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ON LEFT φ-BIPROJECTIVITY AND LEFT φ-BIFLATNESS OF

CERTAIN BANACH ALGEBRAS

A. Sahami1

In this paper, we study left φ-biflatness and left φ-biprojectivity of some Ba-

nach algebras, where φ is a non-zero multiplicative linear function. We show that if

the Banach algebra A∗∗ is left φ-biprojective, then A is left φ-biflat. Using this tool we

study left φ-biflatness of some matrix algebras. We also study left φ-biflatness and left

φ-biprojectivity of the projective tensor product of some Banach algebras related to a

locally compact group. We prove that for a locally compact group G, M(G) ⊗p A(G) is

left φ ⊗ ψ-biprojective if and only if G is finite. We show that M(G) ⊗p L1(G) is left

φ⊗ ψ-biprojective if and only if G is compact.

Keywords: Left φ-biflatness, Left φ-biprojectivity, Banach algebras, Locally ompact

groups.

MSC2010: Primary 46M10, 46H05 Secondary 43A07, 43A20.

1. Introduction and Preliminaries

Banach homology theory has two important notions, biflatness and biprojectivity

which these notions have key role in studying the structure of Banach algebras. A Banach

algebra A is called biflat (biprojective), if there exists a bounded A-bimodule morphism

ρ : A→ (A⊗pA)∗∗ (ρ : A→ A⊗pA) such that π∗∗A ◦ ρ is the canonical embedding of A into

A∗∗ (ρ is a right inverse for πA), respectively. It is well-known that for a locally compact

group G, the group algebra L1(G) is biflat (biprojective) if and only if G is amenable

(compact), respectively. We have to mention that a biflat Banach algebra A with a bounded

approximate identity is amenable and vise versa, see [13].

A Banach algebra A is called left φ-amenable, if there exists a bounded net (aα) in

A such that aaα − φ(a)aα → 0 and φ(aα)→ 1 for all a ∈ A, where φ ∈ ∆(A). For a locally

compact group G, the Fourier algebra A(G) is always left φ-amenable. Also the group

algebra L1(G) is left φ-amenable if and only if G is amenable, for further information see

[8] and [1].

Following this course, Essmaili et. al. in [3] introduced and studied a biflat-like

property related to a multiplicative linear functional, they called it condition W (which we

call it here right φ-biflatness). The Banach algebra A is called left φ-biflat, if there exists a

bounded linear map ρ : A→ (A⊗p A)∗∗ such that

ρ(ab) = φ(b)ρ(a) = a · ρ(b)

and

φ̃ ◦ π∗∗A ◦ ρ(a) = φ(a),

for each a, b ∈ A. We followed their work and showed that the Segal algebra S(G) is left

φ-biflat if and only if G is amenable see [15]. Also we defined a notion of left φ-biprojectivity
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for Banach algebras. In fact A Banach algebra is left φ-biprojective if there exists a bounded

linear map ρ : A→ A⊗p A such that

ρ(ab) = a · ρ(b) = φ(b)ρ(a), φ ◦ πA ◦ ρ(a) = φ(a), (a, b ∈ A).

We showed that the Lebesgue-Fourier algebra LA(G) is left φ-biprojective if and only if G

is compact. Also the Fourier algebra A(G) is left φ-biprojective if and only if G is discrete,

see [16].

In this paper, we show that if the Banach algebra A∗∗ is left φ-biprojective, then

A is left φ-biflat. Using this tool we study left φ-biflatness of some matrix algebras. We

also study left φ-biflatness and left φ-biprojectivity of the projective tensor product of some

Banach algebras. We prove that for a locally compact group G, M(G)⊗pA(G) is left φ⊗ψ-

biprojective if and only if G is finite. We show that M(G)⊗pL1(G) is left φ⊗ψ-biprojective

if and only if G is compact.

We remark some standard notations and definitions that we shall need in this paper.

Let A be a Banach algebra. If X is a Banach A-bimodule, then X∗ is also a Banach

A-bimodule via the following actions

(a · f)(x) = f(x · a), (f · a)(x) = f(a · x) (a ∈ A, x ∈ X, f ∈ X∗).

Throughout, the character space of A is denoted by ∆(A), that is, all non-zero multi-

plicative linear functionals on A. Let φ ∈ ∆(A). Then φ has a unique extension φ̃ ∈ ∆(A∗∗)

which is defined by φ̃(F ) = F (φ) for every F ∈ A∗∗.
Let A be a Banach algebra. The projective tensor product A ⊗p A is a Banach

A-bimodule via the following actions

a · (b⊗ c) = ab⊗ c, (b⊗ c) · a = b⊗ ca (a, b, c ∈ A).

For Banach algebras A and B with φ ∈ ∆(A) and ψ ∈ ∆(B), we denote φ ⊗ ψ for a

multiplicative linear functional on A⊗p B given by φ⊗ ψ(a⊗ b) = φ(a)ψ(b) for each a ∈ A
and b ∈ B. The product morphism πA : A ⊗p A → A is given by πA(a ⊗ b) = ab, for every

a, b ∈ A. Let X and Y be Banach A-bimodules. The map T : X → Y is called A-bimodule

morphism, if

T (a · x) = a · T (x), T (x · a) = T (x) · a, (a ∈ A, x ∈ X).

For the Banach spaces E and F , the weak star operator topology on B(E,F ∗) (the set

of all bounded linear operators from E into F ∗) is the locally convex topology given by the

seminorms {|| · ||e,f : e ∈ E, f ∈ F}, where ||T ||e,f = | < f, T (e) > | and T ∈ B(E,F ∗). We

have to remind that the weak star operator topology on B(E,F ∗) is exactly the w∗-topology

on B(E,F ∗) when identified with (E⊗p F )∗. Note that every bounded net in B(E,F ∗) has

a weak star operator topology-limit point in B(E,F ∗).

2. Some general properties

Let A be a Banach algebra and φ ∈ ∆(A). A is called approximate left φ-biprojective

if there exists a net of bounded linear maps from A into A⊗p A, say (ρα)α∈I , such that

(i) a · ρα(b)− ρα(ab)
||·||−−→ 0,

(ii) ρα(ba)− φ(a)ρα(b)
||·||−−→ 0,

(iii) φ ◦ πA ◦ ρα(a)− φ(a)→ 0,

for every a, b ∈ A, see [14].

Proposition 2.1. Let A be a left φ-biflat Banach algebra. Then A is approximate left

φ-biprojective.
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Proof. Since A is left φ-biflat, there exists a bounded linear map ρ : A → (A ⊗p A)∗∗ such

that ρ(ab) = a · ρ(b) = φ(b)ρ(a) and φ̃ ◦ π∗∗A ◦ ρ(a) = φ(a). Since ρ ∈ B(A, (A ⊗p A)∗∗),

there exists a net ρα ∈ B(A,A⊗p A) such that ρα
W∗OT−−−−→ ρ. Thus for each a ∈ A we have

ρα(a)
w∗

−−→ ρ(a). Then

a · ρα(b)
w∗

−−→ a · ρ(b) = ρ(ab), ρα(ab)
w∗

−−→ ρ(ab), φ(b)ρα(a)
w∗

−−→ φ(b)ρ(a) = ρ(ab).

On the other hand, the map π∗∗A is a w∗-continuous map, so π∗∗A ◦ ρα(a)
w∗

−−→ π∗∗A ◦ ρ(a), for

each a ∈ A. Then

φ ◦ πA ◦ ρα(a) = φ̃ ◦ π∗∗A ◦ ρα(a) = π∗∗A ◦ ρα(a)(φ)→ π∗∗A ◦ ρ(a)(φ) = φ̃ ◦ π∗∗A ◦ ρ(a) = φ(a).

Also for each a, b ∈ A, we have

a · ρα(b)
w∗

−−→ a · ρ(b) = ρ(ab), ρα(ab)
w∗

−−→ ρ(ab), φ(b)ρα(a)
w∗

−−→ φ(b)ρ(a).

So

a · ρα(b)− ρα(ab)
w∗

−−→ 0, φ(b)ρα(a)− φ(b)ρα(a)
w∗

−−→ 0.

Put F = {a1, a2, ..., an} and G = {b1, b2, ..., bn} for finite subsets of A. Define

M = {(a1 ·T (b1)−T (a1b1), a2 ·T (b2)−T (a2b2), ..., an ·T (bn)−T (anbn)) : T ∈ B(A,A⊗pA)}.
It is easy to see that M is a convex subset of

∏n
i=1(A ⊗p A) ⊕1

∏n
i=1 C and (0, 0, ..., 0) ∈

M
w

= M
||·||
. It follows that, there exists a net ξ(ε,F,G) ∈ B(A,A⊗p A) such that

||ai · ξ(ε,F,G)(bi)− ξ(ε,F,G)(aibi)|| < ε, ||ξ(ε,F,G)(aibi)− φ(bi)ξ(ε,F,G)(ai)|| < ε

and |φ◦πA◦ξ(ε,F,G)(ai)−φ(ai)| < ε, for each i ∈ {1, 2, ..., n}. It follow that the net (ξ(ε,F,G)),

for each a, b ∈ A, satisfies

a · ξ(ε,F,G) − ξ(ε,F,G)(ab)→ 0, φ(b)ξ(ε,F,G)(a)− ξ(ε,F,G)(ab)→ 0

and

φ ◦ πA ◦ ξ(ε,F,G)(a)− φ(a)→ 0.

Therefore A is approximately left φ−biprojective. �

The converse of the above proposition is partially valid:

Lemma 2.1. If A is an approximately left φ-biprojective with bounded net ρα, then A is left

φ-biflat.

Proof. Let A be approximately left φ-biprojective with bounded net ρα. So ρα ∈ B(A, (A⊗p
A)∗∗) ∼= (A⊗p (A⊗p A)∗)∗ has a w∗-limit-point, say ρ. Since

a · ρα(b)− ρα(ab)→ 0, φ(b)ρα(a)− ρα(ab)→ 0, φ ◦ πA ◦ ρα(a)− φ(a)→ 0.

Note that for each a ∈ A, ρα(a)
w∗

−−→ ρ(a). It follows that

a · ρ(b) = ρ(ab) = φ(b)ρ(a), φ̃ ◦ π∗∗A ◦ ρ(a) = φ(a),

for each a ∈ A. �

Example 2.1. We give a Banach algebra which is not left φ-biflat but it is approximate left

φ-biprojective. So the converse of Proposition 2.1 is not always true. Let denote `1 for the

set of all sequences a = ((an)) of complex numbers equipped with ||a|| =
∑∞
n=1 |an| < ∞ as

its norm. With the following product:

(a ∗ b)(n) =

{
a(1)b(1) if n = 1

a(1)b(n) + b(1)a(n) + a(n)b(n) if n > 1,
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A = (`1, || · ||) becomes a Banach algebra. Clearly ∆(`1) = {φ1, φ1 +φn}, where φn(a) = a(n)

for every a ∈ `1. We claim that `1 is not left φ1-biflat but `1 is approximately left φ̃1-

biprojective for some φ ∈ ∆(`1). We assume conversely that `1 is left φ1-biflat. One can see

that (1, 0, 0, ...) is a unit for `1. Therefore by [15, Lemma 2.1] left φ1-biflatness of `1 implies

that `1 is left φ1-amenable. On the other hand by [9, Example 2.9] `1 is not left φ1-amenable

which is a contradiction.

Applying [9, Example 2.9], gives that `1 is approximate left φ1-amenable. So [14,

Proposition 2.4] follows that that `1 is approximate left φ1-biprojective.

Proposition 2.2. Let A be a Banach algebra with an approximate identity and let φ ∈ ∆(A).

If A∗∗ is approximately biflat, then A is left φ-biflat.

Proof. Since A has an approximate identity A kerφ = kerφ. Thus by [11, Theorem 3.3] A is

left φ−amenable. So there exists an element m ∈ A∗∗ such that am = φ(a)m and φ̃(m) = 1

for every a ∈ A. Define ρ : A → A∗∗ ⊗p A∗∗ by ρ(a) = φ(a)m⊗m. Clearly ρ is a bounded

linear map such that

a · ρ(b) = ρ(ab) = φ(b)ρ(a), φ̃ ◦ πA∗∗ ◦ ρ(a) = φ(a), (a ∈ A).

There exists a bounded linear map ψ : A∗∗ ⊗p A∗∗ → (A⊗p A)∗∗ such that for a, b ∈ A and

m ∈ A∗∗ ⊗p A∗∗, the following holds;

(i) ψ(a⊗ b) = a⊗ b,
(ii) ψ(m) · a = ψ(m · a), a · ψ(m) = ψ(a ·m),

(iii) π∗∗A (ψ(m)) = πA∗∗(m),

see [4, Lemma 1.7]. Set η = ψ ◦ ρ : A→ (A⊗p A)∗∗. It is easy to see that a · η(b) = η(ab) =

φ(b)η(a)

φ̃ ◦ π∗∗A ◦ η(a) = φ̃ ◦ πA∗∗ ◦ ψ ◦ ρ(a) = φ̃ ◦ π∗∗A ◦ ρ(a) = φ(a), (a ∈ A).

So A is left φ-biflat. �

Proposition 2.3. Suppose that A is a Banach algebra and φ ∈ ∆(A). Let A∗∗ be left

φ̃-biprojective. Then A is left φ-biflat.

Proof. Let A∗∗ be φ̃-biprojective. So we have a bounded linear map ρ : A∗∗ → A∗∗ ⊗p A∗∗
such that ρ(ab) = a·ρ(b) = φ̃(b)ρ(a) and φ̃◦πA∗∗◦ρ(a) = φ̃(a), for each a, b ∈ A∗∗. Let ψ be a

bounded linear map as in the proof of previous proposition. Set η = ψ◦ρ|A : A→ (A⊗pA)∗∗.

Clearly η is a bounded linear map which satisfies

η(ab) = ψ ◦ ρ|A(ab) = ψ(a · ρ|A(b)) = a · ψ ◦ ρ|A(b)

and

φ(b)η(a) = φ(b)ψ ◦ ρ|A(a) = ψ(φ(b)ρ|A) = ψ ◦ ρ|A(ab) = η(ab).

Also we have

φ̃ ◦ π∗∗A ◦ η(a) = φ̃ ◦ π∗∗A ◦ ψ ◦ ρ|A(a) = φ̃ ◦ πA∗∗ ◦ ρ|A(a) = φ(a),

for each a ∈ A. It follows that A is left φ-biflat. �

Let A be a Banach algebra and I be a totally ordered set. By UPI(A) we denote the

set of I × I upper triangular matrices which its entries come from A and

||(ai,j)i,j∈I || =
∑
i,j∈I

||ai,j || <∞.
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With matrix operations and || · || as a norm, UPI(A) becomes a Banach algebra. Let

φ ∈ ∆(A) and i0 be the greatest element of I. Define ψφ(ai,j) = φ(ai0,i0). Clearly ψφ is a

character on UPI(A).

Proposition 2.4. Let I be a totally ordered set with the greatest element. Also let A be a

Banach algebra with left identity and φ ∈ ∆(A). Then UPI(A)∗∗ is left ψφ-biflat if and only

if |I| = 1 and A is left φ-biflat.

Proof. Suppose UPI(A)∗∗ is left ψφ-biflat. Let i0 ∈ I be the greatest element of I with

respect to ≥. Since A has a left unit, UPI(A) has a left approximate identity. By [15, Lemma

2.1] left ψφ-amenability of UPI(A)∗∗ implies that UPI(A) is left ψφ-amenable. Define

J = {(ai,j)i,j∈I ∈ UPI(A)|ai,j = 0 for j 6= i0}.
Clearly J is a closed ideal of UPI(A) with ψφ|J 6= 0. Applying [6, Lemma 3.1] gives that

J is left ψφ-amenable. So by [6, Theorem 1.4] there exists a bounded net (jα) in J which

satisfies

jjα − ψφ(j)jα → 0, ψφ(jα) = 1 (j ∈ J). (1)

Suppose in contradiction that I has at least two elements. Let a0 be an element in A such

that φ(a0) = 1. Set j =


· · · 0 · · · 0 a0

· · · 0 · · · 0 a0

: : : : :

· · · 0 · · · 0 a0

: : : : 0

 . Clearly for each α the net jα has a

form


· · · 0 · · · 0 jαi
· · · 0 · · · 0 · · ·
: : : : :

· · · 0 · · · 0 jαk
: : : : jαi0

, where (jαi ), (jαk ) and (jαi0) are some nets in A. Put j and

jα in (1) we have jαi0a0 → 0. Since φ is continuous, we have φ(jαi0) → 0. On the other

hand ψφ(jα) = φ(jαi0) = 1 which is a contradiction. So I must be singleton and the proof is

complete. �

Corollary 2.1. Let I be a totally ordered set with the greatest element. Also let A be a

Banach algebra with left identity and φ ∈ ∆(A). If UPI(A)∗∗ is approximately biflat, then

|I| = 1 and A is approximately biflat.

3. Left φ-biprojectivity of the projective tensor product Banach algebras

Theorem 3.1. Let A and B be Banach algebras which φ ∈ ∆(A) and ψ ∈ ∆(B). Suppose

that A has a unit and B has an idempotent x0 such that ψ(x0) = 1. If A ⊗p B is left

φ⊗ ψ-biflat, then A is left φ-amenable.

Proof. Let ρ : A⊗p B → ((A⊗p B)⊗p (A⊗p B))∗∗ be a bounded linear map such that

ρ(xy) = x · ρ(y) = φ̃⊗ ψ(y)ρ(x), φ̃⊗ ψ ◦ π∗∗A⊗pB ◦ ρ(x) = φ⊗ ψ(x) (x, y ∈ A⊗p B).

For idempotent x0 ∈ B and elements a1, a2 ∈ A we have

a1a2 ⊗ x0 = a1a2 ⊗ x0 = a1a2 ⊗ x2
0 = (a1 ⊗ x0)(a2 ⊗ x0).

We denote e for the unit of A. So we have

ρ(a1a2 ⊗ x0) = ρ((a1 ⊗ x0)(a2 ⊗ x0)) = (a1 ⊗ x0) · ρ(a2 ⊗ x0)

= a1(e⊗ x0) · ρ(a2 ⊗ x0)

= a1ρ(ea2 ⊗ x2
0),
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also

ρ(a1a2 ⊗ x0) = ρ((a1 ⊗ x0)(a2 ⊗ x0)) = φ⊗ ψ(a2 ⊗ x0)ρ(a1 ⊗ x0) = φ(a2)ρ(a1 ⊗ x0)

and

φ̃⊗ ψ ◦ π∗∗A⊗pB ◦ ρ(a1 ⊗ x0) = φ⊗ ψ(a1 ⊗ x0) = φ(a1),

for each a1, a2 ∈ A. Put ξ : (A⊗pB)⊗p (A⊗pB)→ A⊗pA for a bounded linear map which

is given by ξ((a⊗ b)⊗ (c⊗ d) = ψ(bd)a⊗ c, for each a, c ∈ A and b, d ∈ B. Clearly

π∗∗A ◦ ξ∗∗ = (idA ⊗ ψ)∗∗ ◦ π∗∗A⊗pB .

Define θ : A→ (A⊗pA)∗∗ by θ(a) = ξ∗∗ ◦ ρ(a⊗x0). Clearly θ is a bounded linear map. We

have

a · θ(b) = a · ξ∗∗ ◦ ρ(b) = ξ∗∗ ◦ ρ(ab) = φ(b)ξ∗∗ ◦ ρ(a) = φ(b)θ(a), (a, b ∈ A).

Also

φ̃ ◦ π∗∗A ◦ θ(a) = φ̃ ◦ π∗∗A ◦ ξ∗∗ ◦ ρ(a⊗ x0) = φ̃ ◦ (idA ⊗ ψ)∗∗ ◦ π∗∗A⊗pB ◦ ρ(a⊗ x0)

= φ̃⊗ ψ ◦ π∗∗A⊗pB ◦ ρ(a⊗ x0)

= φ⊗ ψ(a⊗ x0) = φ(a),

for each a ∈ A. It follows that A is left φ-biflat. Since A has a unit by [15, Lemma 2.1] A

is left φ-amenable. �

Note that the previous theorem is also valid in the left φ-biprojective case. In fact we

have the following corollary which we omit its proof.

Corollary 3.1. Let A and B be Banach algebras which φ ∈ ∆(A) and ψ ∈ ∆(B). Suppose

that A has a unit and B has an idempotent x0 such that ψ(x0) = 1. If A ⊗p B is left

φ⊗ ψ-biprojective, then A is left φ-contractible.

Theorem 3.2. Let A and B be Banach algebra with φ ∈ ∆(A) and ψ ∈ ∆(B). If A left

φ-biprojective and B is ψ-biprojective, then A⊗p B is left φ⊗ ψ-biprojective.

Proof. Since A left φ-biprojective and B is ψ-biprojective, there exist bounded linear map

ρA : A→ A⊗p A and ρB : B → B ⊗p B such that

ρA(a1a2) = a1 · ρA(a2) = φ(a2)ρA(a1), φ ◦ πA ◦ ρA = φ, (a1, a2 ∈ A)

and

ρB(b1b2) = b1 · ρB(b2) = φ(b2)ρB(b1), ψ ◦ πB ◦ ρB = ψ, (b1, b2 ∈ B).

Let θ be an isometrical isomorphism from (A⊗p A)⊗p (B ⊗p B) into (A⊗p B)⊗p (A⊗p B)

which is given by θ(a1⊗ a2⊗ b1⊗ b2) = a1⊗ b1⊗ a2⊗ b2 for each a1, a2 ∈ A and b1, b2 ∈ B.
Define ρ = θ ◦ (ρA ⊗ ρB). So

ρ((a1 ⊗ b1)(a2 ⊗ b2)) = θ ◦ (ρA ⊗ ρB)((a1 ⊗ b1)(a2 ⊗ b2))

= θ(ρA(a1a2)⊗ ρB(b1b2)

= θ(a1 · ρA(a2)⊗ b1 · ρB(b2))

= θ((a1 ⊗ b1) · (ρA(a2)⊗ ρB(b2))

= (a1 ⊗ b1) · θ ◦ (ρA ⊗ ρB)(a2 ⊗ b2),
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for each a1, a2 ∈ A and b1, b2 ∈ B. It follows that ρ(xy) = x · ρ(y) for each x, y ∈ A ⊗p B.

Also we have

φ⊗ ψ(a1 ⊗ b1)ρ(a2 ⊗ b2) = φ(a1)ψ(b1)θ ◦ (ρA(a2)⊗ ρB(b2))

= θ ◦ (φ(a1)ρA(a2)⊗ ψ(b1)ρB(b2))

= θ ◦ (ρA(a2a1)⊗ ρB(b2b1))

= ρ((a2 ⊗ b2)(a1 ⊗ b1),

for each a1, a2 ∈ A and b1, b2 ∈ B. So for each x, y ∈ A⊗pB, we have φ⊗ψ(x)ρ(y) = ρ(yx).

Note that

πA⊗pB ◦ θ(a1 ⊗ a2 ⊗ b1 ⊗ b2) = πA⊗pB(a1 ⊗ b1 ⊗ a2 ⊗ b2) = πA(a1 ⊗ a2)πB(b1 ⊗ b2),

it implies that πA⊗pB ◦ θ = πA ⊗ πB . Then

(φ⊗ ψ) ◦ πA⊗pB ◦ ρ(a⊗ b) = (φ⊗ ψ) ◦ πA⊗pB ◦ θ ◦ (ρA ⊗ ρB)(a⊗ b)
= (φ⊗ ψ) ◦ (πA ⊗ πB) ◦ (ρA ⊗ ρB)(a⊗ b)
= φ ◦ πA ◦ ρA(a)ψ ◦ πB ◦ ρB(b)

= φ(a)ψ(b) = φ⊗ ψ(a⊗ b),

for each a ∈ A and b ∈ B. Therefore (φ⊗ψ)◦πA⊗pB ◦ρ(x) = φ⊗ψ(x) for every x ∈ A⊗pB.
It follows that A⊗p B is left φ⊗ ψ-biprojective. �

Let Ĝ be the dual group of G which consists of all non-zero continuous homomorphism

ρ : G → T. It is well-known that every character (multiplicative linear functional) φ ∈
∆(L1(G)) has the form φρ(f) =

∫
G
ρ(x)f(x)dx, where dx is the normalized Haar measure

and ρ ∈ Ĝ, for more details see [5, Theorem 23.7]. Note that, since L1(G) is a closed ideal of

the measure algebra M(G), each character on L1(G) can be extended to M(G). For a locally

compact group G, we denote A(G) for the Fourier algebra. The character space ∆(A(G))

consists of all point evaluations φx for each x ∈ G, where

φx(f) = f(x), (f ∈ A(G)),

see[6, Example 2.6].

Theorem 3.3. Let G be a locally compact group. Then M(G) ⊗p A(G) is left φ ⊗ ψ-

biprojective if and only if G is finite, where φ ∈ ∆(L1(G)) and ψ ∈ ∆(A(G)).

Proof. Let M(G) ⊗p A(G) be left φ ⊗ ψ-biprojective. Also let e be the unit of M(G) and

a0 be the element of A(G) such that ψ(a0) = 1. Put x0 = e ⊗ a0. Clearly xx0 = x0x and

φ⊗ψ(x0) = 1, for every x ∈M(G)⊗p A(G). Now applying [16, Lemma 2.2] M(G)⊗p A(G)

is left φ ⊗ ψ-contractible. Now using [10, Theorem 3.14] M(G) is left φ-contractible, so by

[10, Theorem 6.2] G is compact. Also by [10, Theorem 3.14] A(G) is left ψ-contractible.

Thus by [10, Proposition 6.6] G is discrete. Therefore G is finite.

Converse is clear. �

Theorem 3.4. Let G be a locally compact group. Then M(G) ⊗p L1(G) is left φ ⊗ ψ-

biprojective if and only if G is compact, where φ, ψ ∈ ∆(L1(G)).

Proof. Suppose that M(G)⊗pL1(G) is left φ⊗ψ-biprojective. Let e be the unit of M(G) and

eα be a bounded approximate identity of L1(G). Clearly e ⊗ eα is a bounded approximate

identity. Thus by [16, Lemma 2.2] M(G)⊗pL1(G) is left φ⊗ψ-contractible. So [10, Theorem

3.14] L1(G) is left ψ-contractible. Then by [10, Theorem 6.2] G is compact.

For converse, suppose that G is compact. Then by [10, Theorem 3.14] M(G) is left φ-

contractible and by [10, Theorem 3.14] L1(G) is left ψ-contractible. Applying [10, Theorem
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3.14] M(G) ⊗p L1(G) is left φ ⊗ ψ-contractible. So by [16, Lemma 2.1] M(G) ⊗p L1(G) is

left φ⊗ ψ-biprojective. �

A Banach algebra A is called left character biprojective (left character biflat) if A is

left φ-biprojective (if A is left φ-biflat) for each φ ∈ ∆(A), respectively.

Theorem 3.5. Let G be a locally compact group. Then M(G) ⊗p L1(G) is left character

biprojective if and only if G is finite.

Proof. Let M(G)⊗p L1(G) be left character biprojective. So M(G)⊗p L1(G) is left φ⊗ ψ-

biprojective for each φ ∈ ∆(M(G)) and ψ ∈ ∆(L1(G)). So by similar arguments as in

previous theorem, M(G) left φ-contractible for each φ ∈ ∆(M(G)). Since M(G) is unital,

by [10, Corollary 6.2] G is finite.

Converse is clear. �

A Banach algebra A is amenable if and only if A has a bounded virtual diagonal, that

is there exists a bounded net mα ∈ (A⊗pA) such that a ·mα−mα ·a→ 0 and πA(mα)a→ a

for each a ∈ A, see [13].

Theorem 3.6. Let G be a locally compact group. Then M(G) ⊗p L1(G) is left character

biflat if and only if G is a discrete amenable group.

Proof. Since M(G) is unital and L1(G) has a bounded approximate identity, M(G)⊗pL1(G)

has a bounded approximate identity. Thus by [15, Lemma 2.1] M(G)⊗pL1(G) is left φ⊗ψ-

amenable for each φ ∈ ∆(M(G)) and ψ ∈ ∆(L1(G)). So by [6, Theorem 3.3] M(G) is

left φ-amenable for each φ ∈ ∆(M(G)). Since M(G) is unital, M(G) character amenable.

Therefore by the main result of [8], G is discrete and amenable.

For converse, let G be discrete and amenable. Then M(G)⊗pL1(G) = `1(G)⊗p`1(G).

Applying Johnson’s theorem (see [13, Theorem 2.1.18]) that `1(G) is an amenable Banach

algebra. Then `1(G)⊗p `1(G) is amenable. Therefore `1(G)⊗p `1(G) is left φ-amenable for

all φ ∈ ∆(`1(G) ⊗p `1(G)). Using similar arguments as in the proof of [15, Theorem 2.2]

`1(G)⊗p `1(G) is left φ-biflat for every φ ∈ ∆(`1(G)⊗p `1(G)). Then `1(G)⊗p `1(G) is left

character biflat. �

Proposition 3.1. Let G be an amenable group. Then A(G)⊗pL1(G) is left φ⊗ψ-biprojective

if and only if G is finite.

Proof. Since G is amenable, Leptin’s Theorem [13, Theorem 7.1.3] gives that A(G) has a

bounded approximate identity. It is well-known that L1(G) has a bounded approximate

identity. So A(G)⊗p L1(G) has a bounded approximate identity. Then by [16, Proposition

2.4], left φ ⊗ ψ-biprojectivity of A(G) ⊗p L1(G) implies that A(G) ⊗p L1(G) is left φ ⊗ ψ-

contractible. So using [10, Theorem 3.14] gives that A(G) is left φ-contractible. Then by [10,

Proposition 6.6] G is discrete. Also [10, Theorem 3.14] gives that L1(G) is left ψ-contractible.

Then [10, Theorem 6.1] implies that G is compact. It follows that G is finite.

Converse is clear. �

Proposition 3.2. Let G be a locally compact group. Then A(G)⊕1 L
1(G) is left character

biprojective if and only if G is finite.

Proof. Suppose that A(G)⊕1L
1(G) is left character biprojective. Let φ ∈ ∆(A(G)). Choose

an element a0 ∈ A(G) such that φ(a0) = 1. Clearly the element x0 = (a0, 0) belongs to

A(G) ⊕1 L
1(G) which xx0 = x0x and φ(x0) = 1. Using [16, Lemma 2.2], left character

biprojectivity of A(G) ⊕1 L
1(G) implies that A(G) ⊕1 L

1(G) is left φ-contractible. Since

A(G) is a closed ideal in A(G) ⊕1 L
1(G) and φ|A(G) 6= 0, by [10, Proposition 3.8]A(G)
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is left φ-contractible. So by [10, Proposition 6.6] G is discrete. Thus A(G) ⊕1 L
1(G) =

A(G) ⊕1 `
1(G). We know that `1(G) has an identity e. Replacing e with a0 and ψ with φ

(for some ψ ∈ ∆(L1(G))) and following the same argument as above, we can see that `1(G)

is left ψ-contractible. Thus by [10, Theorem 6.1] G is compact. Therefore G must be finite.

Converse is clear. �

A linear subspace S(G) of L1(G) is said to be a Segal algebra on G if it satisfies the

following conditions

(i) S(G) is dense in L1(G),

(ii) S(G) with a norm || · ||S(G) is a Banach space and ||f ||L1(G) ≤ ||f ||S(G) for every

f ∈ S(G),

(iii) for f ∈ S(G) and y ∈ G, we have Ly(f) ∈ S(G) the map y 7→ Ly(f) from G into S(G)

is continuous, where Ly(f)(x) = f(y−1x),

(iv) ||Ly(f)||S(G) = ||f ||S(G) for every f ∈ S(G) and y ∈ G.

For various examples of Segal algebras, we refer the reader to [12].

A locally compact group G is called SIN , if it contains a fundamental family of

compact invariant neighborhoods of the identity, see [2, p. 86].

Proposition 3.3. Let G be a SIN group. Then S(G) ⊗p S(G) is left φ ⊗ ψ-biprojective if

and only if G is compact, for some φ ∈ ∆(S(G)).

Proof. Let S(G)⊗pS(G) be left φ⊗φ-biprojective. Since G is a SIN group, the main result

of [7] gives that S(G) has a central approximate identity. It follows that there exists an

element x0 ∈ S(G) such that xx0 = x0x and φ(x0) = 1, for each x ∈ S(G). Set u0 = x0⊗x0.

It is easy to see that uu0 = u0u and φ ⊗ φ(u0) = 1, for every u ∈ S(G) ⊗p S(G). Using

[16, Lemma 2.2] left φ⊗ φ-biprojectivity of S(G)⊗p S(G) follows that S(G)⊗p S(G) is left

φ⊗φ-contractible. By [10, Theorem 3.14] S(G) is left φ-contractible. Thus [1, Theorem 3.3]

gives that G is compact.

For converse, suppose that G is compact. Then by [1, Theorem 3.3] S(G) is left

φ-contractible. So by [10, Theorem 3.14] S(G)⊗p S(G) be left φ⊗φ-contractible. Applying

[16, Lemma 2.1] finishes the proof. �
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