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in the setting of generalized Lagrange geometry as a natural generalization of similar
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a generalized Lagrange metric used by R. Miron in a geometric framework unifying

gravitation and electromagnetism.
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1. Introduction

Hermann Weyl attempted in [12] an unification of gravitation and electromagnetism

in a model of space-time geometry combining conformal and projective structures. More

precisely, let G be a conformal structure on the smooth manifold M i.e. an equivalence class

of (semi-)Riemannian metrics: g ∼ g if there exists a smooth function f ∈ C∞ (M) such

that g = e2fg. A (semi-Riemannian) Weyl structure is a map W : G → Ω1 (M) such that

W (g) = W (g) + 2df . In [6] it is proved that for a Weyl manifold (M,G,W ) there exists an

unique torsion-free linear connection ∇ on M such that for every g ∈ G:

∇g = W (g)⊗ g. (1.1)

Two natural extensions of Riemannian metrics are the Finsler and (generalized) La-

grange metrics. The last class of metrics, introduced by Radu Miron around 1983, are

suitable in geometrical approaches of general relativity and gauge theory as it is pointed out

in [9]. The Weyl structures were studied in Finslerian setting by T. Aikou in [1]-[3] and L.

Kozma in [7]-[8] and in the generalized Lagrange geometry by the first author in [5].

There exists also a generalization of Weyl structures provided by a scalar field u ∈
C∞(M) with u ̸= 0. Namely, we call scalar-Weyl structure on (M,G) a map: W : G →
Ω1 (M) such that W (g) = W (g) + 2udf . In [11, p. 32] it is proved that for a scalar-Weyl

manifold (M,G, u,W ) there exists an unique torsion-free linear connection ∇ on M such
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that for every g ∈ G:
u∇g = W (g)⊗ g. (1.2)

In this paper we extend the scalar-Weyl structures and their compatible connections

(1.2) in the generalized Lagrangian framework. This setting is introduced in the first section.

The compatibility between a distinguished connection and a scalar-Weyl structure is consid-

ered in the second section where the main result gives the existence and uniqueness of such

a compatible connection under certain horizontal symmetries. When the considered scalar

field u is equal to 1 we obtain the main result of [5] while for the above physical example a

natural scalar field is the square norm of the 1-form defining the given Weyl structure.

2. Generalized Lagrange-Weyl manifolds

Let M be a smooth n-dimensional real manifold and π : TM → M the tangent bundle

of M . A local chart x =
(
xi
)
1≤i≤n

of M lifts to a chart (x, y) =
(
xi, yi

)
on TM . A tensor

field of (r, s)-type on TM with law of change, at a change of charts on M , exactly as a

tensor field of (r, s)-type on M , is called d-tensor field of (r, s)-type. The first main notion

of this work is:

Definition 2.1([9]) A d-tensor field of (0, 2)-type g = (gij (x, y)) on TM is called

generalized Lagrange metric (GL-metric, on short) if:

(i) is symmetric: gij = gji,

(ii) is non-degenerate: det (gij) ̸= 0,

(iii) the quadratic form gij (x, y) ξ
iξj has a constant signature, ξ =

(
ξi
)
∈ Rn.

The pair (M, g) is a generalized Lagrange manifold.

Definition 2.2 Two GL-metrics g, g are called horizontally conformal equivalent if

there exists f ∈ C∞ (M) such that g = e2fg.

In the following let G be a horizontal conformal structure i.e. an equivalence class of

horizontal conformal equivalent GL-metrics and u ∈ C∞(M) with u ̸= 0. The second main

notion of this paper is:

Definition 2.3 A scalar-Weyl structure (with respect to u) on the generalized La-

grange manifold (M, g) is a map W : G → Ω1 (M) such that for every g ∈ G one has:

W (g) = W (g) + 2udf. (2.1)

The data (M,G, u,W ) will be called generalized Lagrange scalar-Weyl manifold.

Recall that a vector field X = Xi (x) ∂
∂xi ∈ X (M) has a vertical lift Xv ∈ X (TM)

given by Xv = Xi ∂
∂yi .

Because G implies the tangent bundle geometry it seems naturally the following def-

inition: a linear connection ∇ on TM is vertical-compatible with the generalized Lagrange

scalar-Weyl structure (M,G, u,W ) if there exists g ∈ G such that for every X ∈ X (M):

u∇Xvg = W (g) (X) · g.

But this definition has a great fault: the fact that ∇ is vertical-compatible with a repre-

sentative of G does not yields the vertical-compatibility with another representative of G.
Indeed, using (2.1), we have:

u∇Xvg = u∇Xv

(
e2fg

)
= u[Xv

(
e2f

)
g + e2f∇Xvg] = e2fW (g) (X) g = W (g) (X) g

̸= W (g) (X) g.
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With this motivation we introduce the next notion, namely nonlinear connections, well-

known in tangent bundle geometry.

3. Compatibility with respect to a nonlinear connection

Definition 3.1([9]) A distribution H on TM supplementary to the vertical distribu-

tion i.e. TTM = H ⊕ V (TM) is called a nonlinear connection.

An adapted basis for V (TM) is
(

∂
∂yi

)
and an adapted basis for H has the form(

δ
δxi := ∂

∂xi −N j
i

∂
∂yj

)
. The functions

(
N j

i (x, y)
)
are called the coefficients of the nonlinear

connection H. We obtain a new lift for vector fields; namely, to X = Xi (x) ∂
∂xi ∈ X (M)

we associate the horizontal lift Xh = Xi δ
δxi ∈ H.

The nonlinear connection H yields a bundle denoted H(TM) and called horizontal.

The existence of a nonlinear connection is equivalent to the reduction of the standard almost

tangent structure of TM to a D(GL(n,R))-structure conform [3]; here:

D(GL(n,Rn)) = {C =

(
A On

On B

)
∈ GL(2n,R); A,B ∈ GL(n,R)}.

The associated connections are given by:

Definition 3.2 A D(GL(n,R))-connection on TM is called d-connection or Finsler

connection.

A d-connection ∇ preserves by parallelism both the vertical and horizontal bundles.

Hence, ∇ has a pair of Christoffel coefficients
(
F i
jk (x, y) , C

i
jk (x, y)

)
defined by the relations:{

∇ δ

δxj

δ
δxk = F i

jk
δ

δxi , ∇ δ

δxj

∂
∂yk = F i

jk
∂

∂yi

∇ ∂

∂yj

δ
δxk = Ci

jk
δ

δxi , ∇ ∂

∂yj

∂
∂yk = Ci

jk
∂

∂yi .
(3.1)

It follows that ∇ yields two algorithms of covariant derivation on d-tensor fields: a

horizontal one, denoted |, and a vertical one, denoted |. For example, on the d-tensor field

g = (gij (x, y)) of (0, 2)-type we have:

gjk|i =
δgjk
δxi

− gakF
a
ji − gjaF

a
ki, gjk|i =

∂gjk
∂yi

− gakC
a
ji − gjaC

a
ki. (3.2)

Special classes of Finsler connections are provided by:

Definition 3.3 A d-connection is called:

(i) horizontal if all Ci
jk = 0,

(ii) horizontal symmetric (h-symmetric on short) if F i
jk = F i

kj for all indices i, j, k,

(iii) totally symmetric if it is h-symmetric and vertical symmetric i.e. Ci
jk = Ci

kj ̸= 0 for all

i, j, k.

For example, if g is a Riemannian metric then the Levi-Civita connection is the unique

d-connection both horizontal and h-symmetric; in this case F i
jk does not depend of y since

they are the usual Christoffel coefficients.

Returning to our setting it is natural to consider:
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Definition 3.4 If (M,G, u,W ) is a generalized Lagrange scalar-Weyl manifold then

a d-connection ∇ is called compatible if there exists g ∈ G such that for every X ∈ X (M)

we have:

u∇Xhg = W (g) (X) · g. (3.3)

An important result concerning this type of compatibility (which can be called as

scalar horizontal-recurrence) is:

Proposition 3.5 If (3.3) holds for a given g ∈ G then ∇ is compatible with the whole

class G.

Proof From (2.1) we get:

u∇Xhg = u∇Xh

(
e2σ ◦ π

)
g = u[Xh

(
e2σ ◦ π

)
g + e2σ∇Xhg] =

= u[2dσ (X) e2σg] + e2σW (g) (X) g = e2σg [2udσ +W (g) (X)] = W (g) (X) · g

which means the conclusion. �

The pair (g,H) yields four remarkable d-connections ([4]): Cartan, Berwald, Chern-

Rund and Hashiguchi. For our aim, the Chern-Rund connection, denoted ∇CR, is more

convenient because it satisfies ([4]):

I) is horizontal-metrical: ∇CR
Xh g = 0 for every X ∈ X (M),

II) is totally symmetric with the vertical Christoffel coefficients:

CR

Ci
jk=

1

2
gia

(
∂gak
∂yj

+
∂gja
∂yk

− ∂gjk
∂ya

)
. (3.4)

The main result of this paper is the generalization of the results cited in Introduction:

Theorem 3.6 In a generalized Lagrange scalar-Weyl manifold (M,G, u,W ) there

exists an unique compatible d-connection which is horizontal and h-symmetric.

Proof Let g ∈ G be fixed and the associated ∇CR. For arbitrary X,Y ∈ X (M) let

us define ∇XvY v = 0 and:

u∇XhY h := ∇CR
XhY

h − 1

2
W (g) (X) · Y h − 1

2
W (g) (Y ) ·Xh +

1

2
g
(
Xh, Y h

)
·B (3.5)

where:

g
(
Xh, Y h

)
= gijX

iY j , X = Xi (x)
∂

∂xi
, Y = Y j (x)

∂

∂xj

and B ∈ X (TM) is B =
(
Bi(x, y)

)
is the g-contravariant version of W (g):

Bi = gijwj, W (g) = 2wi(x)dx
i.

Here
(
gij

)
is the inverse of (gij). Then:

u∇Xhg = ∇CR
Xh g +W (g) (X) · g I)

= W (g) (X) · g

i.e. ∇ is horizontal-compatible with g. Applying the previous result we have the conclusion.

�

Remarks 3.7 i) The case u = 1 of this theorem is the main result of [5] and let us

call classical compatible connection this ∇. For general u and g a (semi-) Riemannian metric
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it is obtained the connection of (1.2) from Introduction.

ii) The non-null coefficients of ∇ are:

F i
jk =

1

u

[
CR

F i
jk −δijwk − δikwj + gjkB

i

]
, (3.6)

where

(
CR

F

)
are the horizontal Christoffel coefficients of ∇CR:

CR

F i
jk=

1

2
gia

(
δgak
δxj

+
δgja
δxk

− δgjk
δxa

)
. (3.7)

Example 3.8 Suppose that W (g) = 2du; let us call self-scalar Weyl structure such a

type of scalar-Weyl structure. Then (3.6) becomes:

F i
jk =

1

u

CR

F i
jk −δij

∂(lnu)

∂xk
− δik

∂(lnu)

∂xj
+ gjkg

ia ∂(lnu)

∂xa
. (3.8)

The relation (2.1) reads: W (g) = 2ud(lnu+ f). �

Example 3.9 Suppose that M is endowed with a Riemannian metric γ = (γij(x))

with the Christoffel symbols (Γi
jk). In [10] is given a geometrical setting for gravitation and

electromagnetism based on the generalized Lagrange metric:

gij = γij +
1

c2
yiyj (3.9)

with c > 0 a real constant considered as the velocity of light and yi = γijy
j . It is proved

that g is not reducible to a Lagrange (particularly Finsler) metric and it has the associated

nonlinear connection:

N i
j = Γi

jky
k. (3.10)

Its Chern-Rund connection has the coefficients:

F i
jk = Γi

jk, Ci
jk =

1

c2a
γjky

i (3.11)

where:

a = 1 +
∥y∥2γ
c2

, ∥y∥2γ = yiyi. (3.12)

Let (
c

F i
jk) be the coefficients of the classical compatible connection for (M, {e2fγ; f ∈

C∞(M)}). From (3.6) it results that the compatible connection for (M, g, u) is:

F i
jk =

1

u

c

F i
ij +

1

uc2
yjykB

i. (3.13)

In order to obtain a natural scalar field for this setting we suppose that W (g) is a 1-from

without zeros; hence we can consider as remarkable u its square norm with respect to γ:

u = ∥W (g)∥2γ = 4γijwiwj . (3.14)
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