

**ON LEFT ϕ -BIPROJECTIVITY AND LEFT ϕ -BIFLATNESS OF
CERTAIN BANACH ALGEBRAS**

A. Sahami¹

*In this paper, we study left ϕ -biflatness and left ϕ -biprojectivity of some Banach algebras, where ϕ is a non-zero multiplicative linear function. We show that if the Banach algebra A^{**} is left ϕ -biprojective, then A is left ϕ -biflat. Using this tool we study left ϕ -biflatness of some matrix algebras. We also study left ϕ -biflatness and left ϕ -biprojectivity of the projective tensor product of some Banach algebras related to a locally compact group. We prove that for a locally compact group G , $M(G) \otimes_p A(G)$ is left $\phi \otimes \psi$ -biprojective if and only if G is finite. We show that $M(G) \otimes_p L^1(G)$ is left $\phi \otimes \psi$ -biprojective if and only if G is compact.*

Keywords: Left ϕ -biflatness, Left ϕ -biprojectivity, Banach algebras, Locally compact groups.

MSC2010: Primary 46M10, 46H05 Secondary 43A07, 43A20.

1. Introduction and Preliminaries

Banach homology theory has two important notions, biflatness and biprojectivity which these notions have key role in studying the structure of Banach algebras. A Banach algebra A is called biflat (biprojective), if there exists a bounded A -bimodule morphism $\rho : A \rightarrow (A \otimes_p A)^{**}$ ($\rho : A \rightarrow A \otimes_p A$) such that $\pi_A^{**} \circ \rho$ is the canonical embedding of A into A^{**} (ρ is a right inverse for π_A), respectively. It is well-known that for a locally compact group G , the group algebra $L^1(G)$ is biflat (biprojective) if and only if G is amenable (compact), respectively. We have to mention that a biflat Banach algebra A with a bounded approximate identity is amenable and vice versa, see [13].

A Banach algebra A is called left ϕ -amenable, if there exists a bounded net (a_α) in A such that $aa_\alpha - \phi(a)a_\alpha \rightarrow 0$ and $\phi(a_\alpha) \rightarrow 1$ for all $a \in A$, where $\phi \in \Delta(A)$. For a locally compact group G , the Fourier algebra $A(G)$ is always left ϕ -amenable. Also the group algebra $L^1(G)$ is left ϕ -amenable if and only if G is amenable, for further information see [8] and [1].

Following this course, Esmaili et. al. in [3] introduced and studied a biflat-like property related to a multiplicative linear functional, they called it condition W (which we call it here right ϕ -biflatness). The Banach algebra A is called left ϕ -biflat, if there exists a bounded linear map $\rho : A \rightarrow (A \otimes_p A)^{**}$ such that

$$\rho(ab) = \phi(b)\rho(a) = a \cdot \rho(b)$$

and

$$\tilde{\phi} \circ \pi_A^{**} \circ \rho(a) = \phi(a),$$

for each $a, b \in A$. We followed their work and showed that the Segal algebra $S(G)$ is left ϕ -biflat if and only if G is amenable see [15]. Also we defined a notion of left ϕ -biprojectivity

¹Department of Mathematics, Faculty of Basic Sciences Ilam University P.O. Box 69315-516 Ilam, Iran.
E-mail: a.sahami@ilam.ac.ir

for Banach algebras. In fact A Banach algebra is left ϕ -biprojective if there exists a bounded linear map $\rho : A \rightarrow A \otimes_p A$ such that

$$\rho(ab) = a \cdot \rho(b) = \phi(b)\rho(a), \quad \phi \circ \pi_A \circ \rho(a) = \phi(a), \quad (a, b \in A).$$

We showed that the Lebesgue-Fourier algebra $LA(G)$ is left ϕ -biprojective if and only if G is compact. Also the Fourier algebra $A(G)$ is left ϕ -biprojective if and only if G is discrete, see [16].

In this paper, we show that if the Banach algebra A^{**} is left ϕ -biprojective, then A is left ϕ -biflat. Using this tool we study left ϕ -biflatness of some matrix algebras. We also study left ϕ -biflatness and left ϕ -biprojectivity of the projective tensor product of some Banach algebras. We prove that for a locally compact group G , $M(G) \otimes_p A(G)$ is left $\phi \otimes \psi$ -biprojective if and only if G is finite. We show that $M(G) \otimes_p L^1(G)$ is left $\phi \otimes \psi$ -biprojective if and only if G is compact.

We remark some standard notations and definitions that we shall need in this paper. Let A be a Banach algebra. If X is a Banach A -bimodule, then X^* is also a Banach A -bimodule via the following actions

$$(a \cdot f)(x) = f(x \cdot a), \quad (f \cdot a)(x) = f(a \cdot x) \quad (a \in A, x \in X, f \in X^*).$$

Throughout, the character space of A is denoted by $\Delta(A)$, that is, all non-zero multiplicative linear functionals on A . Let $\phi \in \Delta(A)$. Then ϕ has a unique extension $\tilde{\phi} \in \Delta(A^{**})$ which is defined by $\tilde{\phi}(F) = F(\phi)$ for every $F \in A^{**}$.

Let A be a Banach algebra. The projective tensor product $A \otimes_p A$ is a Banach A -bimodule via the following actions

$$a \cdot (b \otimes c) = ab \otimes c, \quad (b \otimes c) \cdot a = b \otimes ca \quad (a, b, c \in A).$$

For Banach algebras A and B with $\phi \in \Delta(A)$ and $\psi \in \Delta(B)$, we denote $\phi \otimes \psi$ for a multiplicative linear functional on $A \otimes_p B$ given by $\phi \otimes \psi(a \otimes b) = \phi(a)\psi(b)$ for each $a \in A$ and $b \in B$. The product morphism $\pi_A : A \otimes_p A \rightarrow A$ is given by $\pi_A(a \otimes b) = ab$, for every $a, b \in A$. Let X and Y be Banach A -bimodules. The map $T : X \rightarrow Y$ is called A -bimodule morphism, if

$$T(a \cdot x) = a \cdot T(x), \quad T(x \cdot a) = T(x) \cdot a, \quad (a \in A, x \in X).$$

For the Banach spaces E and F , the weak star operator topology on $B(E, F^*)$ (the set of all bounded linear operators from E into F^*) is the locally convex topology given by the seminorms $\{\|\cdot\|_{e,f} : e \in E, f \in F\}$, where $\|T\|_{e,f} = |\langle f, T(e) \rangle|$ and $T \in B(E, F^*)$. We have to remind that the weak star operator topology on $B(E, F^*)$ is exactly the w^* -topology on $B(E, F^*)$ when identified with $(E \otimes_p F)^*$. Note that every bounded net in $B(E, F^*)$ has a weak star operator topology-limit point in $B(E, F^*)$.

2. Some general properties

Let A be a Banach algebra and $\phi \in \Delta(A)$. A is called approximate left ϕ -biprojective if there exists a net of bounded linear maps from A into $A \otimes_p A$, say $(\rho_\alpha)_{\alpha \in I}$, such that

- (i) $a \cdot \rho_\alpha(b) - \rho_\alpha(ab) \xrightarrow{\|\cdot\|} 0$,
- (ii) $\rho_\alpha(ba) - \phi(a)\rho_\alpha(b) \xrightarrow{\|\cdot\|} 0$,
- (iii) $\phi \circ \pi_A \circ \rho_\alpha(a) - \phi(a) \rightarrow 0$,

for every $a, b \in A$, see [14].

Proposition 2.1. *Let A be a left ϕ -biflat Banach algebra. Then A is approximate left ϕ -biprojective.*

Proof. Since A is left ϕ -biflat, there exists a bounded linear map $\rho : A \rightarrow (A \otimes_p A)^{**}$ such that $\rho(ab) = a \cdot \rho(b) = \phi(b)\rho(a)$ and $\tilde{\phi} \circ \pi_A^{**} \circ \rho(a) = \phi(a)$. Since $\rho \in B(A, (A \otimes_p A)^{**})$, there exists a net $\rho_\alpha \in B(A, A \otimes_p A)$ such that $\rho_\alpha \xrightarrow{W^*OT} \rho$. Thus for each $a \in A$ we have $\rho_\alpha(a) \xrightarrow{w^*} \rho(a)$. Then

$$a \cdot \rho_\alpha(b) \xrightarrow{w^*} a \cdot \rho(b) = \rho(ab), \quad \rho_\alpha(ab) \xrightarrow{w^*} \rho(ab), \quad \phi(b)\rho_\alpha(a) \xrightarrow{w^*} \phi(b)\rho(a) = \rho(ab).$$

On the other hand, the map π_A^{**} is a w^* -continuous map, so $\pi_A^{**} \circ \rho_\alpha(a) \xrightarrow{w^*} \pi_A^{**} \circ \rho(a)$, for each $a \in A$. Then

$$\phi \circ \pi_A \circ \rho_\alpha(a) = \tilde{\phi} \circ \pi_A^{**} \circ \rho_\alpha(a) = \pi_A^{**} \circ \rho_\alpha(a)(\phi) \rightarrow \pi_A^{**} \circ \rho(a)(\phi) = \tilde{\phi} \circ \pi_A^{**} \circ \rho(a) = \phi(a).$$

Also for each $a, b \in A$, we have

$$a \cdot \rho_\alpha(b) \xrightarrow{w^*} a \cdot \rho(b) = \rho(ab), \quad \rho_\alpha(ab) \xrightarrow{w^*} \rho(ab), \quad \phi(b)\rho_\alpha(a) \xrightarrow{w^*} \phi(b)\rho(a).$$

So

$$a \cdot \rho_\alpha(b) - \rho_\alpha(ab) \xrightarrow{w^*} 0, \quad \phi(b)\rho_\alpha(a) - \phi(b)\rho(a) \xrightarrow{w^*} 0.$$

Put $F = \{a_1, a_2, \dots, a_n\}$ and $G = \{b_1, b_2, \dots, b_n\}$ for finite subsets of A . Define

$$M = \{(a_1 \cdot T(b_1) - T(a_1 b_1), a_2 \cdot T(b_2) - T(a_2 b_2), \dots, a_n \cdot T(b_n) - T(a_n b_n)) : T \in B(A, A \otimes_p A)\}.$$

It is easy to see that M is a convex subset of $\prod_{i=1}^n (A \otimes_p A) \oplus_1 \prod_{i=1}^n \mathbb{C}$ and $(0, 0, \dots, 0) \in \overline{M}^w = \overline{M}^{||\cdot||}$. It follows that, there exists a net $\xi_{(\epsilon, F, G)} \in B(A, A \otimes_p A)$ such that

$$\|a_i \cdot \xi_{(\epsilon, F, G)}(b_i) - \xi_{(\epsilon, F, G)}(a_i b_i)\| < \epsilon, \quad \|\xi_{(\epsilon, F, G)}(a_i b_i) - \phi(b_i)\xi_{(\epsilon, F, G)}(a_i)\| < \epsilon$$

and $|\phi \circ \pi_A \circ \xi_{(\epsilon, F, G)}(a_i) - \phi(a_i)| < \epsilon$, for each $i \in \{1, 2, \dots, n\}$. It follows that the net $(\xi_{(\epsilon, F, G)})$, for each $a, b \in A$, satisfies

$$a \cdot \xi_{(\epsilon, F, G)} - \xi_{(\epsilon, F, G)}(ab) \rightarrow 0, \quad \phi(b)\xi_{(\epsilon, F, G)}(a) - \xi_{(\epsilon, F, G)}(ab) \rightarrow 0$$

and

$$\phi \circ \pi_A \circ \xi_{(\epsilon, F, G)}(a) - \phi(a) \rightarrow 0.$$

Therefore A is approximately left ϕ -biprojective. \square

The converse of the above proposition is partially valid:

Lemma 2.1. *If A is an approximately left ϕ -biprojective with bounded net ρ_α , then A is left ϕ -biflat.*

Proof. Let A be approximately left ϕ -biprojective with bounded net ρ_α . So $\rho_\alpha \in B(A, (A \otimes_p A)^{**}) \cong (A \otimes_p (A \otimes_p A)^*)^*$ has a w^* -limit-point, say ρ . Since

$$a \cdot \rho_\alpha(b) - \rho_\alpha(ab) \rightarrow 0, \quad \phi(b)\rho_\alpha(a) - \rho_\alpha(ab) \rightarrow 0, \quad \phi \circ \pi_A \circ \rho_\alpha(a) - \phi(a) \rightarrow 0.$$

Note that for each $a \in A$, $\rho_\alpha(a) \xrightarrow{w^*} \rho(a)$. It follows that

$$a \cdot \rho(b) = \rho(ab) = \phi(b)\rho(a), \quad \tilde{\phi} \circ \pi_A^{**} \circ \rho(a) = \phi(a),$$

for each $a \in A$. \square

Example 2.1. *We give a Banach algebra which is not left ϕ -biflat but it is approximate left ϕ -biprojective. So the converse of Proposition 2.1 is not always true. Let denote ℓ^1 for the set of all sequences $a = ((a_n))$ of complex numbers equipped with $\|a\| = \sum_{n=1}^{\infty} |a_n| < \infty$ as its norm. With the following product:*

$$(a * b)(n) = \begin{cases} a(1)b(1) & \text{if } n = 1 \\ a(1)b(n) + b(1)a(n) + a(n)b(n) & \text{if } n > 1, \end{cases}$$

$A = (\ell^1, \|\cdot\|)$ becomes a Banach algebra. Clearly $\Delta(\ell^1) = \{\phi_1, \phi_1 + \phi_n\}$, where $\phi_n(a) = a(n)$ for every $a \in \ell^1$. We claim that ℓ^1 is not left ϕ_1 -biflat but ℓ^1 is approximately left $\tilde{\phi}_1$ -biprojective for some $\phi \in \Delta(\ell^1)$. We assume conversely that ℓ^1 is left ϕ_1 -biflat. One can see that $(1, 0, 0, \dots)$ is a unit for ℓ^1 . Therefore by [15, Lemma 2.1] left ϕ_1 -biflatness of ℓ^1 implies that ℓ^1 is left ϕ_1 -amenable. On the other hand by [9, Example 2.9] ℓ^1 is not left ϕ_1 -amenable which is a contradiction.

Applying [9, Example 2.9], gives that ℓ^1 is approximate left ϕ_1 -amenable. So [14, Proposition 2.4] follows that that ℓ^1 is approximate left $\tilde{\phi}_1$ -biprojective.

Proposition 2.2. *Let A be a Banach algebra with an approximate identity and let $\phi \in \Delta(A)$. If A^{**} is approximately biflat, then A is left ϕ -biflat.*

Proof. Since A has an approximate identity $\overline{A \ker \phi} = \ker \phi$. Thus by [11, Theorem 3.3] A is left ϕ -amenable. So there exists an element $m \in A^{**}$ such that $am = \phi(a)m$ and $\tilde{\phi}(m) = 1$ for every $a \in A$. Define $\rho : A \rightarrow A^{**} \otimes_p A^{**}$ by $\rho(a) = \phi(a)m \otimes m$. Clearly ρ is a bounded linear map such that

$$a \cdot \rho(b) = \rho(ab) = \phi(b)\rho(a), \quad \tilde{\phi} \circ \pi_{A^{**}} \circ \rho(a) = \phi(a), \quad (a \in A).$$

There exists a bounded linear map $\psi : A^{**} \otimes_p A^{**} \rightarrow (A \otimes_p A)^{**}$ such that for $a, b \in A$ and $m \in A^{**} \otimes_p A^{**}$, the following holds;

- (i) $\psi(a \otimes b) = a \otimes b$,
- (ii) $\psi(m) \cdot a = \psi(m \cdot a)$, $a \cdot \psi(m) = \psi(a \cdot m)$,
- (iii) $\pi_A^{**}(\psi(m)) = \pi_{A^{**}}(m)$,

see [4, Lemma 1.7]. Set $\eta = \psi \circ \rho : A \rightarrow (A \otimes_p A)^{**}$. It is easy to see that $a \cdot \eta(b) = \eta(ab) = \phi(b)\eta(a)$

$$\tilde{\phi} \circ \pi_A^{**} \circ \eta(a) = \tilde{\phi} \circ \pi_{A^{**}} \circ \psi \circ \rho(a) = \tilde{\phi} \circ \pi_A^{**} \circ \rho(a) = \phi(a), \quad (a \in A).$$

So A is left ϕ -biflat. \square

Proposition 2.3. *Suppose that A is a Banach algebra and $\phi \in \Delta(A)$. Let A^{**} be left $\tilde{\phi}$ -biprojective. Then A is left ϕ -biflat.*

Proof. Let A^{**} be $\tilde{\phi}$ -biprojective. So we have a bounded linear map $\rho : A^{**} \rightarrow A^{**} \otimes_p A^{**}$ such that $\rho(ab) = a \cdot \rho(b) = \tilde{\phi}(b)\rho(a)$ and $\tilde{\phi} \circ \pi_{A^{**}} \circ \rho(a) = \tilde{\phi}(a)$, for each $a, b \in A^{**}$. Let ψ be a bounded linear map as in the proof of previous proposition. Set $\eta = \psi \circ \rho|_A : A \rightarrow (A \otimes_p A)^{**}$. Clearly η is a bounded linear map which satisfies

$$\eta(ab) = \psi \circ \rho|_A(ab) = \psi(a \cdot \rho|_A(b)) = a \cdot \psi \circ \rho|_A(b)$$

and

$$\phi(b)\eta(a) = \phi(b)\psi \circ \rho|_A(a) = \psi(\phi(b)\rho|_A(a)) = \psi \circ \rho|_A(ab) = \eta(ab).$$

Also we have

$$\tilde{\phi} \circ \pi_A^{**} \circ \eta(a) = \tilde{\phi} \circ \pi_A^{**} \circ \psi \circ \rho|_A(a) = \tilde{\phi} \circ \pi_{A^{**}} \circ \rho|_A(a) = \phi(a),$$

for each $a \in A$. It follows that A is left ϕ -biflat. \square

Let A be a Banach algebra and I be a totally ordered set. By $UP_I(A)$ we denote the set of $I \times I$ upper triangular matrices which its entries come from A and

$$\|(a_{i,j})_{i,j \in I}\| = \sum_{i,j \in I} \|a_{i,j}\| < \infty.$$

With matrix operations and $\|\cdot\|$ as a norm, $UP_I(A)$ becomes a Banach algebra. Let $\phi \in \Delta(A)$ and i_0 be the greatest element of I . Define $\psi_\phi(a_{i,j}) = \phi(a_{i_0, i_0})$. Clearly ψ_ϕ is a character on $UP_I(A)$.

Proposition 2.4. *Let I be a totally ordered set with the greatest element. Also let A be a Banach algebra with left identity and $\phi \in \Delta(A)$. Then $UP_I(A)^{**}$ is left ψ_ϕ -biflat if and only if $|I| = 1$ and A is left ϕ -biflat.*

Proof. Suppose $UP_I(A)^{**}$ is left ψ_ϕ -biflat. Let $i_0 \in I$ be the greatest element of I with respect to \geq . Since A has a left unit, $UP_I(A)$ has a left approximate identity. By [15, Lemma 2.1] left ψ_ϕ -amenability of $UP_I(A)^{**}$ implies that $UP_I(A)$ is left ψ_ϕ -amenable. Define

$$J = \{(a_{i,j})_{i,j \in I} \in UP_I(A) \mid a_{i,j} = 0 \text{ for } j \neq i_0\}.$$

Clearly J is a closed ideal of $UP_I(A)$ with $\psi_\phi|_J \neq 0$. Applying [6, Lemma 3.1] gives that J is left ψ_ϕ -amenable. So by [6, Theorem 1.4] there exists a bounded net (j_α) in J which satisfies

$$jj_\alpha - \psi_\phi(j)j_\alpha \rightarrow 0, \quad \psi_\phi(j_\alpha) = 1 \quad (j \in J). \quad (1)$$

Suppose in contradiction that I has at least two elements. Let a_0 be an element in A such

that $\phi(a_0) = 1$. Set $j = \begin{pmatrix} \dots & 0 & \dots & 0 & a_0 \\ \dots & 0 & \dots & 0 & a_0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & 0 & \dots & 0 & a_0 \\ \vdots & \vdots & \vdots & \vdots & 0 \end{pmatrix}$. Clearly for each α the net j_α has a form $\begin{pmatrix} \dots & 0 & \dots & 0 & j_i^\alpha \\ \dots & 0 & \dots & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & 0 & \dots & 0 & j_k^\alpha \\ \vdots & \vdots & \vdots & \vdots & j_{i_0}^\alpha \end{pmatrix}$, where $(j_i^\alpha), (j_k^\alpha)$ and $(j_{i_0}^\alpha)$ are some nets in A . Put j and

j_α in (1) we have $j_{i_0}^\alpha a_0 \rightarrow 0$. Since ϕ is continuous, we have $\phi(j_{i_0}^\alpha) \rightarrow 0$. On the other hand $\psi_\phi(j_\alpha) = \phi(j_{i_0}^\alpha) = 1$ which is a contradiction. So I must be singleton and the proof is complete. \square

Corollary 2.1. *Let I be a totally ordered set with the greatest element. Also let A be a Banach algebra with left identity and $\phi \in \Delta(A)$. If $UP_I(A)^{**}$ is approximately biflat, then $|I| = 1$ and A is approximately biflat.*

3. Left ϕ -biprojectivity of the projective tensor product Banach algebras

Theorem 3.1. *Let A and B be Banach algebras which $\phi \in \Delta(A)$ and $\psi \in \Delta(B)$. Suppose that A has a unit and B has an idempotent x_0 such that $\psi(x_0) = 1$. If $A \otimes_p B$ is left $\phi \otimes \psi$ -biflat, then A is left ϕ -amenable.*

Proof. Let $\rho : A \otimes_p B \rightarrow ((A \otimes_p B) \otimes_p (A \otimes_p B))^{**}$ be a bounded linear map such that

$$\rho(xy) = x \cdot \rho(y) = \widetilde{\phi \otimes \psi}(y)\rho(x), \quad \widetilde{\phi \otimes \psi} \circ \pi_{A \otimes_p B}^{**} \circ \rho(x) = \phi \otimes \psi(x) \quad (x, y \in A \otimes_p B).$$

For idempotent $x_0 \in B$ and elements $a_1, a_2 \in A$ we have

$$a_1 a_2 \otimes x_0 = a_1 a_2 \otimes x_0 = a_1 a_2 \otimes x_0^2 = (a_1 \otimes x_0)(a_2 \otimes x_0).$$

We denote e for the unit of A . So we have

$$\begin{aligned} \rho(a_1 a_2 \otimes x_0) &= \rho((a_1 \otimes x_0)(a_2 \otimes x_0)) = (a_1 \otimes x_0) \cdot \rho(a_2 \otimes x_0) \\ &= a_1(e \otimes x_0) \cdot \rho(a_2 \otimes x_0) \\ &= a_1 \rho(e a_2 \otimes x_0^2), \end{aligned}$$

also

$$\rho(a_1 a_2 \otimes x_0) = \rho((a_1 \otimes x_0)(a_2 \otimes x_0)) = \phi \otimes \psi(a_2 \otimes x_0) \rho(a_1 \otimes x_0) = \phi(a_2) \rho(a_1 \otimes x_0)$$

and

$$\widetilde{\phi \otimes \psi} \circ \pi_{A \otimes_p B}^{**} \circ \rho(a_1 \otimes x_0) = \phi \otimes \psi(a_1 \otimes x_0) = \phi(a_1),$$

for each $a_1, a_2 \in A$. Put $\xi : (A \otimes_p B) \otimes_p (A \otimes_p B) \rightarrow A \otimes_p A$ for a bounded linear map which is given by $\xi((a \otimes b) \otimes (c \otimes d)) = \psi(bd)a \otimes c$, for each $a, c \in A$ and $b, d \in B$. Clearly

$$\pi_A^{**} \circ \xi^{**} = (id_A \otimes \psi)^{**} \circ \pi_{A \otimes_p B}^{**}.$$

Define $\theta : A \rightarrow (A \otimes_p A)^{**}$ by $\theta(a) = \xi^{**} \circ \rho(a \otimes x_0)$. Clearly θ is a bounded linear map. We have

$$a \cdot \theta(b) = a \cdot \xi^{**} \circ \rho(b) = \xi^{**} \circ \rho(ab) = \phi(b) \xi^{**} \circ \rho(a) = \phi(b) \theta(a), \quad (a, b \in A).$$

Also

$$\begin{aligned} \tilde{\phi} \circ \pi_A^{**} \circ \theta(a) &= \tilde{\phi} \circ \pi_A^{**} \circ \xi^{**} \circ \rho(a \otimes x_0) = \tilde{\phi} \circ (id_A \otimes \psi)^{**} \circ \pi_{A \otimes_p B}^{**} \circ \rho(a \otimes x_0) \\ &= \widetilde{\phi \otimes \psi} \circ \pi_{A \otimes_p B}^{**} \circ \rho(a \otimes x_0) \\ &= \phi \otimes \psi(a \otimes x_0) = \phi(a), \end{aligned}$$

for each $a \in A$. It follows that A is left ϕ -biflat. Since A has a unit by [15, Lemma 2.1] A is left ϕ -amenable. \square

Note that the previous theorem is also valid in the left ϕ -biprojective case. In fact we have the following corollary which we omit its proof.

Corollary 3.1. *Let A and B be Banach algebras which $\phi \in \Delta(A)$ and $\psi \in \Delta(B)$. Suppose that A has a unit and B has an idempotent x_0 such that $\psi(x_0) = 1$. If $A \otimes_p B$ is left $\phi \otimes \psi$ -biprojective, then A is left ϕ -contractible.*

Theorem 3.2. *Let A and B be Banach algebra with $\phi \in \Delta(A)$ and $\psi \in \Delta(B)$. If A left ϕ -biprojective and B is ψ -biprojective, then $A \otimes_p B$ is left $\phi \otimes \psi$ -biprojective.*

Proof. Since A left ϕ -biprojective and B is ψ -biprojective, there exist bounded linear map $\rho_A : A \rightarrow A \otimes_p A$ and $\rho_B : B \rightarrow B \otimes_p B$ such that

$$\rho_A(a_1 a_2) = a_1 \cdot \rho_A(a_2) = \phi(a_2) \rho_A(a_1), \quad \phi \circ \pi_A \circ \rho_A = \phi, \quad (a_1, a_2 \in A)$$

and

$$\rho_B(b_1 b_2) = b_1 \cdot \rho_B(b_2) = \phi(b_2) \rho_B(b_1), \quad \psi \circ \pi_B \circ \rho_B = \psi, \quad (b_1, b_2 \in B).$$

Let θ be an isometrical isomorphism from $(A \otimes_p A) \otimes_p (B \otimes_p B)$ into $(A \otimes_p B) \otimes_p (A \otimes_p B)$ which is given by $\theta(a_1 \otimes a_2 \otimes b_1 \otimes b_2) = a_1 \otimes b_1 \otimes a_2 \otimes b_2$ for each $a_1, a_2 \in A$ and $b_1, b_2 \in B$. Define $\rho = \theta \circ (\rho_A \otimes \rho_B)$. So

$$\begin{aligned} \rho((a_1 \otimes b_1)(a_2 \otimes b_2)) &= \theta \circ (\rho_A \otimes \rho_B)((a_1 \otimes b_1)(a_2 \otimes b_2)) \\ &= \theta(\rho_A(a_1 a_2) \otimes \rho_B(b_1 b_2)) \\ &= \theta(a_1 \cdot \rho_A(a_2) \otimes b_1 \cdot \rho_B(b_2)) \\ &= \theta((a_1 \otimes b_1) \cdot (\rho_A(a_2) \otimes \rho_B(b_2))) \\ &= (a_1 \otimes b_1) \cdot \theta \circ (\rho_A \otimes \rho_B)(a_2 \otimes b_2), \end{aligned}$$

for each $a_1, a_2 \in A$ and $b_1, b_2 \in B$. It follows that $\rho(xy) = x \cdot \rho(y)$ for each $x, y \in A \otimes_p B$. Also we have

$$\begin{aligned}\phi \otimes \psi(a_1 \otimes b_1)\rho(a_2 \otimes b_2) &= \phi(a_1)\psi(b_1)\theta \circ (\rho_A(a_2) \otimes \rho_B(b_2)) \\ &= \theta \circ (\phi(a_1)\rho_A(a_2) \otimes \psi(b_1)\rho_B(b_2)) \\ &= \theta \circ (\rho_A(a_2a_1) \otimes \rho_B(b_2b_1)) \\ &= \rho((a_2 \otimes b_2)(a_1 \otimes b_1)),\end{aligned}$$

for each $a_1, a_2 \in A$ and $b_1, b_2 \in B$. So for each $x, y \in A \otimes_p B$, we have $\phi \otimes \psi(x)\rho(y) = \rho(yx)$. Note that

$$\pi_{A \otimes_p B} \circ \theta(a_1 \otimes a_2 \otimes b_1 \otimes b_2) = \pi_{A \otimes_p B}(a_1 \otimes b_1 \otimes a_2 \otimes b_2) = \pi_A(a_1 \otimes a_2)\pi_B(b_1 \otimes b_2),$$

it implies that $\pi_{A \otimes_p B} \circ \theta = \pi_A \otimes \pi_B$. Then

$$\begin{aligned}(\phi \otimes \psi) \circ \pi_{A \otimes_p B} \circ \rho(a \otimes b) &= (\phi \otimes \psi) \circ \pi_{A \otimes_p B} \circ \theta \circ (\rho_A \otimes \rho_B)(a \otimes b) \\ &= (\phi \otimes \psi) \circ (\pi_A \otimes \pi_B) \circ (\rho_A \otimes \rho_B)(a \otimes b) \\ &= \phi \circ \pi_A \circ \rho_A(a)\psi \circ \pi_B \circ \rho_B(b) \\ &= \phi(a)\psi(b) = \phi \otimes \psi(a \otimes b),\end{aligned}$$

for each $a \in A$ and $b \in B$. Therefore $(\phi \otimes \psi) \circ \pi_{A \otimes_p B} \circ \rho(x) = \phi \otimes \psi(x)$ for every $x \in A \otimes_p B$. It follows that $A \otimes_p B$ is left $\phi \otimes \psi$ -biprojective. \square

Let \hat{G} be the dual group of G which consists of all non-zero continuous homomorphism $\rho : G \rightarrow \mathbb{T}$. It is well-known that every character (multiplicative linear functional) $\phi \in \Delta(L^1(G))$ has the form $\phi_\rho(f) = \int_G \overline{\rho(x)}f(x)dx$, where dx is the normalized Haar measure and $\rho \in \hat{G}$, for more details see [5, Theorem 23.7]. Note that, since $L^1(G)$ is a closed ideal of the measure algebra $M(G)$, each character on $L^1(G)$ can be extended to $M(G)$. For a locally compact group G , we denote $A(G)$ for the Fourier algebra. The character space $\Delta(A(G))$ consists of all point evaluations ϕ_x for each $x \in G$, where

$$\phi_x(f) = f(x), \quad (f \in A(G)),$$

see [6, Example 2.6].

Theorem 3.3. *Let G be a locally compact group. Then $M(G) \otimes_p A(G)$ is left $\phi \otimes \psi$ -biprojective if and only if G is finite, where $\phi \in \Delta(L^1(G))$ and $\psi \in \Delta(A(G))$.*

Proof. Let $M(G) \otimes_p A(G)$ be left $\phi \otimes \psi$ -biprojective. Also let e be the unit of $M(G)$ and a_0 be the element of $A(G)$ such that $\psi(a_0) = 1$. Put $x_0 = e \otimes a_0$. Clearly $xx_0 = x_0x$ and $\phi \otimes \psi(x_0) = 1$, for every $x \in M(G) \otimes_p A(G)$. Now applying [16, Lemma 2.2] $M(G) \otimes_p A(G)$ is left $\phi \otimes \psi$ -contractible. Now using [10, Theorem 3.14] $M(G)$ is left ϕ -contractible, so by [10, Theorem 6.2] G is compact. Also by [10, Theorem 3.14] $A(G)$ is left ψ -contractible. Thus by [10, Proposition 6.6] G is discrete. Therefore G is finite.

Converse is clear. \square

Theorem 3.4. *Let G be a locally compact group. Then $M(G) \otimes_p L^1(G)$ is left $\phi \otimes \psi$ -biprojective if and only if G is compact, where $\phi, \psi \in \Delta(L^1(G))$.*

Proof. Suppose that $M(G) \otimes_p L^1(G)$ is left $\phi \otimes \psi$ -biprojective. Let e be the unit of $M(G)$ and e_α be a bounded approximate identity of $L^1(G)$. Clearly $e \otimes e_\alpha$ is a bounded approximate identity. Thus by [16, Lemma 2.2] $M(G) \otimes_p L^1(G)$ is left $\phi \otimes \psi$ -contractible. So [10, Theorem 3.14] $L^1(G)$ is left ψ -contractible. Then by [10, Theorem 6.2] G is compact.

For converse, suppose that G is compact. Then by [10, Theorem 3.14] $M(G)$ is left ϕ -contractible and by [10, Theorem 3.14] $L^1(G)$ is left ψ -contractible. Applying [10, Theorem

3.14] $M(G) \otimes_p L^1(G)$ is left $\phi \otimes \psi$ -contractible. So by [16, Lemma 2.1] $M(G) \otimes_p L^1(G)$ is left $\phi \otimes \psi$ -biprojective. \square

A Banach algebra A is called left character biprojective (left character biflat) if A is left ϕ -biprojective (if A is left ϕ -biflat) for each $\phi \in \Delta(A)$, respectively.

Theorem 3.5. *Let G be a locally compact group. Then $M(G) \otimes_p L^1(G)$ is left character biprojective if and only if G is finite.*

Proof. Let $M(G) \otimes_p L^1(G)$ be left character biprojective. So $M(G) \otimes_p L^1(G)$ is left $\phi \otimes \psi$ -biprojective for each $\phi \in \Delta(M(G))$ and $\psi \in \Delta(L^1(G))$. So by similar arguments as in previous theorem, $M(G)$ left ϕ -contractible for each $\phi \in \Delta(M(G))$. Since $M(G)$ is unital, by [10, Corollary 6.2] G is finite.

Converse is clear. \square

A Banach algebra A is amenable if and only if A has a bounded virtual diagonal, that is there exists a bounded net $m_\alpha \in (A \otimes_p A)$ such that $a \cdot m_\alpha - m_\alpha \cdot a \rightarrow 0$ and $\pi_A(m_\alpha)a \rightarrow a$ for each $a \in A$, see [13].

Theorem 3.6. *Let G be a locally compact group. Then $M(G) \otimes_p L^1(G)$ is left character biflat if and only if G is a discrete amenable group.*

Proof. Since $M(G)$ is unital and $L^1(G)$ has a bounded approximate identity, $M(G) \otimes_p L^1(G)$ has a bounded approximate identity. Thus by [15, Lemma 2.1] $M(G) \otimes_p L^1(G)$ is left $\phi \otimes \psi$ -amenable for each $\phi \in \Delta(M(G))$ and $\psi \in \Delta(L^1(G))$. So by [6, Theorem 3.3] $M(G)$ is left ϕ -amenable for each $\phi \in \Delta(M(G))$. Since $M(G)$ is unital, $M(G)$ character amenable. Therefore by the main result of [8], G is discrete and amenable.

For converse, let G be discrete and amenable. Then $M(G) \otimes_p L^1(G) = \ell^1(G) \otimes_p \ell^1(G)$. Applying Johnson's theorem (see [13, Theorem 2.1.18]) that $\ell^1(G)$ is an amenable Banach algebra. Then $\ell^1(G) \otimes_p \ell^1(G)$ is amenable. Therefore $\ell^1(G) \otimes_p \ell^1(G)$ is left ϕ -amenable for all $\phi \in \Delta(\ell^1(G) \otimes_p \ell^1(G))$. Using similar arguments as in the proof of [15, Theorem 2.2] $\ell^1(G) \otimes_p \ell^1(G)$ is left ϕ -biflat for every $\phi \in \Delta(\ell^1(G) \otimes_p \ell^1(G))$. Then $\ell^1(G) \otimes_p \ell^1(G)$ is left character biflat. \square

Proposition 3.1. *Let G be an amenable group. Then $A(G) \otimes_p L^1(G)$ is left $\phi \otimes \psi$ -biprojective if and only if G is finite.*

Proof. Since G is amenable, Leptin's Theorem [13, Theorem 7.1.3] gives that $A(G)$ has a bounded approximate identity. It is well-known that $L^1(G)$ has a bounded approximate identity. So $A(G) \otimes_p L^1(G)$ has a bounded approximate identity. Then by [16, Proposition 2.4], left $\phi \otimes \psi$ -biprojectivity of $A(G) \otimes_p L^1(G)$ implies that $A(G) \otimes_p L^1(G)$ is left $\phi \otimes \psi$ -contractible. So using [10, Theorem 3.14] gives that $A(G)$ is left ϕ -contractible. Then by [10, Proposition 6.6] G is discrete. Also [10, Theorem 3.14] gives that $L^1(G)$ is left ψ -contractible. Then [10, Theorem 6.1] implies that G is compact. It follows that G is finite.

Converse is clear. \square

Proposition 3.2. *Let G be a locally compact group. Then $A(G) \oplus_1 L^1(G)$ is left character biprojective if and only if G is finite.*

Proof. Suppose that $A(G) \oplus_1 L^1(G)$ is left character biprojective. Let $\phi \in \Delta(A(G))$. Choose an element $a_0 \in A(G)$ such that $\phi(a_0) = 1$. Clearly the element $x_0 = (a_0, 0)$ belongs to $A(G) \oplus_1 L^1(G)$ which $xx_0 = x_0x$ and $\phi(x_0) = 1$. Using [16, Lemma 2.2], left character biprojectivity of $A(G) \oplus_1 L^1(G)$ implies that $A(G) \oplus_1 L^1(G)$ is left ϕ -contractible. Since $A(G)$ is a closed ideal in $A(G) \oplus_1 L^1(G)$ and $\phi|_{A(G)} \neq 0$, by [10, Proposition 3.8] $A(G)$

is left ϕ -contractible. So by [10, Proposition 6.6] G is discrete. Thus $A(G) \oplus_1 L^1(G) = A(G) \oplus_1 \ell^1(G)$. We know that $\ell^1(G)$ has an identity e . Replacing e with a_0 and ψ with ϕ (for some $\psi \in \Delta(L^1(G))$) and following the same argument as above, we can see that $\ell^1(G)$ is left ψ -contractible. Thus by [10, Theorem 6.1] G is compact. Therefore G must be finite.

Converse is clear. \square

A linear subspace $S(G)$ of $L^1(G)$ is said to be a Segal algebra on G if it satisfies the following conditions

- (i) $S(G)$ is dense in $L^1(G)$,
- (ii) $S(G)$ with a norm $\|\cdot\|_{S(G)}$ is a Banach space and $\|f\|_{L^1(G)} \leq \|f\|_{S(G)}$ for every $f \in S(G)$,
- (iii) for $f \in S(G)$ and $y \in G$, we have $L_y(f) \in S(G)$ the map $y \mapsto L_y(f)$ from G into $S(G)$ is continuous, where $L_y(f)(x) = f(y^{-1}x)$,
- (iv) $\|L_y(f)\|_{S(G)} = \|f\|_{S(G)}$ for every $f \in S(G)$ and $y \in G$.

For various examples of Segal algebras, we refer the reader to [12].

A locally compact group G is called *SIN*, if it contains a fundamental family of compact invariant neighborhoods of the identity, see [2, p. 86].

Proposition 3.3. *Let G be a SIN group. Then $S(G) \otimes_p S(G)$ is left $\phi \otimes \psi$ -biprojective if and only if G is compact, for some $\phi \in \Delta(S(G))$.*

Proof. Let $S(G) \otimes_p S(G)$ be left $\phi \otimes \psi$ -biprojective. Since G is a SIN group, the main result of [7] gives that $S(G)$ has a central approximate identity. It follows that there exists an element $x_0 \in S(G)$ such that $xx_0 = x_0x$ and $\phi(x_0) = 1$, for each $x \in S(G)$. Set $u_0 = x_0 \otimes x_0$. It is easy to see that $uu_0 = u_0u$ and $\phi \otimes \phi(u_0) = 1$, for every $u \in S(G) \otimes_p S(G)$. Using [16, Lemma 2.2] left $\phi \otimes \psi$ -biprojectivity of $S(G) \otimes_p S(G)$ follows that $S(G) \otimes_p S(G)$ is left $\phi \otimes \psi$ -contractible. By [10, Theorem 3.14] $S(G)$ is left ϕ -contractible. Thus [1, Theorem 3.3] gives that G is compact.

For converse, suppose that G is compact. Then by [1, Theorem 3.3] $S(G)$ is left ϕ -contractible. So by [10, Theorem 3.14] $S(G) \otimes_p S(G)$ be left $\phi \otimes \psi$ -contractible. Applying [16, Lemma 2.1] finishes the proof. \square

Acknowledgment. The author is grateful to the referees for carefully reading the paper and for some helpful comments. Also the author thanks Ilam university for its support.

REFERENCES

- [1] M. Alaghmandan, R. Nasr Isfahani and M. Nemat, *Character amenability and contractibility of abstract Segal algebras*, Bull. Austral. Math. Soc. **82** (2010) 274-281.
- [2] R. S. Doran, J. Whichman, *Approximate identities and factorization in Banach modules*, Lecture Notes in Mathematics. **768**, Springer 1979.
- [3] M. Esmaili, M. Rostami, M. Amini, *A characterization of biflatness of Segal algebras based on a character*, Glas. Mat. Ser. III 51(71) (2016), 45-58.
- [4] F. Ghahramani, R. J. Loy and G. A. Willis, *Amenability and weak amenability of second conjugate Banach algebras*, Proc. Amer. Math. Vol 124 (1996).
- [5] E. Hewitt and K. A. Ross, *Abstract harmonic analysis I*, Springer-Verlag, Berlin, (1963).
- [6] E. Kaniuth, A. T. Lau and J. Pym, *On ϕ -amenability of Banach algebras*, Math. Proc. Cambridge Philos. Soc. **144** (2008) 85-96.
- [7] E. Kotzmann and H. Rindler, *Segal algebras on non-abelian groups*, Trans. Amer. Math. Soc. **237** (1978), 271-281.

- [8] M. S. Monfared, *Character amenability of Banach algebras*, Math. Proc. Camb. Philos. Soc. **144** (2008) 697-706.
- [9] R. Nasr Isfahani and M. Nemat, *Character pseudo-amenability of Banach algebras*, Colloq. Math. **132** (2013), 177-193.
- [10] R. Nasr Isfahani and S. Soltani Renani, *Character contractibility of Banach algebras and homological properties of Banach modules*, Studia Math. **202** (3) (2011) 205-225.
- [11] N. Razi, A. Pourabbas and A. Sahami; *On approximately biflat Banach algebras*, U.P.B. Sci. Bull., Series A, Vol. 79, Iss. 4, 2017, 29-41.
- [12] H. Reiter; *L^1 -algebras and Segal Algebras*, Lecture Notes in Mathematics **231** (Springer, 1971).
- [13] V. Runde, *Lectures on amenability*, Springer, New York, 2002.
- [14] A. Sahami and A. Pourabbas; *On approximate left ϕ -biprojective Banach algebras*, Glas. Mat. vol 53, 2018, 187-203.
- [15] A. Sahami, M. Rostami and A. Pourabbas; *On left ϕ -biflat Banach algebras*, Comment.Math.Univ.Carolin. (To appear)
- [16] A. Sahami, M. Rostami and A. Pourabbas; *Left ϕ -biprojectivity of some Banach algebras*, Preprint.