Vi 0. O
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2. Finding parameters b and ¢ according to
the mean and standard deviation

In(1
For any z > —1, x # 0, we have ¢/(z) = In(1 + )

easily be noted that ¢'(z) > 0, Vo > —1.
1+0

From the relation (2) we deduce that § = —— ¢/(b); since b > —1 and

c
c > 0, it follows that 6 > 0. Being given # > 0 and ¢ > 0, we want to
determine the parameters b > —1 and ¢ > 0 for which the relations (2) and
(3) are fulfilled, namely

and ¢'(0) = 1. It can

145
=) =0
(1 +1) ®)
2 2
2 (b)) — 6 =o0".
The left sides of the expressions (5) are consider being extended by continuity
in 0 (with respect to the variable b); hence, for b = 0 the two equalities from

1 2
(5) become — =0, = — 6> = o>
c

2
The system (5§ is equivalent to
e= 122 u)
2 W) o ©
bi+0) WOy P

(similar remark for the case b = 0).
The next result can be proven without difficulty.

Lemma 2.1. a) Foranyy >0,y # 1, Iny <y —1.
b) The next inequalities are satisfied

21 21
i) Vy > 1, 1ny<y2 : 1) Yy € (0,1), lny>y
Yy
¢) For any x > —1, x # 0, a)'(z) > 1;6—91;'
1 T+ 2

— ! < .
d) For any x > 1,x7é0,@/)(93)<\/1+_x_2(x+1)

e) For any x > —1, x # 0,

=L

xz

1
1+2z

~v'(@). (7)

1
f) For any x > —1, we deduce ¢¥"(x) < 0 and ¢"(0) = —5 Therefore, the

function ' is strictly decreasing, and the function 1 is strictly concave.

m 2 Y() _ imw(l‘)_ o1
ng0(33(1+:v) (¢ (x))? ) o, =W -1=1 @)

We define the function
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f:(=1,00) = R, f(x):x(li—x) (J/j((i)))Z_l’ Ve > —1,x #0;

and f(0) = 1. From (8) it follows that f is continuous (it is even of class C*).

Lemma 2.2. a) For any x > —1, we have f'(x) < 0.
b) wlg{lll f(z) =00 and zh_}rgo f(z)=0.
r>—

¢) The image of the function f is the interval (0, 00).

Proof. Let vy: (—1,00) = R, v(2) = 2¢(x) — z(1 + 2)(¢'(2))?, Vo > —1.

V) (2) = 20(2) — (1+ 20) (1 (2))? — 26(1 + D) ()" (), (V2 > 1),

We use the equality (7) and it follows that for any x > —1, x # 0, we
have: vi(z) = ¢'(z) (2 — (1 + 22)¢'(z) — 24+ 2(1 + 2)¢'(z)) = (¢¥'(2))? and
for x = 0, v/(0) = 2¢'(0) — (¢'(0))* = 1 = (¢'(0))%. Consequently

vi(z) = (' (2))? >0, Vo>-1.

Therefore vy is strictly increasing; for z > 0 = vy(x) > ¢(0) = 0; for

—1<z<0= v(x) <g(0)=0.

We have f(x)= %, Ve > —1,x #0; and
'(z) = 20/ (2))” x) — vi(2) Ve > —1,2 # 0. 9
(@ (21/1(x)—v1(x))2 <1/J< ) ¢’(m)>’ >—Le# ©)
Also lim f'(x) = —%. Therefore f'(0) = —%.
Let vy: (—1,00) = R, va(z) = ¢(x) — Zl/g;, Vo > —1.
e @) e ) n @)
0 =V iy VO ) T e

x
Since Vo € (—1,0), vi(z) < 0; Vz >0, vi(z) > 0; Vo > —1, ¢"(z) <0,
one gets: Vo € (—1,0), vh(z) > 0; Vo >0, vi(x) < 0. One obtains that vy
is strictly increasing on the interval (—1,0] and it is strictly decreasing on the
interval [0, co).
For —1 <z <0 = va(x) < v2(0) = 0; for x > 0 = vy(x) < v2(0) = 0.
Therefore for any z € (—1,00), we have vy(x) < 0. From relation (9) it
follows that for any x > —1, x # 0, we have f’'(z) < 0. We deduce that f is a
strictly decreasing function.
We have xllml f(z) = oo and mh_g)lo f(z) = 0. Since f is a continuous and
r>—1
strictly decreasing function, it follows that the image of the function f is the
interval (0, co). O

Proposition 2.1. Let g: (—1,00) — (0,00) be the function

(14 z)In(1 + 2) s 140
g(x) = (1 + o)/ (x) = z foz—Laz0 gy
1 if ©=0.
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a) For any x € (—1,1], —1—1—2 n+

b) For any x > —1, g(x) = w’(l_j;x)

o0

)Foranyx>—— Z

1+n) 1+x)

d) Foranyx > —1, 2 #0, g(z) < V1+z < 1+§.

e) For each € (—1,0), g(x) > 1+ z.

f) For any x > —1, ¢'(x) > 0, ¢"(x) < 0. Therefore the function g is
strictly increasing and strictly concave. The function g is bijective.

g) For any x > —1, ¢"(z) + (¢'(x))? < 0.
Proof. a) The statement follows easily using the equality

o0

Yy
In(1 = —Dt L vy e (—1,1]. 11
n(1+y) ;() - Yye (=11 (11)
b) One has Vo > —1 — T > —1. The respective equality is obtained
x

by direct calculation.
1
o)lfx > —= then

€ (—1,1]. Further one uses the step b) and the
I+

conclusion is obtained by replacing y = 7
1+z

in the equality (11).

d) The statement follows immediately from Lemma 2.1, d).

e) If x € (—1,0), then ¢'(x) > ¢/(0) = 1, equivalent to g(x) > 1+ z.
1
f) and g): Using the equality (11) it follows that: ¢’(0) = 3 and ¢"(0) =
1
——. By direct calculation one obtains
— In(1 1 —
g (x) = rol(lta) 1te 7) Vo> -1,z #0. (12)

9
z? T
From Lemma 2.1, a), it follows that ¢'(x) >0 (x > —1,z # 0).
The relation (12) is equivalent to z(1 +z)¢'(x) = 14z — g(x). We take
the derivative and obtain: z(1+ x)g"(z) + (22 4+ 1)¢'(z) =1 —¢'(x) or
r(1+2)¢"(x) =1—2(x+ 1)¢'(z); we use (12) and obtain
29(z) —2—=x
" .
Since g(z) > 0, limlg(x) = 0, lim g(x) = oo, and ¢ is a continuous

, Ve >-—-12#0. (13)

function it follows that the image of the function ¢ is the interval (0, 00).
Therefore the function g is surjective.

The function g is strictly increasing (Vx > —1, ¢’(x) > 0), therefore the
function g is injective.
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Let x > —1, z # 0. Using (212) and (13) we deduce
g”(ZL‘) + (g/(x>)2 _ (g<$)> — (1 + 3:) <0 (Step d))

22(1 4 z)?
1 1 1
Fora = 0: g"(0) + (¢'(0))* = —5 + 7 = =15 < 0.
From ¢"(z) + (¢'(z))? < 0 it follows that ¢"(x) < 0. O

Theorem 2.1. Let f: (—1,00) — (0,00) be the function

T

2x In(l+¢) . . . _
1+$))2/ ; dt —1 if x #0;

f(@) = { (1+)(In(

(14)
1 if ©=0.

Let g: (—1,00) — (0,00) be the function which is defined by (10).
a) The function f is well defined, strictly decreasing, bijective and continuous
(it is even of the class C*).
2
b) Let be yo = on2e 1 =0.7118573712... . We have f~*(yo) = 1.

The following statements are fulfilled: if y € (1,00), then f~(y)
(—1,0); ify € (0,1), then f~(y) € (0,00); if y € (0,90), then f~'(y) € (1,00);
if y € (yo,1), then f(y) € (0,1).
¢) For any 0 > 0 and o > 0, the parameters b > —1 and ¢ > 0 ezist and are
unique such that, the relations (2) and (3) are fulfilled (i.e., the relations (5)
hold). These parameters are

(@) L)

The necessary and sufficient condition for b to be strictly positive is o < 0.
The necessary and sufficient condition for b to be zero is o = 6. In this case

1
one obtains the exponential distribution with the parameter ¢ = —. Therefore

the exponential distribution is a particular case of logistic distribution.
The necessary and sufficient condition for b =1 is 0 = 0,/yg. In this

21In2
case we have ¢ = Tn (\/% = 0.8437164045...).

Proof. a) From Lemma 2.2, ¢), it follows that the function f: (—1,00) —
(0,00), defined by the relation (14), is well defined and surjective.
From Lemma 2.2, a), it follows that f is strictly decreasing; therefore the
function f is injective.
b) The image of the function f~! is the interval (—1,00). Therefore Vy >
2

1 B @ _
0 = f~'(y) > —1. On the other hand, f(1) = (In2)? 1; since ¢(1) = T
deduce that f(1) = yo, f~'(yo) = 1. From f(0) = 1 it follows that f~!(1) = 0.

Since f is strictly decreasing, it follows that also f~1 is strictly decreasing.
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If y > 1, then f~'(y) < f71(1) =0; if y < 1, then f~'(y) > f~1(1) = 0;
if y < yo, then f~1(y) > f~yo) = 1; if yo <y < 1, then 1 = f~1(yy) >
fy) > (1) =0.

_ . o g(b)
c¢) The equations of the system (6) are written as f(b) = —=, ¢ = =—=.

They are equivalent to the relations (15). It can be noted that c is really
strictly positive, because g(b) > 0.
The other statements are immediately checked. O

Remark 2.1. We conclude that for the determination of b, one needs to know
only the ratio %.

Inb
Remark 2.2. Let be b > 1. According to Proposition 1.1, ty = B2 s the only
c

inflection point of the functions U and R in the interval (0,00).
Taking into account the relations (15), (10) it follows that
t — 0 Inb
" b+ 1)In(b+1)
The inflection point tq is strictly smaller than 6 and blim to(b) = 0.
—00

According to relation (15), to determine the parameter b we have to know
the values of the function f~'.

3. Comparison between the logistic distribution and
the exponential distribution
Let X7, X5 be two random variables, with the distribution functions F},
respectively F,, and reliability functions R, respectively Ry. The inequality
Fi(t) < Fy(t), t € I, is equivalent to Ry(t) > Ra(t), t € I.
Definition 3.1. The random variable X, is called better than X5 on the in-
terval I, if Ri(t) > Ra(t), Vt € I.

We consider, the exponential and logistic distributions, both, with the

b
same average 6 > 0. The logistic distribution function is (1), with ¢ = %;
and for exponential distribution we have the following distribution function

(1) 1—e ™ if t>0; oy L
= 1 - .
0 ift<o0, 0

In the above conditions, the following result is obtained.

Proposition 3.1. i) If b € (—1,0), then, Vt € (0,6], we have F(t) < U(t).
Hence, the exponential repartition is better than the logistic repartition, on
(—o0, 0.

it) If b > 0, then, for any t € (0,0], one gets U(t) < F(t). Hence, the
logistic repartition is better than the exponential repartition, on (—oo, 6].

iti) If b= 0, then, Vt € R, we have U(t) = F\(t).
Proof. If b = 0 then it is obvious that U(t) = F(t).
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If b € (—1,0), then g(b) < g(0) = 1. From Proposition 2.1, we obtain

g(b) > 14 b. It follows that b < g(b) — 1 < 0 and > 1.

g(b) —1
If b > 0, then g(b) > g(0) = 1. From Proposition 2.1, we deduce g(b) <

b

We have showed that > 1, Vb € (—1,0) U (0,00). From the

g(b) =1
above, it follows that to get the results ¢) and i) it is sufficient to show that:
U(t)— F(t
Vb e (—1,0) U (0,00) and Vt € (0, 6], % < 0.
e)\(g(b)fl)t + b(efz\t o 1) -1
Ag(b)-1)t ,\tg(b) !
Ag(b) — 1)eXIO7I — Ape™™ )\6—/\15<6)\g(b)t __ b )
g(b) =1 g(b) =1
6 ln( b ) Since > 1, we deduce t; > 0. One
g(b) " \g(0) ~ 1) | T

observes that e*®h =

Let v: [0,00) = R, v(t) = , Yt >0;

V'(t) =

Let tl =

g(b) =1
; h '(t1) = 0.
OESE ence v'(ty)

Ift € [0,%,), then v/(t) < 0, and hence the function v is strictly decreasing
on [0,¢;]. It follows that, for any t € (0, ¢;], we have v(t) < v(0) = 0.

We have shown that v is strictly negative on the interval (0,¢;]. Partic-
ularly, v(t;) < 0.

If ¢ > ¢y, then v/(t) > 0, hence v is strictly increasing on [t;,00); if

—(b+1
b € (—1,0), then g(b) — 1 < 0 and tli)rglov(t) = % > 0; if b > 0, then
g(b) —1 > 0 and tlim v(t) = oco. Hence, for any b > —1, b # 0, we have
—00

tlim v(t) > 0. Since v(t1) < 0, we deduce that there exists to € (1, 00), such
—00

that v(t2) = 0. This ¢y is the only number in (¢;,00) where v vanishes, since
v is strictly increasing (hence injective) on this interval. In fact, ¢ is the only
number in (0, 00) where v vanishes, since v is strictly negative on (0, ¢1].
Hence, on each of the intervals (0, ¢3), (t2,00), the function v has constant
sign. Since t; € (0,12), v(t1) < 0, and Jlim v(t) > 0, it follows that: V¢ € (0, ),
v(t) < 0; and Vt € (t9,00), v(t) > 0.
We shall show that 6 < o, hence (0,6] C (0,t3); from the above discus-

- F
sion it follows that: Vt € (0,6], v(t) < 0; equivalent to ul) = o) < 0.

b) —1
The inequality 6 < to is equivalent to v(f) < 0, i.e., 9(0)
Y 4 p(l—e)—e>0 ifbe (—1,0) (16)
9O b1 —e)—e<0 ifb>0. (17)

Let vy: (—1,00) = R, vi(x) =e/@ +2(1 —e) —e, Vo> —1;
o (z) = ¢ (@)er® +1— ¢
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vi(@) = g"(2)e?™ + (g/(2))°e?™ = (g"(2) + (¢ ())?) ™).
From Proposition 2.1, it follows that v{ is strictly negative, hence v is

strictly decreasing. Since xli>m1 vy (x) = oo and v} (0) = % < 0, there exists
r>—1

bo € (—1,0), such that vj(by) = 0.

If =1 < @ < by, then vi(x) > vi(by) = 0. If x > by, then vi(z) <
v} (by) = 0. Hence the function vy is strictly increasing on (—1,by] and strictly
decreasing on [by, 00).

If x € (—1,bo], then vy(x) > yliml v1(y) = 0. Particularly, v;(by) > 0

y>—1

We have v;(0) = 0; 0 is the only point in [by, 00) where vy vanishes, since
vy is strictly decreasing (injective) on [by,00). Hence vy has constant sign on
each of the intervals [by,0) and (0, 00).

Since vy (by) > 0, we deduce that vy is strictly positive on [bg, 0).

We have proved that v, is strictly positive on (—1,0), i.e., (16).

Due to lim vy (z) = —o0, it follows that v, is strictly negative on (0, 00),
T—r00

ie., (17). O
4. Comparison between the logistic distribution and
the Weibull distribution

Consider a random variable with Weibull distribution; the repartition
function is )
L—e™ ift>0

Foalt) 0 ift<o, (18)

with A > 0, 8 >0, 8 # 1 (for § =1 one obtains the exponential repartition).
Propos1t10n 4.1. 9) If B € (0,1), then there exists ¢ > 0, such that, for any

€ (0,q), we have U(t) < Fpa(t). Consequently the logistic repartition is
better than Weibull repartition on (—o0,q).

i1) If 8 > 1, then there exists ¢ > 0, such that, for anyt € (0,q), we have
Fs(t) < U(t). Hence the Weibull repartition is better than logistic repartition
on (—OO, q)

Proof Let w:[0,00) = R, w(t) = e 4+ pe™ —p—1
(C tﬁ 1) ct—\tP b/\ﬂt'g_le_)\tﬁ’ Vi 0.
0

1). We have t*Pw/(t) = (ct'™? — \3 pCt=AP b)\ﬁe_)\tﬁ and
) ( 1).

lim ' Pw/(t) = —A\B(1 + b) < 0; it follows that there exists ¢ > 0 such
0

—

>0

that, V& € (0,q) we have w'(t) < 0, hence w is strictly decreasing on [0, q).

For any t € (0,q), w(t) < w(0) = 0. It is easily seen that inequality
w(t) <0 is equivalent to U(t) < Fa(t).

i1) We have 11_1)% w'(t) = ¢ > 0; it follows that there exists ¢ > 0 such

>0
that, Vt € (0,q), we have w'(t) > 0, hence w is strictly increasing on |0, q).

For any t € (0,¢q), w(t) > w(0) = 0. It follows that Fz,(t) < U(¢t). O
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Further, we study what is equivalent to condition § € (0,1).
Let 0, 52 be the mean and dispersion of the random variable which has
- 1 2 .
the Weibull repartition, i.e., § = nF(E + 1), 52 = 772F<B + 1) — 0%, where
1 52 2 1 —2
n = —. It follows that: 7 +1= F(— + 1) (F(— + 1)) .
B 02 p g
We introduce three functions wy, we, ws: (0,00) — R,
N2x+1
(@) = T (e), wa(r) = ot
(F(az + 1))
For any x > 0, we have wj(z) = 2w} (2x + 1) — 2w} (z + 1). According
to Lagrange Theorem it follows that there exists £ € (x + 1,2x + 1), such that
wi(z) = 22wy (£). One knows that w{(y) > 0 (Vy > 0). We obtain wj(z) > 0,

hence wjs is strictly increasing, equivalent to wsy is strictly increasing. The
~2

1 ~
inequality 5 < 1 is equivalent to ws <B> > wy(1) or % +1>21e,0>06.

wz(x) = Inwe(z).

Furthermore we assume that repartitions considered above have the same
mean and the same dispersion, i.e., § = 6 and 6 = 0. From Theorem 2.1, it
follows that o > 6 is equivalent to b € (—1,0).

One obtains the following result.

Proposition 4.2. Suppose that the logistic and Weibull repartitions have the
same mean 0 and the same dispersion o2, the repartition functions being (1)
and (18) (with A >0, 5 >0, B #1).

The following statements are equivalent.

i) B €(0,1) (respectively 5> 1).

it) b € (—1,0) (respectively b > 0).

i1i) o > 0 (respectively o < 0).

iv) There exists ¢ > 0, such that, for any t € (0,q), we have

U(t) < Fg(t) (respectively Fs\(t) < U(t)).

5. Comparison between the logistic distribution and
the uniform distribution 4(b)
We consider a logistic repartition, with ¢ = 5 and a uniform repar-

tition on the interval [0,26]. Both have the same mean # > 0. The logistic
repartition is (1); the uniform repartition, on the interval [0, 26], has the for-

0 if t <O0;
mula: V(t) = QLQ if t € [0, 26];

1 if ¢t > 26. 1
Lemma 5.1. There exists a unique solution by of the equation '(x) = 7"

This solution by belongs to the interval (2,3).

1 1 In3 1
Proof. According to Lemma 2.1, ¢'(3) < =Y (2)= — > ~.

Hence there exists by € (2,3), such that /(b)) = The solution is

unique since the function ¢/ is strictly decreasing. 0]

N | —
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1
Proposition 5.1. Let by be the solution of the equation ¢'(z) = 3"

i) If b > by, then there exists ¢ > 0, such that, for anyt € (0, q), we have
U(t) < V(t). Hence, on the interval (—oo,q), the logistic repartition is better
than the uniform repartition.

it) If b € (—1,bo], then there exists ¢ > 0, such that, for any t € (0,q),
we have V (t) < U(t). Hence, on the interval (—oo,q), the uniform repartition
15 better than the logistic repartition.

Proof. Let h: [0,20] - R, h(t) = U(t) — il Vt € [0,26]. For any t > 0, we

20’
1 1+0 1 1

/ ct 1 / /
get h'(t) = u(t) — %= mce ~ 55 Hence 1'(0) = 5(2/1 (b) — 5)

1
i) If b > b, then ¥/'(b) < ¢'(by) = Y hence h/(0) < 0. Hence, there

exists ¢ € (0,20) such that, for any ¢ € (0,q), we have h'(t) < 0, i.e., h is
strictly decreasing on [0, ¢). It follows that, for any ¢ € (0, ¢), the inequality
h(t) < h(0) = 0 holds, equivalent to U(t) < V().
1
it) If b € (—1,bp), then ¢'(b) > ¢'(by) = Y hence A'(0) > 0. Conse-

quently, there exists ¢ € (0, 20) such that, for any ¢ € (0, ¢), we have h/(t) > 0,
i.e., h is strictly increasing on [0,q). It follows that, for any ¢ € (0,q), the
inequality h(t) > h(0) = 0 holds, equivalent to V (t) < U(t).

h(t)

If b = by, then h'(0) = 0; PI% —~ = (twice I'Hospital) =
—

12
>0
h(t
(bp > 2). Since lir% % > 0, it follows that there exists ¢ € (0,26) such that,
5
>0

for any ¢ € (0, q), we have h(t) > 0, equivalent to V' (t) < U(t). O

A(by — 1)

2y + 12 "
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