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GLOBAL OPTIMAL SOLUTIONS OF NON-SELF MAPPINGS

Moosa Gabeleh1

In this paper we introduce a notion of the WP-property and study the
existence of best proximity points for non-self-mappings. Our result generalizes
the Mizoguchi and Takahashi’s fixed point theorem for single valued mappings.
Also by using the Schauder’s fixed point theorem, we establish a best proximity
point theorem in Banach spaces.
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1. Introduction and preliminaries

Banach contraction principle is a very important tools in nonlinear analysis
and there are many extensions of this principle; see, e.g.,[11] and the references
cited therein. One of the interesting generalizations was given by Mizoguchi and
Takahashi [13] as follows.

Theorem 1.1. Let (X, d) be a complete metric space and suppose that T : X −→
CB(X), where CB(X) denotes the class of all nonempty bounded closed subsets of
X. Assume that

H(Tx, Ty) ≤ α(d(x, y))d(x, y)

for each x, y ∈ X, where H is a Hausdorff metric on CB(X) and α is a function
from [0,∞) to [0, 1) such that lim supr−→t+ α(r) < 1 for all t ∈ (0,∞). Then T has
a fixed point.

Now, consider the non-self-mapping T : A→ X which A is a nonempty subset
of a metric space (X, d). Clearly, the fixed point equation Tx = x has not solution
necessary. Hence it is contemplated to find an approximate x ∈ A such that the
error d(x, Tx) is minimum. The following well-known best approximation theorem
due to Kay Fan.

Theorem 1.2. ([12]) Let A be a nonempty compact convex subset of a normed linear
space X and T : A → X be a continuous mapping. Then there exists x ∈ A such
that ∥x− Tx∥ = dist(Tx,A) := inf{∥Tx− a∥ : a ∈ A}.

A point x ∈ A in the above theorem is called a best approximant point of T
in A. The notion of best proximity point for non-self-mappings can be defined in
the following way.
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Definition 1.1. Let A and B be nonempty subsets of a metric space (X, d) and
T : A → B be a non-self-mapping. A point x∗ ∈ A is called a best proximity point
of T if d(x∗, Tx∗) = dist(A,B), where

dist(A,B) = inf{d(x, y) : (x, y) ∈ A×B}.

In fact best proximity point theorems are studied to find necessary conditions
such that the minimization problem

min
x∈A

d(x, Tx), (1.1)

has at least one solution.
Some of interesting results regarding best proximity points, can be found in

[1, 4, 5, 6, 7, 8, 9, 10, 14, 17].
Let A and B be two nonempty subsets of a metric space (X, d). In this work,

we adopt the following notations and definitions.

A0 = {x ∈ A : d(x, y) = dist(A,B), for some y ∈ B},

B0 = {y ∈ B : d(x, y) = dist(A,B), for some x ∈ A}.
The following notion of a geometric property in metric spaces was introduced by
Sankar Raj in [16].

Definition 1.2. ([16]) Let (A,B) be a pair of nonempty subsets of a metric space
(X, d) with A0 ̸= ∅. The pair (A,B) is said to has the P-property if and only if{

d(x1, y1) = dist(A,B)

d(x2, y2) = dist(A,B)
⇒ d(x1, x2) = d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

Example 1.1.([16]) Let A,B be two nonempty closed convex subsets of a Hilbert
space H. Then (A,B) has the P-property.
Example 1.2. Let A,B be two nonempty subsets of a metric space (X, d) such
that A0 ̸= ∅ and dist(A,B) = 0. Then (A,B) has the P-property.
Example 1.3. ([2]) Let A,B be two nonempty bounded, closed and convex subsets
of a uniformly convex Banach space X. Then (A,B) has the P-property.

The following theorem establishes the existence and uniqueness of best prox-
imity point for weakly contractive non-self-mappings in metric spaces.

Theorem 1.3. ([16]) Let (A,B) be a pair of nonempty closed subsets of a complete
metric space (X, d) such that A0 is nonempty. Let T : A → B be a weakly con-
tractive mapping, that is d(Tx, Ty) ≤ d(x, y) − ψ(d(x, y)), for all x, y ∈ A, where
ψ : [0,∞) → [0,∞) is a continuous and nondecreasing function such that ψ is
positive on (0,∞), ψ(0) = 0 and limt→∞ ψ(t) = ∞. Assume that the pair (A,B)
has the P-property. If T (A0) ⊆ B0, then there exists a unique x∗ in A such that
d(x∗, Tx∗) = dist(A,B).

In the next section, we introduce the notion of the WP-property which is
weaker than the P-property. We then prove a version of Theorem 1.1 for single
valued non-self-mappings in order to study of existence of best proximity points.
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2. Main result

To establish our results, we introduce the following geometric property in
metric spaces.

Definition 2.1. Let (A,B) be a pair of nonempty subsets of a metric space (X, d)
with A0 ̸= ∅. The pair (A,B) is said to has the WP-property if and only if{

d(x1, y1) = dist(A,B)

d(x2, y2) = dist(A,B)
⇒ d(x1, x2) ≤ d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

It is clear that if (A,B) has the P-property, then (A,B) has the WP-property.
Indeed, (A,B) has the P-property if and only both (A,B) and (B,A) have the
WP-property.

Let us illustrate the above notion with the following example.
Example 2.1. Let l∞ be the Banach space consisting of all bounded real sequences
with supremum norm and let {en} be the canonical basis of l∞. Suppose that

A := {2e1 + xe3 :
1

4
≤ x ≤ 1

2
}, B := {2e2 + ye3 :

1

2
≤ y ≤ 1}.

It is clear that dist(A,B) = 2 and A0 = A andB0 = B. Also for each (X,Y ) ∈ A×B,

we have ∥X−Y ∥∞ = 2 = dist(A,B). Now, if ∥X−Y ∥∞ = ∥X́− Ý ∥∞ = dist(A,B)

for (X,Y ), (X́, Ý ) ∈ A×B then it is easy to see that

∥X − X́∥∞ =
1

4
and ∥Y − Ý ∥∞ =

1

2
.

That is ∥X−X́∥∞ < ∥Y − Ý ∥∞, and hence (A,B) has the WP-property. Obviously,
the pair (A,B) has not P-property.

The following theorem state our main result of this section.

Theorem 2.1. Let (A,B) be a pair of two nonempty closed subset of a complete
metric space (X, d) such that A0 is nonempty. Assume that T : A −→ B is a
non-self-mapping such that

d(Tx, Ty) ≤ α(d(x, y))d(x, y), for all x, y ∈ A,

where α is a function from [0,∞) to [0, 1) such that lim supr−→t+ α(r) < 1 for all
t ∈ (0,∞). Suppose that (A,B) has the WP-property and T (A0) ⊆ B0. Then T has
a unique best proximity point in A.

Proof. Choose x0 ∈ A0. Since T (A0) ⊆ B0, there exists x1 ∈ A0 such that
d(x1, Tx0) = dist(A,B). Again, since Tx1 ∈ B0, there exists x2 ∈ A0 such that
d(x2, Tx1) = dist(A,B). Continuing this process, we can find a sequence {xn} in A
such that

d(xn+1, Txn) = dist(A,B), for all n ∈ N.
Since (A,B) has the WP-property, we obtain

d(xn+1, xn) ≤ d(Txn, Txn−1), for all n ∈ N.
We now have

d(xn+1, xn) ≤ d(Txn, Txn−1) ≤ α(d(xn, xn−1))d(xn, xn−1).
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Since α(t) < 1 for all t ∈ [0,∞), the sequence {d(xn+1, xn)} is a nonincreasing
sequence in R. Hence {d(xn, xn+1)} converges to some nonnegative real number η.
Since lim sups−→η+ α(s) < 1, there exist δ ∈ [0, 1) and ε > 0 such that α(s) ≤ δ for
all s ∈ [η, η + ε]. Let N ∈ N be such that

η ≤ d(xn, xn+1) ≤ η + ε, ∀n ≥ N.

Thus for all n ≥ N we must have
d(xn+1, xn) ≤ α(d(xn, xn−1))d(xn, xn−1)

δd(xn, xn−1) ≤ δd(Txn−1, Txn−2)
≤ δα(d(xn−1, xn−2))d(xn−1, xn−2)
≤ δ2d(xn−1, xn−2) ≤ ... ≤ δn−Nd(xn−N+1, xn−N ).

Therefore,∑∞
n=1 d(xn, xn+1) =

∑N
n=1 d(xn, xn+1) +

∑∞
n=1 d(xN+n+1, xn+N )

≤
∑N

n=1 d(xn, xn+1) +
∑N

n=1 δ
nd(xN+1, xN ) <∞.

This implies that {xn} is a Cauchy sequence in A. Since X is complete, there exists
x∗ ∈ A such that xn → x∗. By the continuity of T , we conclude that Txn → Tx∗.
Hence

d(x∗, Tx∗) = lim
n→∞

d(xn+1, Txn) = dist(A,B).

That is, x∗ ∈ A is a best proximity point of the mapping T . We now claim that
the best proximity point of the mapping T is unique. Let y∗ ∈ A be such that
d(y∗, T y∗) = dist(A,B) and y∗ ̸= x∗. Since (A,B) has the WP-property,

d(x∗, y∗) ≤ d(Tx∗, T y∗) ≤ α(d(x∗, y∗))d(x∗, y∗) < d(x∗, y∗),

which is a contradiction. Therefore, y∗ = x∗. Hence the best proximity point of T
is unique. �

If we consider A = B = X in above theorem, then the following corollary,
which is a single valued version of Mizoguchi and Takahashi’s fixed point theorem,
is obtained.

Corollary 2.1. Let (X, d) be a complete metric space. Suppose T : X −→ X is a
mapping such that

d(Tx, Ty) ≤ α(d(x, y))d(x, y)

for each x, y ∈ X, where α is a function from [0,∞) to [0, 1) such that lim supr−→t+ α(r) <
1 for all t ∈ (0,∞). Then T has a unique fixed point.

Example 2.2. Suppose thatX = R2 and consider the metric d onX by d((x, y), (x́, ý)) =
max{|x− x́|, |y − ý|}. Put

A := {(1, 0), (1, 1), (8, 0)}, B := {(0,−1

2
), (0, 2), (−1

2
, 3)}.

Clearly, dist(A,B) = 1. Also, A0 = {(1, 0), (1, 1)} and B0 = {(0,−1
2), (0, 2)}.

Moreover, it is easy to see that the pair (A,B) has the WP-property and has not
the P-property. Let T : A −→ B be a mapping defined by

T (1, 0) = T (1, 1) = (0, 2), T (8, 0) = (0,−1

2
).

Then T (A0) ⊆ B0 and we note that the mapping T is a non-self-contraction. Hence
T has a unique best proximity point and this point is x∗ = (1, 1).
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The following theorem shows the existence and uniqueness of a best proximity
point for expansive non-self-mappings.

Theorem 2.2. Let (A,B) be a pair of nonempty closed subsets of a complete metric
space (X, d) such that A0 ̸= ∅ and (B,A) satisfies the WP-property. Assume that
T : A→ B is an expansive non-self-mapping, that is

d(Tx, Ty) ≥ αd(x, y),

for some α > 1 and for all x, y ∈ A. If T is onto and T (A0) ⊇ B0, then T has a
unique best proximity point in A.

Proof. Since T is an expansive mapping and onto, the inverse of T : A → B exists.
Moreover, T−1 : B → A is a contraction non-self-mapping. Therefore by Theorem
2.2, T−1 has a unique best proximity point y∗ ∈ B. Thus d(T−1y∗, y∗) = dist(A,B).
Since T is a bijection, there exists a unique x∗ ∈ A such that y∗ = Tx∗. We now
have

d(x∗, Tx∗) = d(T−1y∗, y∗) = dist(A,B).

�
Here, we can deduce the following result due to Wang et al. [18], as a corollary

from the above theorem.

Corollary 2.2. ([18]) Let (X, d) be a complete metric space and T : X → X be an
expansive mapping such that T is onto. Then T has a unique fixed point.

3. Additional results

Property UC was defined in [17] in the following way.

Definition 3.1. ([17]) Let A and B be nonempty subsets of a metric space (X, d).
Then (A,B) is said to satisfy the property UC provided if {xn} and {zn} are se-
quences in A and {yn} is a sequence in B such that limn d(xn, yn) = dist(A,B) and
limn d(zn, yn) = dist(A,B), then limn d(xn, zn) = 0.

Example 3.1.([7]) Let A and B be nonempty subsets of a uniformly convex Banach
space X. Assume that A is convex. Then (A,B) satisfies the property UC.

Other examples of pairs having the property UC can be found in [17].
Very recently, Abkar and Gabeleh established the next theorem which ensures that
the existence of best proximity points for nonexpansive non-self-mappings in Banach
spaces.

Theorem 3.1. ([3]) Let (A,B) be a pair of nonempty closed and convex subsets of
a Banach space X such that A0 is nonempty. Let T : A → B be a nonexpansive
mapping such that T (A0) ⊆ B0. If the pair (A,B) has the P-property and A is
compact, then T has a best proximity point in A.

The following theorem is another version of Theorem 3.2 in uniformly convex
Banach spaces.

Theorem 3.2. Let (A,B) be a nonempty convex pair of a uniformly convex Banach
space X such that A is bounded, closed and B is compact. Assume that T : A→ B
be a nonexpansive mapping such that T (A0) ⊆ B0. Then T has a best proximity
point in A.
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Proof. By Examples 1.3 and 3.1 we note that (A,B) has the P-property and satisfies
the property UC. Also by Theorem 2.3 of [3] we conclude that there exists a sequence
{xn} in A such that ∥xn − Txn∥ → dist(A,B). Since A is bounded, closed and
convex in a uniformly convex Banach space X and B is compact, we may assume
that xn ⇀ p ∈ A and Txn → q ∈ B, where ”⇀” denotes the weak convergence.
Hence,

∥p− q∥ ≤ lim inf
n→∞

∥xn − Txn∥ = dist(A,B).

Then ∥p− q∥ = dist(A,B). Also, for all n ∈ N we have

dist(A,B) ≤ ∥xn − q∥ ≤ ∥q − Txn∥+ ∥xn − Txn∥,
which implies that ∥xn − q∥ → dist(A,B). Thus{

∥p− q∥ = dist(A,B),

∥xn − q∥ → dist(A,B).

Since (A,B) satisfies the property UC, we must have ∥xn − p∥ → 0, or xn → p.
Hence, the continuity of the mapping T implies that Txn → Tp and thus Tp = q,
i.e., p is a best proximity point of T . �

Here, we recall the other geometric properties in Banach spaces as follows.

Definition 3.2. ([8]) A pair (A,B) of subsets of a metric space is said to be prox-
iminal if for each (x, y) ∈ A×B there exists (x0, y0) ∈ A×B such that

d(x, y0) = d(x0, y) = dist(A,B).

If, additionally, we impose the condition that the pair of points (x0, y0) ∈ A × B is
unique for each (x, y) ∈ A×B, then we say that the pair (A,B) is a sharp proximinal
pair.

It was shown in [8] that when a pair of subsets (A,B) of a strictly convex
Banach space is proximinal then the sets A and B also satisfy the following definition.

Definition 3.3. ([9]) Let A and B be nonempty subsets of a Banach space X. We
say that A and B are proximinal parallel sets if the following two conditions are
fulfilled:
(1) (A,B) is a sharp proximinal pair.
(2) B = A+ h for a certain h ∈ X such that h = dist(A,B).

Using the Schauder’s fixed point theorem, we prove a best proximity point
theorem in Banach spaces.

Theorem 3.3. Let (A,B) be a nonempty compact convex pair in a strictly convex
Banach space X, such that (A,B) is proximinal . Suppose that T : A −→ B is a
continuous mapping. Then T has at least one best proximity point in A.

Proof. Since (A,B) is proximinal and X is a strictly convex Banach space, we con-
clude that A and B are proximinal parallel sets. Thus B = A+ h for certain h ∈ X
where ∥h∥ = dist(A,B). Now, define S : A −→ A by Sx = Tx − h. Then S is a
continuous self-map on a compact set. Hence by Schauder’s fixed point theorem, S
has at least one fixed point, that is, there exits x∗ ∈ A such that Sx∗ = x∗. This
implies that Tx∗ − h = x∗ and then

∥Tx∗ − x∗∥ = ∥h∥ = dist(A,B).
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Therefore, T has a best proximity point in A. �

Corollary 3.1. Let (A,B) be a nonempty bounded, closed, convex and proximinal
pair in Rn. Suppose that T : A −→ B is a continuous non-self-mapping. Then T
has a best proximity point in A.

The following theorem is subsumed in Theorem 3.6.

Theorem 3.4. Let (A,B) be a nonempty compact, convex and proximinal pair in
a uniformly convex Banach space X. Suppose that T : A −→ B and S : B −→ A
are two continuous non-self-mappings such that ∥Tx − Sy∥ < ∥x − y∥ whenever
∥x− y∥ > dist(A,B) for x ∈ A, y ∈ B. Then there exists (x∗, y∗) ∈ A×B such that

∥x∗ − Tx∗∥ = ∥y∗ − Sy∗∥ = dist(A,B), ∥x∗ − y∗∥ = dist(A,B).

Proof. By Theorem 3.6 there exists (x∗, y∗) ∈ A×B such that

∥x∗ − Tx∗∥ = ∥y∗ − Sy∗∥ = dist(A,B).

Since (A,B) has the P-property, we conclude that ∥x∗ − y∗∥ = ∥Tx∗ − Sy∗∥. Now
if ∥x∗ − y∗∥ > dist(A,B), then

∥x∗ − y∗∥ = ∥Tx∗ − Sy∗∥ < ∥x∗ − y∗∥,

which is a contradiction. Thus ∥x∗ − y∗∥ = dist(A,B). �

The following common fixed point theorem for non-commuting continuous
mappings is obtained from Theorem 3.8.

Corollary 3.2. Let A be a nonempty convex compact set in a Banach space X.
Suppose that T : A −→ A and S : A −→ A are two continuous self-mappings such
that ∥Tx− Sy∥ < ∥x− y∥, whenever x and y are distinct elements in A. Then T, S
have a unique common fixed point.

Recently Sadiq Basha established the following theorem as an application of
best proximity point theory to analytic functions of a complex variable.

Theorem 3.5. ([15]) Let A and B be nonempty compact and convex subsets of
a domain D of the complex plane. Let f(z) and g(z) be analytic functions in D.
Suppose that

(a) f(A) ⊆ B and g(B) ⊆ A,
(b) |f ′(z)| < 1, for all z ∈ A,
(c) |g′(z)| < 1, for all z ∈ B,
(d) |f(z1)− g(z2)| < |z1 − z2|,

whenever |z1− z2| > dist(A,B) for z1 ∈ A and z2 ∈ B. Then there exist z∗1 ∈ A and
z∗2 ∈ B such that

|z∗1 − f(z∗1)| = |z∗2 − g(z∗2)| = dist(A,B), and |z∗1 − z∗2 | = dist(A,B).

The following result is another version of Theorem 3.10.

Theorem 3.6. Let (A,B) be a nonempty compact, convex and proximinal pair of
a domain D of the complex plane. Let f(z) and g(z) be continuous functions in D.
Suppose that

(a) f(A) ⊆ B and g(B) ⊆ A,
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(b) |f(z1)− g(z2)| < |z1 − z2|,
whenever |z1− z2| > dist(A,B) for z1 ∈ A and z2 ∈ B. Then there exist z∗1 ∈ A and
z∗2 ∈ B such that

|z∗1 − f(z∗1)| = |z∗2 − g(z∗2)| = dist(A,B), and |z∗1 − z∗2 | = dist(A,B).

Proof. It is easy to see that the result follows by invoking Theorem 3.8. �
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