

GLOBAL OPTIMAL SOLUTIONS OF NON-SELF MAPPINGS

Moosa Gabeleh¹

In this paper we introduce a notion of the WP-property and study the existence of best proximity points for non-self-mappings. Our result generalizes the Mizoguchi and Takahashi's fixed point theorem for single valued mappings. Also by using the Schauder's fixed point theorem, we establish a best proximity point theorem in Banach spaces.

Keywords: Best proximity point; fixed point; uniformly convex Banach space; P-property; property UC.

MSC2010: 47H10, 47H09.

1. Introduction and preliminaries

Banach contraction principle is a very important tools in nonlinear analysis and there are many extensions of this principle; see, e.g., [11] and the references cited therein. One of the interesting generalizations was given by Mizoguchi and Takahashi [13] as follows.

Theorem 1.1. *Let (X, d) be a complete metric space and suppose that $T : X \rightarrow CB(X)$, where $CB(X)$ denotes the class of all nonempty bounded closed subsets of X . Assume that*

$$H(Tx, Ty) \leq \alpha(d(x, y))d(x, y)$$

for each $x, y \in X$, where H is a Hausdorff metric on $CB(X)$ and α is a function from $[0, \infty)$ to $[0, 1)$ such that $\limsup_{r \rightarrow t^+} \alpha(r) < 1$ for all $t \in (0, \infty)$. Then T has a fixed point.

Now, consider the non-self-mapping $T : A \rightarrow X$ which A is a nonempty subset of a metric space (X, d) . Clearly, the fixed point equation $Tx = x$ has not solution necessary. Hence it is contemplated to find an approximate $x \in A$ such that the error $d(x, Tx)$ is minimum. The following well-known best approximation theorem due to Kay Fan.

Theorem 1.2. ([12]) *Let A be a nonempty compact convex subset of a normed linear space X and $T : A \rightarrow X$ be a continuous mapping. Then there exists $x \in A$ such that $\|x - Tx\| = \text{dist}(Tx, A) := \inf\{\|Tx - a\| : a \in A\}$.*

A point $x \in A$ in the above theorem is called a best approximant point of T in A . The notion of best proximity point for non-self-mappings can be defined in the following way.

¹Corresponding author, Department of Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran, e-mail: gab.moo@gmail.com, gabelehmoosa@yahoo.com

Definition 1.1. Let A and B be nonempty subsets of a metric space (X, d) and $T : A \rightarrow B$ be a non-self-mapping. A point $x^* \in A$ is called a best proximity point of T if $d(x^*, Tx^*) = \text{dist}(A, B)$, where

$$\text{dist}(A, B) = \inf\{d(x, y) : (x, y) \in A \times B\}.$$

In fact best proximity point theorems are studied to find necessary conditions such that the minimization problem

$$\min_{x \in A} d(x, Tx), \quad (1.1)$$

has at least one solution.

Some of interesting results regarding best proximity points, can be found in [1, 4, 5, 6, 7, 8, 9, 10, 14, 17].

Let A and B be two nonempty subsets of a metric space (X, d) . In this work, we adopt the following notations and definitions.

$$\begin{aligned} A_0 &= \{x \in A : d(x, y) = \text{dist}(A, B), \text{ for some } y \in B\}, \\ B_0 &= \{y \in B : d(x, y) = \text{dist}(A, B), \text{ for some } x \in A\}. \end{aligned}$$

The following notion of a geometric property in metric spaces was introduced by Sankar Raj in [16].

Definition 1.2. ([16]) Let (A, B) be a pair of nonempty subsets of a metric space (X, d) with $A_0 \neq \emptyset$. The pair (A, B) is said to has the P-property if and only if

$$\begin{cases} d(x_1, y_1) = \text{dist}(A, B) \\ d(x_2, y_2) = \text{dist}(A, B) \end{cases} \Rightarrow d(x_1, x_2) = d(y_1, y_2),$$

where $x_1, x_2 \in A_0$ and $y_1, y_2 \in B_0$.

Example 1.1. ([16]) Let A, B be two nonempty closed convex subsets of a Hilbert space \mathbb{H} . Then (A, B) has the P-property.

Example 1.2. Let A, B be two nonempty subsets of a metric space (X, d) such that $A_0 \neq \emptyset$ and $\text{dist}(A, B) = 0$. Then (A, B) has the P-property.

Example 1.3. ([2]) Let A, B be two nonempty bounded, closed and convex subsets of a uniformly convex Banach space X . Then (A, B) has the P-property.

The following theorem establishes the existence and uniqueness of best proximity point for weakly contractive non-self-mappings in metric spaces.

Theorem 1.3. ([16]) Let (A, B) be a pair of nonempty closed subsets of a complete metric space (X, d) such that A_0 is nonempty. Let $T : A \rightarrow B$ be a weakly contractive mapping, that is $d(Tx, Ty) \leq d(x, y) - \psi(d(x, y))$, for all $x, y \in A$, where $\psi : [0, \infty) \rightarrow [0, \infty)$ is a continuous and nondecreasing function such that ψ is positive on $(0, \infty)$, $\psi(0) = 0$ and $\lim_{t \rightarrow \infty} \psi(t) = \infty$. Assume that the pair (A, B) has the P-property. If $T(A_0) \subseteq B_0$, then there exists a unique x^* in A such that $d(x^*, Tx^*) = \text{dist}(A, B)$.

In the next section, we introduce the notion of the WP-property which is weaker than the P-property. We then prove a version of Theorem 1.1 for single valued non-self-mappings in order to study of existence of best proximity points.

2. Main result

To establish our results, we introduce the following geometric property in metric spaces.

Definition 2.1. Let (A, B) be a pair of nonempty subsets of a metric space (X, d) with $A_0 \neq \emptyset$. The pair (A, B) is said to has the WP-property if and only if

$$\begin{cases} d(x_1, y_1) = \text{dist}(A, B) \\ d(x_2, y_2) = \text{dist}(A, B) \end{cases} \Rightarrow d(x_1, x_2) \leq d(y_1, y_2),$$

where $x_1, x_2 \in A_0$ and $y_1, y_2 \in B_0$.

It is clear that if (A, B) has the P-property, then (A, B) has the WP-property. Indeed, (A, B) has the P-property if and only both (A, B) and (B, A) have the WP-property.

Let us illustrate the above notion with the following example.

Example 2.1. Let l^∞ be the Banach space consisting of all bounded real sequences with supremum norm and let $\{e_n\}$ be the canonical basis of l^∞ . Suppose that

$$A := \{2e_1 + xe_3 : \frac{1}{4} \leq x \leq \frac{1}{2}\}, \quad B := \{2e_2 + ye_3 : \frac{1}{2} \leq y \leq 1\}.$$

It is clear that $\text{dist}(A, B) = 2$ and $A_0 = A$ and $B_0 = B$. Also for each $(X, Y) \in A \times B$, we have $\|X - Y\|_\infty = 2 = \text{dist}(A, B)$. Now, if $\|X - Y\|_\infty = \|\dot{X} - \dot{Y}\|_\infty = \text{dist}(A, B)$ for $(X, Y), (\dot{X}, \dot{Y}) \in A \times B$ then it is easy to see that

$$\|X - \dot{X}\|_\infty = \frac{1}{4} \quad \text{and} \quad \|Y - \dot{Y}\|_\infty = \frac{1}{2}.$$

That is $\|X - \dot{X}\|_\infty < \|Y - \dot{Y}\|_\infty$, and hence (A, B) has the WP-property. Obviously, the pair (A, B) has not P-property.

The following theorem state our main result of this section.

Theorem 2.1. Let (A, B) be a pair of two nonempty closed subset of a complete metric space (X, d) such that A_0 is nonempty. Assume that $T : A \rightarrow B$ is a non-self-mapping such that

$$d(Tx, Ty) \leq \alpha(d(x, y))d(x, y), \quad \text{for all } x, y \in A,$$

where α is a function from $[0, \infty)$ to $[0, 1)$ such that $\limsup_{r \rightarrow t^+} \alpha(r) < 1$ for all $t \in (0, \infty)$. Suppose that (A, B) has the WP-property and $T(A_0) \subseteq B_0$. Then T has a unique best proximity point in A .

Proof. Choose $x_0 \in A_0$. Since $T(A_0) \subseteq B_0$, there exists $x_1 \in A_0$ such that $d(x_1, Tx_0) = \text{dist}(A, B)$. Again, since $Tx_1 \in B_0$, there exists $x_2 \in A_0$ such that $d(x_2, Tx_1) = \text{dist}(A, B)$. Continuing this process, we can find a sequence $\{x_n\}$ in A such that

$$d(x_{n+1}, Tx_n) = \text{dist}(A, B), \quad \text{for all } n \in \mathbb{N}.$$

Since (A, B) has the WP-property, we obtain

$$d(x_{n+1}, x_n) \leq d(Tx_n, Tx_{n-1}), \quad \text{for all } n \in \mathbb{N}.$$

We now have

$$d(x_{n+1}, x_n) \leq d(Tx_n, Tx_{n-1}) \leq \alpha(d(x_n, x_{n-1}))d(x_n, x_{n-1}).$$

Since $\alpha(t) < 1$ for all $t \in [0, \infty)$, the sequence $\{d(x_{n+1}, x_n)\}$ is a nonincreasing sequence in \mathbb{R} . Hence $\{d(x_n, x_{n+1})\}$ converges to some nonnegative real number η . Since $\limsup_{s \rightarrow \eta^+} \alpha(s) < 1$, there exist $\delta \in [0, 1)$ and $\varepsilon > 0$ such that $\alpha(s) \leq \delta$ for all $s \in [\eta, \eta + \varepsilon]$. Let $N \in \mathbb{N}$ be such that

$$\eta \leq d(x_n, x_{n+1}) \leq \eta + \varepsilon, \quad \forall n \geq N.$$

Thus for all $n \geq N$ we must have

$$\begin{aligned} d(x_{n+1}, x_n) &\leq \alpha(d(x_n, x_{n-1}))d(x_n, x_{n-1}) \\ &\leq \delta d(x_n, x_{n-1}) \leq \delta d(Tx_{n-1}, Tx_{n-2}) \\ &\leq \delta \alpha(d(x_{n-1}, x_{n-2}))d(x_{n-1}, x_{n-2}) \\ &\leq \delta^2 d(x_{n-1}, x_{n-2}) \leq \dots \leq \delta^{n-N} d(x_{N+1}, x_{N-N}). \end{aligned}$$

Therefore,

$$\begin{aligned} \sum_{n=1}^{\infty} d(x_n, x_{n+1}) &= \sum_{n=1}^N d(x_n, x_{n+1}) + \sum_{n=1}^{\infty} d(x_{N+n+1}, x_{N+n}) \\ &\leq \sum_{n=1}^N d(x_n, x_{n+1}) + \sum_{n=1}^N \delta^n d(x_{N+1}, x_N) < \infty. \end{aligned}$$

This implies that $\{x_n\}$ is a Cauchy sequence in A . Since X is complete, there exists $x^* \in A$ such that $x_n \rightarrow x^*$. By the continuity of T , we conclude that $Tx_n \rightarrow Tx^*$. Hence

$$d(x^*, Tx^*) = \lim_{n \rightarrow \infty} d(x_{n+1}, Tx_n) = \text{dist}(A, B).$$

That is, $x^* \in A$ is a best proximity point of the mapping T . We now claim that the best proximity point of the mapping T is unique. Let $y^* \in A$ be such that $d(y^*, Ty^*) = \text{dist}(A, B)$ and $y^* \neq x^*$. Since (A, B) has the WP-property,

$$d(x^*, y^*) \leq d(Tx^*, Ty^*) \leq \alpha(d(x^*, y^*))d(x^*, y^*) < d(x^*, y^*),$$

which is a contradiction. Therefore, $y^* = x^*$. Hence the best proximity point of T is unique. \square

If we consider $A = B = X$ in above theorem, then the following corollary, which is a single valued version of Mizoguchi and Takahashi's fixed point theorem, is obtained.

Corollary 2.1. *Let (X, d) be a complete metric space. Suppose $T : X \rightarrow X$ is a mapping such that*

$$d(Tx, Ty) \leq \alpha(d(x, y))d(x, y)$$

for each $x, y \in X$, where α is a function from $[0, \infty)$ to $[0, 1)$ such that $\limsup_{r \rightarrow t^+} \alpha(r) < 1$ for all $t \in (0, \infty)$. Then T has a unique fixed point.

Example 2.2. Suppose that $X = \mathbb{R}^2$ and consider the metric d on X by $d((x, y), (\dot{x}, \dot{y})) = \max\{|x - \dot{x}|, |y - \dot{y}|\}$. Put

$$A := \{(1, 0), (1, 1), (8, 0)\}, \quad B := \{(0, -\frac{1}{2}), (0, 2), (-\frac{1}{2}, 3)\}.$$

Clearly, $\text{dist}(A, B) = 1$. Also, $A_0 = \{(1, 0), (1, 1)\}$ and $B_0 = \{(0, -\frac{1}{2}), (0, 2)\}$. Moreover, it is easy to see that the pair (A, B) has the WP-property and has not the P-property. Let $T : A \rightarrow B$ be a mapping defined by

$$T(1, 0) = T(1, 1) = (0, 2), \quad T(8, 0) = (0, -\frac{1}{2}).$$

Then $T(A_0) \subseteq B_0$ and we note that the mapping T is a non-self-contraction. Hence T has a unique best proximity point and this point is $x^* = (1, 1)$.

The following theorem shows the existence and uniqueness of a best proximity point for expansive non-self-mappings.

Theorem 2.2. *Let (A, B) be a pair of nonempty closed subsets of a complete metric space (X, d) such that $A_0 \neq \emptyset$ and (B, A) satisfies the WP-property. Assume that $T : A \rightarrow B$ is an expansive non-self-mapping, that is*

$$d(Tx, Ty) \geq \alpha d(x, y),$$

for some $\alpha > 1$ and for all $x, y \in A$. If T is onto and $T(A_0) \supseteq B_0$, then T has a unique best proximity point in A .

Proof. Since T is an expansive mapping and onto, the inverse of $T : A \rightarrow B$ exists. Moreover, $T^{-1} : B \rightarrow A$ is a contraction non-self-mapping. Therefore by Theorem 2.2, T^{-1} has a unique best proximity point $y^* \in B$. Thus $d(T^{-1}y^*, y^*) = \text{dist}(A, B)$. Since T is a bijection, there exists a unique $x^* \in A$ such that $y^* = Tx^*$. We now have

$$d(x^*, Tx^*) = d(T^{-1}y^*, y^*) = \text{dist}(A, B).$$

□

Here, we can deduce the following result due to Wang et al. [18], as a corollary from the above theorem.

Corollary 2.2. ([18]) *Let (X, d) be a complete metric space and $T : X \rightarrow X$ be an expansive mapping such that T is onto. Then T has a unique fixed point.*

3. Additional results

Property UC was defined in [17] in the following way.

Definition 3.1. ([17]) Let A and B be nonempty subsets of a metric space (X, d) . Then (A, B) is said to satisfy the property UC provided if $\{x_n\}$ and $\{z_n\}$ are sequences in A and $\{y_n\}$ is a sequence in B such that $\lim_n d(x_n, y_n) = \text{dist}(A, B)$ and $\lim_n d(z_n, y_n) = \text{dist}(A, B)$, then $\lim_n d(x_n, z_n) = 0$.

Example 3.1. ([7]) Let A and B be nonempty subsets of a uniformly convex Banach space X . Assume that A is convex. Then (A, B) satisfies the property UC.

Other examples of pairs having the property UC can be found in [17].

Very recently, Abkar and Gabeleh established the next theorem which ensures that the existence of best proximity points for nonexpansive non-self-mappings in Banach spaces.

Theorem 3.1. ([3]) *Let (A, B) be a pair of nonempty closed and convex subsets of a Banach space X such that A_0 is nonempty. Let $T : A \rightarrow B$ be a nonexpansive mapping such that $T(A_0) \subseteq B_0$. If the pair (A, B) has the P-property and A is compact, then T has a best proximity point in A .*

The following theorem is another version of Theorem 3.2 in uniformly convex Banach spaces.

Theorem 3.2. *Let (A, B) be a nonempty convex pair of a uniformly convex Banach space X such that A is bounded, closed and B is compact. Assume that $T : A \rightarrow B$ be a nonexpansive mapping such that $T(A_0) \subseteq B_0$. Then T has a best proximity point in A .*

Proof. By Examples 1.3 and 3.1 we note that (A, B) has the P-property and satisfies the property UC. Also by Theorem 2.3 of [3] we conclude that there exists a sequence $\{x_n\}$ in A such that $\|x_n - Tx_n\| \rightarrow \text{dist}(A, B)$. Since A is bounded, closed and convex in a uniformly convex Banach space X and B is compact, we may assume that $x_n \rightharpoonup p \in A$ and $Tx_n \rightarrow q \in B$, where " \rightharpoonup " denotes the weak convergence. Hence,

$$\|p - q\| \leq \liminf_{n \rightarrow \infty} \|x_n - Tx_n\| = \text{dist}(A, B).$$

Then $\|p - q\| = \text{dist}(A, B)$. Also, for all $n \in \mathbb{N}$ we have

$$\text{dist}(A, B) \leq \|x_n - q\| \leq \|q - Tx_n\| + \|x_n - Tx_n\|,$$

which implies that $\|x_n - q\| \rightarrow \text{dist}(A, B)$. Thus

$$\begin{cases} \|p - q\| = \text{dist}(A, B), \\ \|x_n - q\| \rightarrow \text{dist}(A, B). \end{cases}$$

Since (A, B) satisfies the property UC, we must have $\|x_n - p\| \rightarrow 0$, or $x_n \rightarrow p$. Hence, the continuity of the mapping T implies that $Tx_n \rightarrow Tp$ and thus $Tp = q$, i.e., p is a best proximity point of T . \square

Here, we recall the other geometric properties in Banach spaces as follows.

Definition 3.2. ([8]) A pair (A, B) of subsets of a metric space is said to be proximinal if for each $(x, y) \in A \times B$ there exists $(x_0, y_0) \in A \times B$ such that

$$d(x, y_0) = d(x_0, y) = \text{dist}(A, B).$$

If, additionally, we impose the condition that the pair of points $(x_0, y_0) \in A \times B$ is unique for each $(x, y) \in A \times B$, then we say that the pair (A, B) is a sharp proximinal pair.

It was shown in [8] that when a pair of subsets (A, B) of a strictly convex Banach space is proximinal then the sets A and B also satisfy the following definition.

Definition 3.3. ([9]) Let A and B be nonempty subsets of a Banach space X . We say that A and B are proximinal parallel sets if the following two conditions are fulfilled:

- (1) (A, B) is a sharp proximinal pair.
- (2) $B = A + h$ for a certain $h \in X$ such that $h = \text{dist}(A, B)$.

Using the Schauder's fixed point theorem, we prove a best proximity point theorem in Banach spaces.

Theorem 3.3. Let (A, B) be a nonempty compact convex pair in a strictly convex Banach space X , such that (A, B) is proximinal. Suppose that $T : A \rightarrow B$ is a continuous mapping. Then T has at least one best proximity point in A .

Proof. Since (A, B) is proximinal and X is a strictly convex Banach space, we conclude that A and B are proximinal parallel sets. Thus $B = A + h$ for certain $h \in X$ where $\|h\| = \text{dist}(A, B)$. Now, define $S : A \rightarrow A$ by $Sx = Tx - h$. Then S is a continuous self-map on a compact set. Hence by Schauder's fixed point theorem, S has at least one fixed point, that is, there exists $x^* \in A$ such that $Sx^* = x^*$. This implies that $Tx^* - h = x^*$ and then

$$\|Tx^* - x^*\| = \|h\| = \text{dist}(A, B).$$

Therefore, T has a best proximity point in A . \square

Corollary 3.1. *Let (A, B) be a nonempty bounded, closed, convex and proximinal pair in \mathbb{R}^n . Suppose that $T : A \rightarrow B$ is a continuous non-self-mapping. Then T has a best proximity point in A .*

The following theorem is subsumed in Theorem 3.6.

Theorem 3.4. *Let (A, B) be a nonempty compact, convex and proximinal pair in a uniformly convex Banach space X . Suppose that $T : A \rightarrow B$ and $S : B \rightarrow A$ are two continuous non-self-mappings such that $\|Tx - Sy\| < \|x - y\|$ whenever $\|x - y\| > \text{dist}(A, B)$ for $x \in A, y \in B$. Then there exists $(x^*, y^*) \in A \times B$ such that*

$$\|x^* - Tx^*\| = \|y^* - Sy^*\| = \text{dist}(A, B), \quad \|x^* - y^*\| = \text{dist}(A, B).$$

Proof. By Theorem 3.6 there exists $(x^*, y^*) \in A \times B$ such that

$$\|x^* - Tx^*\| = \|y^* - Sy^*\| = \text{dist}(A, B).$$

Since (A, B) has the P-property, we conclude that $\|x^* - y^*\| = \|Tx^* - Sy^*\|$. Now if $\|x^* - y^*\| > \text{dist}(A, B)$, then

$$\|x^* - y^*\| = \|Tx^* - Sy^*\| < \|x^* - y^*\|,$$

which is a contradiction. Thus $\|x^* - y^*\| = \text{dist}(A, B)$. \square

The following common fixed point theorem for *non-commuting* continuous mappings is obtained from Theorem 3.8.

Corollary 3.2. *Let A be a nonempty convex compact set in a Banach space X . Suppose that $T : A \rightarrow A$ and $S : A \rightarrow A$ are two continuous self-mappings such that $\|Tx - Sy\| < \|x - y\|$, whenever x and y are distinct elements in A . Then T, S have a unique common fixed point.*

Recently Sadiq Basha established the following theorem as an application of best proximity point theory to analytic functions of a complex variable.

Theorem 3.5. ([15]) *Let A and B be nonempty compact and convex subsets of a domain D of the complex plane. Let $f(z)$ and $g(z)$ be analytic functions in D . Suppose that*

- (a) $f(A) \subseteq B$ and $g(B) \subseteq A$,
- (b) $|f'(z)| < 1$, for all $z \in A$,
- (c) $|g'(z)| < 1$, for all $z \in B$,
- (d) $|f(z_1) - g(z_2)| < |z_1 - z_2|$,

whenever $|z_1 - z_2| > \text{dist}(A, B)$ for $z_1 \in A$ and $z_2 \in B$. Then there exist $z_1^* \in A$ and $z_2^* \in B$ such that

$$|z_1^* - f(z_1^*)| = |z_2^* - g(z_2^*)| = \text{dist}(A, B), \quad \text{and} \quad |z_1^* - z_2^*| = \text{dist}(A, B).$$

The following result is another version of Theorem 3.10.

Theorem 3.6. *Let (A, B) be a nonempty compact, convex and proximinal pair of a domain D of the complex plane. Let $f(z)$ and $g(z)$ be continuous functions in D . Suppose that*

- (a) $f(A) \subseteq B$ and $g(B) \subseteq A$,

(b) $|f(z_1) - g(z_2)| < |z_1 - z_2|$,
 whenever $|z_1 - z_2| > \text{dist}(A, B)$ for $z_1 \in A$ and $z_2 \in B$. Then there exist $z_1^* \in A$ and $z_2^* \in B$ such that

$$|z_1^* - f(z_1^*)| = |z_2^* - g(z_2^*)| = \text{dist}(A, B), \quad \text{and} \quad |z_1^* - z_2^*| = \text{dist}(A, B).$$

Proof. It is easy to see that the result follows by invoking Theorem 3.8. \square

REFERENCES

- [1] A. Abkar, M. Gabeleh, *Generalized cyclic contractions in partially ordered metric spaces*, Optim Lett., **In Press** DOI DOI 10.1007/s11590-011-0379-y.
- [2] A. Abkar, M. Gabeleh, *Global optimal solutions of noncyclic mappings in metric spaces*, J. Optim. Theory Appl., **153** (2012), 298-305.
- [3] A. Abkar, M. Gabeleh, *Best proximity points of non-self mappings*, Top, **In Press** DOI 10.1007/s11750-012-0255-7.
- [4] M.A. Al-Thagafi, N. Shahzad, *Convergence and existence results for best proximity points*, Nonlinear Analysis, **70** (2009), 3665-3671.
- [5] M. Derafshpour, S. Rezapour, N. Shahzad, *Best Proximity Points of cyclic φ -contractions in ordered metric spaces*, Topological Methods in Nonlinear Analysis, **37** (2011), 193-202.
- [6] C. Di Bari, T. Suzuki, C. Vetro, *Best proximity points for cyclic Meir- Keeler contractions*, Nonlinear Anal., **69** (2008), 3790-3794.
- [7] A. Eldred, P. Veeramani, *Existence and convergence of best proximity points*, J. Math. Anal. Appl., **323** (2006), 1001-1006.
- [8] R. Espinola, *A new approach to relatively nonexpansive mappings*, Proc. Amer. Math. Soc., **136** (2008), 1987-1996.
- [9] R. Espinola, A. Fernandez-Leon, *On best proximity points in metric and Banach spaces*, Canad. J. Math. **63** (2011), 533-550.
- [10] F. Giannessi, A. Maugeri, P.M. Pardalos, *Equilibrium Problems: nonsmooth optimization and variational inequality models*, Nonconvex Optim. Appl., **58** (2004), DOI 10.1007/b101835.
- [11] M.A. Khamsi, W.A. Kirk, *An Introduction to Metric Spaces and Fixed Point Theory*, Pure and Applied Mathematics, Wiley-Interscience, New York, USA, 2001.
- [12] K. Fan, *Extensions of two fixed point theorems of F.E. Browder*, Math. Z. **122** (1969), 234-240.
- [13] N. Mizoguchi, W. Takahashi, *Fixed point theorems for multivalued mappings on complete metric spaces*, J. Math. Anal. Appl., **141** (1989), 177-188.
- [14] P.M. Pardalos, T.M. Rassias, A.A. Khan, *Equilibrium problems: nonlinear analysis and variational problems in honor of George Isac*, Springer Optim. Appl., **38** (2010), DOI 10.1007/978-1-4419-0158-3.
- [15] S. Sadiq Basha, *Best proximity points: global optimal approximate solutions*, J. Optim. Theory Appl., **49** (2011), 15-21.
- [16] V. Sankar Raj, *A best proximity point theorem for weakly contractive non-self-mappings*, Nonlinear Anal., **74** (2011), 4804-4808.
- [17] T. Suzuki, M. Kikkawa, C. Vetro, *The existence of best proximity points in metric spaces with the property UC*, Nonlinear Anal., **71** (2009), 2918-2926.
- [18] S.Z. Wang, B.Y. Li, Z.M. Gao, *Some fixed point theorems on expansion mappings*, Adv. Math. (China), **11**(2) (1982), 149-153.